1. Deep Learning-based Inpainting for Sparse Arrays in Ultrafast Ultrasound Imaging: Dataset

Overview
This website provides access to the dataset associated with the publication:
R. Viñals, J.-P. Thiran — Deep Learning-based Inpainting for Sparse Arrays in Ultrafast Ultrasound Imaging, IEEE Transactions on Computational Imaging, 2025.
This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/. Please cite this paper when using the dataset.
The EPFL Ultrafast Ultrasound Dataset is a large-scale collection of in vivo and in vitro ultrafast ultrasound acquisitions designed for research on deep learning, image reconstruction, beamforming, and sparse-array imaging. It includes over 20,000 in vivo acquisitions, detailed metadata, and complete acquisition settings.
Download the Dataset
For stable and reproducible access, we recommend downloading via the direct links below or using the S3 interface (instructions provided further down).
Core Files
- README: https://datasets.epfl.ch/epfl_ultrafast_ultrasound/README.md
- In vivo metadata (CSV): https://datasets.epfl.ch/epfl_ultrafast_ultrasound/invivo_dataset.csv
- Contains one row per acquisition, with:
id,volunteer_id,body_region
- Contains one row per acquisition, with:
- Acquisition & beamforming settings (ZIP): https://datasets.epfl.ch/epfl_ultrafast_ultrasound/settings.zip
- In vitro phantom dataset: https://datasets.epfl.ch/epfl_ultrafast_ultrasound/invitro_CIRS054GS.zip
In Vivo Datasets
- Volunteer 1:
- Abdomen: https://datasets.epfl.ch/epfl_ultrafast_ultrasound/volunteer_1_abdomen.zip
- Breast, carotid & shoulders: https://datasets.epfl.ch/epfl_ultrafast_ultrasound/volunteer_1_breast_carotid_shoulders.zip
- Legs: https://datasets.epfl.ch/epfl_ultrafast_ultrasound/volunteer_1_legs.zip
- Arm + Back: https://datasets.epfl.ch/epfl_ultrafast_ultrasound/volunteer_1_arm_back.zip
- Volunteers 2–9:
- Volunteer 002: https://datasets.epfl.ch/epfl_ultrafast_ultrasound/volunteer_002.zip
- Volunteer 003: https://datasets.epfl.ch/epfl_ultrafast_ultrasound/volunteer_003.zip
- Volunteer 004: https://datasets.epfl.ch/epfl_ultrafast_ultrasound/volunteer_004.zip
- Volunteer 005: https://datasets.epfl.ch/epfl_ultrafast_ultrasound/volunteer_005.zip
- Volunteer 006: https://datasets.epfl.ch/epfl_ultrafast_ultrasound/volunteer_006.zip
- Volunteer 007: https://datasets.epfl.ch/epfl_ultrafast_ultrasound/volunteer_007.zip
- Volunteer 008: https://datasets.epfl.ch/epfl_ultrafast_ultrasound/volunteer_008.zip
- Volunteer 009: https://datasets.epfl.ch/epfl_ultrafast_ultrasound/volunteer_009.zip
Access via S3 (recommended for large transfers)
The dataset is hosted on an S3-compatible endpoint and can be accessed using rclone.
- Create an rclone remote
- Add to
~/.config/rclone/rclone.conf:[datasets_epfl]type = s3provider = Otherendpoint = https://datasets.epfl.chregion = us-east-1env_auth = falseaccess_key_id =secret_access_key =
- Or create it automatically:
rclone config create datasets_epfl s3 provider Other endpoint https://datasets.epfl.ch region us-east-1
- Add to
- List all files:
rclone ls datasets_epfl:epfl_ultrafast_ultrasound - Download a file:
rclone copy datasets_epfl:epfl_ultrafast_ultrasound/volunteer_002.zip . -P - Download the full dataset:
rclone sync datasets_epfl:epfl_ultrafast_ultrasound ./epfl_ultrafast_ultrasound -P
Dataset Description
-
In Vivo Data
- Total number of acquisitions: 20,000
- Participants: 9 volunteers
- Format: One
.ziparchive per volunteer (multiple archives for Volunteer 1) - Acquisition Distribution by Body Region
- Abdomen: 6,599
- Neck: 3,294
- Breast: 3,291
- Lower limbs: 2,616
- Upper limbs: 2,110
- Back: 2,090
- Additional (unused in publications):
- Shoulders: 123 (volunteer_001)
- Arms: 19 (
invivo_04451.npz → invivo_0469.npz)
- File Naming:
invivo_00000.npz → invivo_20141.npz
-
In Vitro Data
- Total number of acquisitions: 2,179
- Phantom: CIRS Model 054G
- File Naming:
invitro_00000.npz → invitro_02178.npy
Acquisition & Beamforming Parameters
Provided in the settings folder:
| File | Description |
|---|---|
beamforming_settings.yaml |
Probe, acquisition and beamforming parameters (SI units) |
steering_angles.npy |
87 steering angles (radians) |
time_axis.npy |
Global RF time axis |
time_axis_per_angle.npy |
Per-angle time axes |
sequence_verasonics_ge9ld_87pws.mat |
Original Verasonics sequence file |
File Format
All acquisitions are stored as NumPy arrays: import numpy as np
data = np.load("file.npz")
Publications Using This Dataset
Selected In Vivo Acquisitions by Paper
| Year | Paper Title | Acquisitions Used |
|---|---|---|
| 2025 | Deep Learning-based Inpainting for Sparse Arrays in Ultrafast Ultrasound Imaging (IEEE Transactions on Computational Imaging, 2025) | invivo_18198 (V8, carotid), invivo_16874 (V8, abdomen) |
| 2025 | Multi-Plane Wave Signal Inpainting with CNNs: A Framework for Reducing RF Data Volume in Ultrafast Ultrasound (IEEE IUS 2025) | invivo_14592 (V5, abdomen), invivo_14888 (V5, abdomen) |
| 2024 | Enhancement of Ultrafast Ultrasound Images: a Performance Comparison Between CNN Trained with RF or IQ Images (UFFC-JS 2024) | invivo_18296 (V8, carotid), invivo_14786 (V5, abdomen) |
| 2024 | Sequential CNN-Based Enhancement of Ultrafast Ultrasound Imaging for Sparse Arrays (EUSIPCO 2024) | invivo_18171 (V8, carotid) |
| 2023 | Quality Enhancement of Ultrafast Ultrasound Images with Deep Networks and Transfer Learning (IEEE IUS 2023) | invivo_14965 (V5, carotid), invivo_15002 (V5, carotid) |
| 2023 | A KL Divergence-Based Loss for In Vivo Ultrafast Ultrasound Image Enhancement with Deep Learning (Journal of Imaging, 2023) | invivo_17688 (V8, back), invivo_15026 (V5, carotid) |
In Vitro Acquisitions Used in Publications
| Year | Paper Title | Acquisitions Used |
|---|---|---|
| 2025 | Deep Learning-based Inpainting for Sparse Arrays in Ultrafast Ultrasound Imaging (IEEE Transactions on Computational Imaging, 2025) | invitro_02162.npz |
| 2024 | Enhancement of Ultrafast Ultrasound Images: a Performance Comparison Between CNN Trained with RF or IQ Images (UFFC-JS 2024) | invitro_02162.npz |
| 2023 | A KL Divergence-Based Loss for In Vivo Ultrafast Ultrasound Image Enhancement with Deep Learning (Journal of Imaging, 2023) | invitro_02162.npz |
Training / Validation / Test Splits
- Default split (used in most papers):
- Training: 1, 2, 3, 6, 7, 9
- Validation: 4
- Test: 5, 8
- Split used in IUS 2023 (Quality Enhancement of Ultrafast Ultrasound Images with Deep Networks and Transfer Learning)
- Training: 1, 2, 3, 4, 6, 7, 9
- Validation: 8
- Test: 5
License
This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0): https://creativecommons.org/licenses/by/4.0/
Please cite the corresponding publication when using this dataset.
Contact
For questions or issues:
- Roser Viñals: 📧 [email protected]
- Jean-Philippe Thiran: 📧 [email protected]