Publications

2025

Of Revolutions and Roadblocks: The Emerging Role of Machine Learning in Biocatalysis

T. Vornholt; P. Stockinger; M. Mutný; M. Jeschek; B. Nestl et al. 

ACS Central Science. 2025. DOI : 10.1021/acscentsci.5c00949.

Computer-assisted multilevel optimization of malonyl-CoA availability in Pseudomonas putida

C. Batianis; R. P. van Rosmalen; P. Moñino Fernández; K. Labanaris; E. Asin-Garcia et al. 

Metabolic Engineering. 2025. Vol. 90, p. 165 – 177. DOI : 10.1016/j.ymben.2025.03.008.

Data-driven protease engineering by DNA-recording and epistasis-aware machine learning

L. Huber; T. Kucera; S. Höllerer; K. Borgwardt; S. Panke et al. 

Nature Communications. 2025. Vol. 16, num. 1. DOI : 10.1038/s41467-025-60622-7.

Permeabilisation of the Outer Membrane of Escherichia coli for Enhanced Transport of Complex Molecules

I. Casas‐Rodrigo; T. Vornholt; K. Castiglione; T. M. Roberts; M. Jeschek et al. 

Microbial Biotechnology. 2025. Vol. 18, num. 3. DOI : 10.1111/1751-7915.70122.

2024

Enhanced Sequence-Activity Mapping and Evolution of Artificial Metalloenzymes by Active Learning

T. Vornholt; M. Mutný; G. W. Schmidt; C. Schellhaas; R. Tachibana et al. 

ACS Central Science. 2024. Vol. 10, num. 7, p. 1357 – 1370. DOI : 10.1021/acscentsci.4c00258.

From sequence to function and back – High-throughput sequence-function mapping in synthetic biology

S. Höllerer; C. Desczyk; R. F. Muro; M. Jeschek 

Current Opinion in Systems Biology. 2024. Vol. 37. DOI : 10.1016/j.coisb.2023.100499.

2023

An Artificial Metalloenzyme for Atroposelective Metathesis**

T. Vornholt; Z. Jončev; V. Sabatino; S. Panke; T. R. Ward et al. 

Chemcatchem. 2023. Vol. 15, num. 23. DOI : 10.1002/cctc.202301113.

Ultradeep characterisation of translational sequence determinants refutes rare-codon hypothesis and unveils quadruplet base pairing of initiator tRNA and transcript

S. Höllerer; M. Jeschek 

Nucleic Acids Research. 2023. Vol. 5, num. 51, p. 2377 – 2396. DOI : 10.1093/nar/gkad040.

2021

Systematic engineering of artificial metalloenzymes for new-to-nature reactions

T. Vornholt; F. Christoffel; M. M. Pellizzoni; S. Panke; T. R. Ward et al. 

Science Advances. 2021. Vol. 7, num. 4. DOI : 10.1126/sciadv.abe4208.

2020

Large-scale DNA-based phenotypic recording and deep learning enable highly accurate sequence-function mapping

S. Höllerer; L. Papaxanthos; A. C. Gumpinger; K. Fischer; C. Beisel et al. 

Nature Communications. 2020. Vol. 11, num. 1. DOI : 10.1038/s41467-020-17222-4.

The Quest for Xenobiotic Enzymes: From New Enzymes for Chemistry to a Novel Chemistry of Life

T. Vornholt; M. Jeschek 

ChemBioChem. 2020. Vol. 21, num. 16, p. 2241 – 2249. DOI : 10.1002/cbic.202000121.

2019

Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources

S. Wu; Y. Zhou; D. Gerngross; M. Jeschek; T. R. Ward 

Nature Communications. 2019. Vol. 10, num. 1. DOI : 10.1038/s41467-019-13071-y.

2018

E. coli surface display of streptavidin for directed evolution of an allylic deallylase

T. Heinisch; F. Schwizer; B. Garabedian; E. Csibra; M. Jeschek et al. 

Chemical Science. 2018. Vol. 9, num. 24, p. 5383 – 5388. DOI : 10.1039/C8SC00484F.

Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism

M. Jeschek; S. Panke; T. R. Ward 

Trends in Biotechnology. 2018. Vol. 36, num. 1, p. 60 – 72. DOI : 10.1016/j.tibtech.2017.10.003.

2017

Combinatorial pathway optimization for streamlined metabolic engineering

M. Jeschek; D. Gerngross; S. Panke 

Current Opinion in Biotechnology. 2017. Vol. 47, p. 142 – 151. DOI : 10.1016/j.copbio.2017.06.014.

Biotin-independent strains of Escherichia coli for enhanced streptavidin production

M. Jeschek; M. O. Bahls; V. Schneider; P. Marlière; T. R. Ward et al. 

Metabolic Engineering. 2017. Vol. 40, p. 33 – 40. DOI : 10.1016/j.ymben.2016.12.013.

2016

Directed evolution of artificial metalloenzymes for in vivo metathesis

M. Jeschek; R. Reuter; T. Heinisch; C. Trindler; J. Klehr et al. 

Nature. 2016. Vol. 537, p. 661 – 665. DOI : 10.1038/nature19114.

Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort

M. Jeschek; D. Gerngross; S. Panke 

Nature Communications. 2016. Vol. 7, num. 1. DOI : 10.1038/ncomms11163.

Periplasmic Screening for Artificial Metalloenzymes

M. Jeschek; S. Panke; T. Ward 

Methods in Enzymology; Elsevier, 2016. p. 539 – 556.