Publications Prof. Graetzel

2025

Designing multi-metal-site nanosheet catalysts for CO2 photoreduction to ethylene

X. Li; L. Li; X. Liu; J. Xu; X. Chu et al. 

Nature communications. 2025. Vol. 16, num. 1. DOI : 10.1038/s41467-025-61850-7.

Single junction CsPbBr3 solar cell coupled with electrolyzer for solar water splitting

J. H. Kim; J. Seo; D. Lim; J. Lee; J. Kim et al. 

Nature communications. 2025. Vol. 16, num. 1. DOI : 10.1038/s41467-025-58980-3.

Electrolyte effects and stability of Zn/Li dual-ion batteries with water-in-salt electrolytes

T. Supiňková; M. Zukalová; N. Kakavas; J. Xu; W. Niu et al. 

Journal of Power Sources. 2025. Vol. 655, p. 237983. DOI : 10.1016/j.jpowsour.2025.237983.

Reply to: On anisotropy in cubic Cu2O photoelectrodes

L. Pan; L. Dai; O. J. Burton; L. Chen; V. Andrei et al. 

Nature. 2025. Vol. 646, num. 8087, p. E26 – E27. DOI : 10.1038/s41586-025-09629-0.

Observation of transition from rate law to Butler-Volmer controlled water oxidation kinetics on Hematite Photoanodes

T. He; D. Benetti; C. Tseng; B. Moss; D. Teschner et al. 

2025

Scaling Low Temperature CO2-to-Syngas Electroreduction: Insights into Engineering Bottlenecks and Mitigation Strategies

S. Pachamuthu; J. Gao; A. Ozden; U. Legrand; M. Favaro et al. 

2025

Electroactive naphthalimide and naphthalenediimide interlayers for inverted perovskite solar cells

K. K. Armadorou; G. AlSabeh; A. Vezzosi; M. Najafov; P. Nasturzio et al. 

Journal of Materials Chemistry C. 2025. Vol. 13, num. 39, p. 20040 – 20048. DOI : 10.1039/d5tc01418b.

Molecular-level understandings and device strategies for FAPbI3-based perovskite solar cells

H-S. Kim; J-W. Lee; A. Hagfeldt; M. Grätzel; N-G. Park 

Chemical Society Reviews. 2025. DOI : 10.1039/d5cs00474h.

In-situ boundary bridging unlocks multi-grain-domain carrier diffusion in polycrystalline metal halide perovskites

M. Wang; Y. Yin; P. Wang; W. Shang; Y. Han et al. 

Nature Communications. 2025. Vol. 16, num. 1. DOI : 10.1038/s41467-025-63777-5.

Synergistic Electron-Deficient Surface Engineering: A Key Factor in Dictating Electron Carrier Extraction for Perovskite Photovoltaics

C. Li; P. Ganesan; Y. Li; S. Tang; Y. Wang et al. 

Journal of the American Chemical Society. 2025. DOI : 10.1021/jacs.5c07357.

On the Accessibility of Higher-n Phases in Formamidinium-based Ruddlesden-popper and Dion-jacobson Layered Hybrid Perovskites

G. Alsabeh; V. Slama; M. Almalki; L. Merten; P. Zimmermann et al. 

ADVANCED ELECTRONIC MATERIALS. 2025. DOI : 10.1002/aelm.202500164.

Dopamine Dopes the Performance of Perovskite Solar Cells

F. Ansari; L. Zheng; L. Pfeifer; F. T. Eickemeyer; S. M. Zakeeruddin et al. 

Advanced Materials. 2025. DOI : 10.1002/adma.202501075.

Silver Bismuth Iodides for Photovoltaic Applications: Insights from Ab Initio Calculations and Experimental Analysis

M. Mladenović; F. Jahanbakhshi; J. Im; J. V. Milić; M. I. Dar et al. 

ACS Applied Energy Materials. 2025. DOI : 10.1021/acsaem.5c00796.

Polyaniline-supported copper nanocrystals for electrochemical CO2 reduction to methane

R. Chen; J. Gao; S. Zhao; H. Wang; G. Zhuang et al. 

Chem Catalysis. 2025.  p. 101389. DOI : 10.1016/j.checat.2025.101389.

Realizing Uniform Defect Passivation via Self‐Polymerization of Benzenesulfonate Molecules in Perovskite Photovoltaics

G. Yang; Y. Yin; K. Dong; B. Zhang; L. Zhu et al. 

Advanced Materials. 2025. DOI : 10.1002/adma.202503435.

Electrochemical co-upgrading CO2 and glycerol for selective formate production with 190% overall Faradaic efficiency

D. Chen; S. Yang; J. Gao; X. Zheng; J. Mao et al. 

Nano Research. 2025. Vol. 18, num. 5, p. 94907399. DOI : 10.26599/NR.2025.94907399.

Enhancing Indoor Photovoltaic Efficiency to 37.6% Through Triple Passivation Reassembly and n-Type to p-Type Modulation in Wide Bandgap Perovskites

S. Huang; S. Hou; G. Sanfo; J. Xu; Y. Wang et al. 

Advanced Functional Materials. 2025. DOI : 10.1002/adfm.202502152.

Strain-induced rubidium incorporation into wide-bandgap perovskites reduces photovoltage loss

L. Zheng; M. Wei; F. T. Eickemeyer; J. Gao; B. Huang et al. 

Science. 2025. Vol. 388, num. 6742, p. 88 – 95. DOI : 10.1126/science.adt3417.

Effect of imidazole-based additives on the voltage of dye sensitized solar cells with Cu(II/I) redox mediators

L. Kavan; M. Graetzel 

Electrochimica Acta. 2025. Vol. 517, p. 145758. DOI : 10.1016/j.electacta.2025.145758.

Templating the crystallization of perovskite films for high PV performance.

M. Graetzel 

2025. 12 International Conference on Hybrid and Organic Photovoltaics, Roma, Italy, 2025-05-12 – 2025-05-14. DOI : 10.29363/nanoge.hopv.2025.207.

Computational Insights Into Organic Halide Perovskite Solar Devices Incorporating Electroactive Interlayers

A. Vezzosi; V. Carnevali; V. Slama; M. Graetzel; U. Röthlisberger 

2025. 12 International Conference on Hybrid and Organic Photovoltaics, Roma, Italy, 2025-05-12 – 2025-05-14. DOI : 10.29363/nanoge.hopv.2025.178.

Cuprous oxide-Shewanella mediated photolytic hydrogen evolution

M. Morgante; N. Vlachopoulos; L. Pan; M. Xia; C. Comninellis et al. 

International Journal of Hydrogen Energy. 2025. Vol. 101, p. 731 – 740. DOI : 10.1016/j.ijhydene.2024.12.407.

Aryl‐Acetylen‐Schichthybrid‐Perowskite in der Photovoltaik

G. AlSabeh; V. Sláma; M. Ren; M. Almalki; L. Pfeifer et al. 

Angewandte Chemie. 2025. Vol. 137, num. 9. DOI : 10.1002/ange.202417432.

Aryl-Acetylene Layered Hybrid Perovskites in Photovoltaics

G. Alsabeh; V. Slama; M. Ren; M. Almalki; L. Pfeifer et al. 

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION. 2025. DOI : 10.1002/anie.202417432.

De-doping engineering for efficient and heat-stable perovskite solar cells

Y. S. Shin; J. W. Song; D. G. Lee; J. Lee; J. Seo et al. 

Joule. 2025. Vol. 9, num. 1, p. 101779. DOI : 10.1016/j.joule.2024.10.011.

Unraveling the Role of Electron-Withdrawing Molecules for Highly Efficient and Stable Perovskite Photovoltaics

X. Jiang; K. Dong; P. Li; L. Zheng; B. Zhang et al. 

Angewandte Chemie (International ed. in English). 2025. Vol. 64, num. 2. DOI : 10.1002/anie.202414128.

All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites

Z. Liu; R. Lin; M. Wei; M. Yin; P. Wu et al. 

NATURE MATERIALS. 2025. DOI : 10.1038/s41563-024-02073-x.

Suppressing wide-angle light loss and non-radiative recombination for efficient perovskite solar cells

Y. Ge; L. Zheng; H. Wang; J. Gao; F. Yao et al. 

Nature Photonics. 2025. DOI : 10.1038/s41566-024-01570-4.

Self-assembled bilayer for perovskite solar cells with improved tolerance against thermal stresses

B. Dong; M. Wei; Y. Li; Y. Yang; W. Ma et al. 

Nature Energy. 2025.  p. 2191. DOI : 10.1038/s41560-024-01689-2.

Unlocking high-performance photocapacitors for edge computing in low-light environments

N. Flores-Diaz; F. De Rossi; T. Keller; H. Morritt; Z. Perez Bassart et al. 

Energy and Environmental Science. 2025. DOI : 10.1039/d5ee01052g.

Spiro-Phenothiazine Hole-Transporting Materials: Unlocking Stability and Scalability in Perovskite Solar Cells

J. Urieta-Mora; S. J. Choi; J. Jeong; S. Orecchio; I. García-Benito et al. 

Advanced materials (Deerfield Beach, Fla.). 2025. DOI : 10.1002/adma.202505475.

Enhancing the Functionality of Layered Hybrid Perovskites

G. Alsabeh / M. Graetzel; J. V. Milic (Dir.)  

Lausanne, EPFL, 2025. 

Solar photons beyond the band gap wavelengths: their effect on solution-processed solar cells

G. Perrakis; A. Panagiotopoulos; T. Maksudov; C. Aivalioti; E. A. Alharbi et al. 

Materials Horizons. 2025. DOI : 10.1039/d5mh00186b.

Conformationally Stable and Sterically Hindered Bicyclo[1.1.1]pentane-1,3-diammonium Modification of FAPbI3 Enhances the Performance of Perovskite Solar Cells

M. Ren; J. Zhang; Y. Cai; L. Pfeifer; Y. Mu et al. 

Angewandte Chemie (International ed. in English). 2025. DOI : 10.1002/anie.202421535.

Low-temperature thermite reaction to form oxygen vacancies in metal-oxide semiconductors: A case study of photoelectrochemical cells

J. H. Kim; J. U. Lee; L. Zheng; J. Li; K. Sivula et al. 

Chem. 2025.  p. 102388. DOI : 10.1016/j.chempr.2024.12.006.

TEMPO bulk passivation boosts the performance and operational stability of rapid-annealed FAPI perovskite solar cells

S. Sánchez-Alonso; L. Pfeifer; O. Vaccarelli; C. Gisler; J. Hennebert et al. 

Joule. 2025.  p. 101972. DOI : 10.1016/j.joule.2025.101972.

2024

Upgrading Spiro-OMeTAD with β-Chloroethylcarbazole to Improve the Stability of Perovskite Solar Cells

J. Wang; H. Lu; Y. LIu; P. Wang; S. Wang et al. 

ACS ENERGY LETTERS. 2024. num. 1, p. 69 – 77. DOI : 10.1021/acsenergylett.4c02507.

Spatial Conformation Engineering of Aromatic Ketones for Highly Efficient and Stable Perovskite Solar Cells

X. Jiang; L. Zhu; B. Zhang; L. Zheng; L. Wang et al. 

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. 2024. Vol. 46, num. 50, p. 384833 – 34841. DOI : 10.1021/jacs.4c13866.

Stabilization of highly efficient perovskite solar cells with a tailored supramolecular interface

C. Zhao; Z. Zhou; M. Almalki; M. A. Hope; J. Zhao et al. 

Nature communications. 2024. Vol. 15, num. 1. DOI : 10.1038/s41467-024-51550-z.

Advanced High-Throughput Rational Design of Porphyrin-Sensitized Solar Cells Using Interpretable Machine Learning

J. M. Liao; Y. H. Chen; H. W. Lee; B. C. Guo; P. C. Su et al. 

Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2024. Vol. 11, num. 43. DOI : 10.1002/advs.202407235.

High-efficiency and thermally stable FACsPbI3 perovskite photovoltaics

S. Li; Y. Jiang; J. Xu; D. Wang; Z. Ding et al. 

Nature. 2024. Vol. 635, num. 8037, p. 82 – 88. DOI : 10.1038/s41586-024-08103-7.

Graphene-Templated Achiral Hybrid Perovskite for Circularly Polarized Light Sensing

O. Volochanskyi; G. Haider; E. A. Alharbi; G. Kakavelakis; M. Mergl et al. 

ACS applied materials & interfaces. 2024. Vol. 16, num. 39, p. 52789 – 52798. DOI : 10.1021/acsami.4c10289.

Tailored Supramolecular Interactions in Host–Guest Complexation for Efficient and Stable Perovskite Solar Cells and Modules

G. Yang; X. Liu; L. Wang; K. Dong; B. Zhang et al. 

Angewandte Chemie (International ed. in English). 2024. Vol. 63, num. 40. DOI : 10.1002/anie.202410454.

Improving the operational stability of perovskite solar cells with cesium-doped graphene oxide interlayer

M. Almalki; K. Anagnostou; K. Rogdakis; F. T. Eickemeyer; M. Othman et al. 

Journal Of Energy Chemistry. 2024. Vol. 96, p. 483 – 490. DOI : 10.1016/j.jechem.2024.04.037.

Supramolecular Modulation for Hybrid Perovskite Photovoltaics

G. Alsabeh; J. V. Milic; S. Kasemthaveechok; M. A. Ruiz-Preciado; H. Zhang et al. 

2024. MATSUS – Materials for Sustainable Development Fall 2024 Conference, Lausanne, Switzerland, 2024-11-12 – 2024-11-15. DOI : 10.29363/nanoge.matsusfall.2024.216.

Boosting Interfacial Electron Transfer and CO2 Enrichment on ZIF-8/ZnTe for Selective Photoelectrochemical Reduction of CO2 to CO

Q. Wang; X. Gao; Y. Wei; T. Liu; Q. Huang et al. 

ACS applied materials & interfaces. 2024. Vol. 16, num. 28, p. 36462 – 36470. DOI : 10.1021/acsami.4c06921.

A crystal capping layer for formation of black-phase FAPbI3 perovskite in humid air

Y. Zou; W. Yu; H. Guo; Q. Li; X. Li et al. 

Science. 2024. Vol. 385, num. 6705, p. 161 – 167. DOI : 10.1126/science.adn9646.

Triarylamine Trisamide Interfacial Modulation for Perovskite Photovoltaics

M. Almalki; G. Alsabeh; M. A. Ruiz-Preciado; H. Zhang; M. Galerne et al. 

Advanced Materials Interfaces. 2024. DOI : 10.1002/admi.202301053.

Carbazole Treated Waterproof Perovskite Films with Improved Solar Cell Performance

J. Jeong; T. Chawanpunyawat; M. Kim; V. Slama; N. Lempesis et al. 

Advanced Energy Materials. 2024. DOI : 10.1002/aenm.202401965.

Helical interfacial modulation for perovskite photovoltaics

G. Alsabeh; M. Almalki; S. Kasemthaveechok; M. A. Ruiz-Preciado; H. Zhang et al. 

Nanoscale Advances. 2024. Vol. 6, num. 12, p. 3029 – 3033. DOI : 10.1039/d4na00027g.

[Correction] High carrier mobility along the [111] orientation in Cu2O photoelectrodes (vol 628, pg 765, 2024)

L. Pan; L. Dai; O. J. Burton; L. Chen; V. Andrei et al. 

NATURE. 2024. Vol. 629, num. 8013. DOI : 10.1038/s41586-024-07489-8.

Phase-stable indium sulfide achieves an energy conversion efficiency of 14.3% for solar-assisted carbon dioxide reduction to formate

Q. Zhang; J. Gao; X. Wang; J. Zeng; J. Li et al. 

Joule. 2024. Vol. 8, num. 5. DOI : 10.1016/j.joule.2024.03.008.

Mixed ionic-electronic conduction in Ruddlesden-Popper and Dion-Jacobson layered hybrid perovskites with aromatic organic spacers

A. Ducinskas; M. Jung; Y-R. Wang; J. V. Milic; D. Moia et al. 

Journal of Materials Chemistry C. 2024. DOI : 10.1039/d4tc01010h.

High carrier mobility along the [111] orientation in Cu2O photoelectrodes

L. Pan; L. Dai; O. J. Burton; L. Chen; V. Andrei et al. 

Nature. 2024. Vol. 628, num. 8009. DOI : 10.1038/s41586-024-07273-8.

Durable Perovskite Solar Cells with 24.5% Average Efficiency: The Role of Rigid Conjugated Core in Molecular Semiconductors

M. Ren; L. Fang; Y. Zhang; F. T. Eickemeyer; Y. Yuan et al. 

Advanced Materials. 2024. DOI : 10.1002/adma.202403403.

Methylammonium Nitrate-Mediated Crystal Growth and Defect Passivation in Lead Halide Perovskite Solar Cells

S-J. Kim; I. H. Cho; T-D. Nguyen; Y-K. Hong; Y. Kim et al. 

Acs Energy Letters. 2024. DOI : 10.1021/acsenergylett.4c00154.

Buried Interface Engineering Enables Efficient and 1,960‐hour Isos‐L‐2i Stable Inverted Perovskite Solar Cells

L. Li; M. Wei; V. Carnevali; H. Zeng; m. Zeng et al. 

Advanced Materials. 2024. Vol. 36, num. 13, p. 2303869. DOI : 10.1002/adma.202303869.

High-Performance Perovskite Solar Cells with Zwitterion-Capped-ZnO Quantum Dots as Electron Transport Layer and NH4X (X = F, Cl, Br) Assisted Interfacial Engineering

R. Runjhun; E. A. Alharbi; Z. Druzynski; A. Krishna; M. Wolska-Pietkiewicz et al. 

Energy & Environmental Materials. 2024.  p. e12720. DOI : 10.1002/eem2.12720.

Modulation of Ionically Generated Space Charge Effects at Hybrid Perovskite and Oxide Interfaces via Surface Modification

M. Jung; M. Almalki; M. Graetzel; D. Moia; J. Maier 

Advanced Materials Interfaces. 2024. DOI : 10.1002/admi.202300874.

Infrared-reflective ultrathin-metal-film-based transparent electrode with ultralow optical loss for high efficiency in solar cells

G. Perrakis; A. C. Tasolamprou; G. Kakavelakis; K. Petridis; M. Graetzel et al. 

Scientific Reports. 2024. Vol. 14, num. 1, p. 548. DOI : 10.1038/s41598-023-50988-3.

Photo-doping of spiro-OMeTAD for highly stable and efficient perovskite solar cells

S-G. Kim; G. C. Fish; E. Socie; A. T. Terpstra; D-A. Park et al. 

Joule. 2024. Vol. 8, num. 6, p. 1707 – 1722. DOI : 10.1016/j.joule.2024.03.012.

Formamidinium Incorporates into Rb-based Non-Perovskite Phases in Solar Cell Formulations

U. Gunes; M. A. Hope; Y. Zhang; L. Zheng; L. Pfeifer et al. 

Angewandte Chemie International Edition. 2024. DOI : 10.1002/anie.202416938.

Surface and Electrolyte Engineering on Semiconductor Electrodes for solar-assisted CO2 Reduction

M. Xia / M. Graetzel; K. Sivula (Dir.)  

Lausanne, EPFL, 2024. 

Research data supporting “High carrier mobility along the [111] orientation in Cu2O photoelectrodes”

L. Pan; L. Dai; O. J. Burton; L. Chen; V. Andrei et al. 

2024.

2023

Molecular engineering of low-cost, efficient, and stable photosensitizers for dye-sensitized solar cells

Z. Shen; F. T. Eickemeyer; J. Gao; L. Pfeifer; D. Bradford et al. 

Chem. 2023. Vol. 9, num. 12. DOI : 10.1016/j.chempr.2023.08.013.

Efficient Cu2O Photocathodes for Aqueous Photoelectrochemical CO2 Reduction to Formate and Syngas

M. Xia; L. Pan; Y. Liu; J. Gao; J. Li et al. 

Journal Of The American Chemical Society. 2023. Vol. 145, num. 51, p. 27939 – 27949. DOI : 10.1021/jacs.3c06146.

Conference on Artificial Photosynthesis and Green Catalysis

J. Gao; L. Pfeifer; P. Dias; A. Mendes; M. Graetzel 

Chimia. 2023. Vol. 77, num. 12, p. 881 – 882. DOI : 10.2533/chimia.2023.881.

Double Layer Composite Electrode Strategy for Efficient Perovskite Solar Cells with Excellent Reverse-Bias Stability

C. Jiang; J. Zhou; H. Li; L. Tan; M. Li et al. 

Nano-Micro Letters. 2023. Vol. 15, num. 1, p. 12. DOI : 10.1007/s40820-022-00985-4.

Double Layer Composite Electrode Strategy for Efficient Perovskite Solar Cells with Excellent Reverse-Bias Stability (vol 15, 12, 2022)

C. Jiang; J. Zhou; H. Li; L. Tan; M. Li et al. 

Nano-Micro Letters. 2023. Vol. 15, num. 1, p. 43. DOI : 10.1007/s40820-023-01012-w.

Understanding and decoupling the role of wavelength and defects in light-induced degradation of metal-halide perovskites

J. Hieulle; A. Krishna; A. Boziki; J-N. Audinot; M. U. Farooq et al. 

Energy & Environmental Science. 2023. Vol. 17, num. 1, p. 284 – 295. DOI : 10.1039/d3ee03511e.

A critical perspective for emerging ultra-thin solar cells with ultra-high power-per-weight outputs

A. Panagiotopoulos; T. Maksudov; G. Kakavelakis; G. Perrakis; E. A. Alharbi et al. 

Applied Physics Reviews. 2023. Vol. 10, num. 4, p. 041303. DOI : 10.1063/5.0169185.

Interfacial Modulation through Mixed-Dimensional Heterostructures for Efficient and Hole Conductor-Free Perovskite Solar Cells

M. Almalki; M. H. Alotaibi; A. Q. M. Alanazi; F. T. Eickemeyer; S. M. Alenzi et al. 

Advanced Functional Materials. 2023. DOI : 10.1002/adfm.202309789.

High-Work-Function 2D Perovskites as Passivation Agents in Perovskite Solar Cells

E. Shirzadi; F. Ansari; H. Jinno; S. Tian; O. Ouellette et al. 

Acs Energy Letters. 2023. Vol. 8, num. 9, p. 3955 – 3961. DOI : 10.1021/acsenergylett.3c01326.

Tautomeric mixture coordination enables efficient lead-free perovskite LEDs

D. Han; J. Wang; L. Agosta; Z. Zang; B. Zhao et al. 

Nature. 2023. Vol. 622, p. 493 – 498. DOI : 10.1038/s41586-023-06514-6.

Champion Device Architectures for Low-Cost and Stable Single-Junction Perovskite Solar Cells

T. Baumeler; A. A. A. Saleh; T. A. A. Wani; S. Huang; X. Jia et al. 

Acs Materials Letters. 2023. DOI : 10.1021/acsmaterialslett.3c00337.

Mitigating the Heterointerface Driven Instability in Perovskite Photovoltaics

A. Krishna; V. Skorjanc; M. Dankl; J. Hieulle; H. Phirke et al. 

Acs Energy Letters. 2023. Vol. 8, num. 8, p. 3604 – 3613. DOI : 10.1021/acsenergylett.3c01029.

Tailoring passivators for highly efficient and stable perovskite solar cells

H. Zhang; L. Pfeifer; S. M. Zakeeruddin; J. Chu; M. Gratzel 

Nature Reviews Chemistry. 2023. DOI : 10.1038/s41570-023-00510-0.

Updates on Hydrogen Value Chain: A Strategic Roadmap

J. Garcia-Navarro; M. A. Isaacs; M. Favaro; D. Ren; W-J. Ong et al. 

Global Challenges. 2023. DOI : 10.1002/gch2.202300073.

2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells

H. Li; C. Zhang; C. Gong; D. Zhang; H. Zhang et al. 

Nature Energy. 2023. DOI : 10.1038/s41560-023-01295-8.

Ion-Dipole Interaction Enabling Highly Efficient CsPbI3 Perovskite Indoor Photovoltaics

K-L. Wang; H. Lu; M. Li; C-H. Chen; D-B. Zhang et al. 

Advanced Materials. 2023. Vol. 35, num. 31, p. 2210106. DOI : 10.1002/adma.202210106.

Nanocrystalline Flash Annealed Nickel Oxide for Large Area Perovskite Solar Cells

E. Ochoa-Martinez; S. Bijani-Chiquero; M. d. V. M. de Yuso; S. Sarkar; H. Diaz-Perez et al. 

Advanced Science. 2023. DOI : 10.1002/advs.202302549.

Stabilization of FAPbI(3) with Multifunctional Alkali-Functionalized Polymer

C. Zhao; H. Zhang; M. Almalki; J. Xu; A. Krishna et al. 

Advanced Materials. 2023. DOI : 10.1002/adma.202211619.

Lead immobilization for environmentally sustainable perovskite solar cells

H. Zhang; J-W. Lee; G. Nasti; R. Handy; A. Abate et al. 

Nature. 2023. Vol. 617, num. 7962, p. 687 – 695. DOI : 10.1038/s41586-023-05938-4.

Molecularly Tailored Surface Defect Modifier for Efficient and Stable Perovskite Solar Cells

Y. Wu; Q. Liang; H. Zhu; X. Dai; B-B. Yu et al. 

Advanced Functional Materials. 2023. DOI : 10.1002/adfm.202302404.

Surface Passivation of FAPbI3-Rich Perovskite with Cesium Iodide Outperforms Bulk Incorporation

T. P. Baumeler; E. A. R. Alharbi; G. Kakavelakis; G. C. Fish; M. T. Aldosari et al. 

Acs Energy Letters. 2023. Vol. 8, num. 5, p. 2456 – 2462. DOI : 10.1021/acsenergylett.3c00609.

Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells

S. You; F. T. Eickemeyer; J. Gao; J-H. Yum; X. Zheng et al. 

Nature Energy. 2023. DOI : 10.1038/s41560-023-01249-0.

CsPbBr3 Quantum Dots-Sensitized Mesoporous TiO2 Electron Transport Layers for High-Efficiency Perovskite Solar Cells

L. Duan; H. Zhang; F. T. Eickemeyer; J. Gao; S. M. Zakeeruddin et al. 

Solar Rrl. 2023. DOI : 10.1002/solr.202300072.

Electrochemical synthesis of propylene from carbon dioxide on copper nanocrystals

J. Gao; A. Bahmanpour; O. Krocher; S. M. Zakeeruddin; D. Ren et al. 

Nature Chemistry. 2023. DOI : 10.1038/s41557-023-01163-8.

Suppressed phase segregation for triple-junction perovskite solar cells

Z. Wang; L. Zeng; T. Zhu; H. Chen; B. Chen et al. 

Nature. 2023. Vol. 618, p. 74 – 79. DOI : 10.1038/s41586-023-06006-7.

Photoelectrochemical CO2 Reduction at a Direct CuInGaS2/Electrolyte Junction

Y. Liu; M. Xia; D. Ren; S. Nussbaum; J-H. Yum et al. 

Acs Energy Letters. 2023. DOI : 10.1021/acsenergylett.3c00022.

Exfoliated 2D Layered and Nonlayered Metal Phosphorous Trichalcogenides Nanosheets as Promising Electrocatalysts for CO2 Reduction

H. Wang; Y. Jiao; B. Wu; D. Wang; Y. Hu et al. 

Angewandte Chemie International Edition. 2023. Vol. 62, num. 17, p. e202217253. DOI : 10.1002/anie.202217253.

Combined Vacuum Evaporation and Solution Process for High-Efficiency Large-Area Perovskite Solar Cells with Exceptional Reproducibility

L. Tan; J. Zhou; X. Zhao; S. Wang; M. Li et al. 

Advanced Materials. 2023. Vol. 35, num. 13, p. 2205027. DOI : 10.1002/adma.202205027.

Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules

S. You; H. Zeng; Y. Liu; B. Han; M. Li et al. 

Science. 2023. Vol. 379, num. 6629, p. 288 – 294. DOI : 10.1126/science.add8786.

Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells

C. Ma; F. T. Eickemeyer; S-H. Lee; D-H. Kang; S. J. Kwon et al. 

Science. 2023. Vol. 379, num. 6628, p. 173 – 178. DOI : 10.1126/science.adf3349.

Regulated CO adsorption by the electrode with OH− repulsive property for enhancing C–C coupling

Qixing Zhang; D. Ren; J. Gao; Zhongke Wang; Juan Wang et al. 

Green Chemical Engineering. 2023. Vol. 4, num. 3, p. 331 – 337. DOI : 10.1016/j.gce.2022.07.007.

Cooperative passivation of perovskite solar cells by alkyldimethylammonium halide amphiphiles

E. A. R. Alharbi; A. Krishna; N. Lempesis; M. Dankl; I. Mosquera-Lois et al. 

Joule. 2023. Vol. 7, num. 1, p. 183 – 200. DOI : 10.1016/j.joule.2022.11.013.

Investigation of nickel iron layered double hydroxide for water oxidation in different pH electrolytes

Q. Xie; D. Ren; L. Bai; R. Ge; W. Zhou et al. 

Chinese Journal Of Catalysis. 2023. Vol. 44, p. 127 – 138. DOI : 10.1016/S1872-2067(22)64190-1.

A Molecularly Tailored Photosensitizer with an Efficiency of 13.2% for Dye-Sensitized Solar Cells

A. Grobelny; Z. Shen; F. T. Eickemeyer; N. F. Antariksa; S. Zapotoczny et al. 

Advanced Materials. 2023. Vol. 35, num. 5, p. 2207785. DOI : 10.1002/adma.202207785.

Buried Interface Engineering Enables Efficient and 1,960-hour Isos-L-2i Stable Inverted Perovskite Solar Cells

L. Li; M. Wei; V. Carnevali; H. Zeng; M. Zeng et al. 

2023.

Optoelectronic or photovoltaic device with metal halide perovskite film treated by passivating agent

E. A. Alharbi; L. Pfeifer; A. Krishna; S. M. Zakeeruddin; M. Graetzel 

WO2023118938.

2023.

A Complete Picture of Cation Dynamics in Hybrid Perovskite Materials from Solid-State NMR Spectroscopy

A. Mishra; M. A. Hope; M. Gratzel; L. Emsley 

Journal Of The American Chemical Society. 2023. Vol. 145, num. 2, p. 978 – 990. DOI : 10.1021/jacs.2c10149.

Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells

S. M. Park; M. Wei; J. Xu; H. R. Atapattu; F. T. Eickemeyer et al. 

Science. 2023. Vol. 381, num. 6654, p. 209 – 215. DOI : 10.1126/science.adi4107.

The Impact of Spacer Size on Charge Transfer Excitons in Dion–Jacobson and Ruddlesden–Popper Layered Hybrid Perovskites

G. C. Fish; A. T. Terpstra; A. Ducinskas; M. Almalki; L. C. Carbone et al. 

The Journal of Physical Chemistry Letters. 2023. Vol. 14, p. 6248 – 6254. DOI : 10.1021/acs.jpclett.3c01125.

Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells

Y. Ren; D. Zhang; J. Suo; Y. Cao; F. T. Eickemeyer et al. 

Nature. 2023. Vol. 613, p. 60 – 65. DOI : 10.1038/s41586-022-05460-z.

Dataset of “The Impact of Spacer Size on Charge Transfer Excitons in Dion-Jacobson and Ruddlesden-Popper Layered Hybrid Perovskites”

G. C. Fish; A. T. Terpstra; M. Almalki; L. Pfeifer; M. Graetzel et al. 

2023.

Interface and structural engineering of perovskite solar cells towards enhanced stability and performance

M. H. S. Almalki / M. Graetzel; S. M. Zakeeruddin (Dir.)  

Lausanne, EPFL, 2023. 

2022

Applications of vacuum vapor deposition for perovskite solar cells: A progress review

H. Li; M. Liu; M. Li; H. Park; N. Mathews et al. 

IENERGY. 2022. DOI : 10.23919/IEN.2022.0053.

Solar reduction of carbon dioxide on copper-tin electrocatalysts with energy conversion efficiency near 20%

J. Gao; J. Li; Y. Liu; M. Xia; Y. Z. Finfrock et al. 

Nature Communications. 2022. Vol. 13, num. 1, p. 5898. DOI : 10.1038/s41467-022-33049-7.

Facet Engineering for Stable, Efficient Perovskite Solar Cells

C. Ma; M. Gratzel; N-G. Park 

Acs Energy Letters. 2022. Vol. 7, num. 9, p. 3120 – 3128. DOI : 10.1021/acsenergylett.2c01623.

Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids

L. Zhao; P. Tang; D. Luo; M. I. Dar; F. T. Eickemeyer et al. 

Science Advances. 2022. Vol. 8, num. 35. DOI : 10.1126/sciadv.abo3733.

Dynamic Nuclear Polarization Enables NMR of Surface Passivating Agents on Hybrid Perovskite Thin Films

A. Mishra; M. A. Hope; M. Almalki; L. Pfeifer; S. M. Zakeeruddin et al. 

Journal Of The American Chemical Society. 2022. Vol. 144, num. 33, p. 15175 – 15184. DOI : 10.1021/jacs.2c05316.

Construction of Fe3O4 bridged Pt/g-C3N4 heterostructure with enhanced solar to fuel conversion

A. M. Asiri; A. Raza; M. K. Shahzad; W. A. Adeosun; S. B. Khan et al. 

Applied Surface Science. 2022. Vol. 592, p. 153159. DOI : 10.1016/j.apsusc.2022.153159.

Thiocyanate-Mediated Dimensionality Transformation of Low- Dimensional Perovskites for Photovoltaics

L. Hong; Z. Wang; J. V. Milic; C. E. Avalos; W. Zhang et al. 

Chemistry Of Materials. 2022. Vol. 34, num. 14, p. 6331 – 6338. DOI : 10.1021/acs.chemmater.2c00760.

Thermally controlled growth of photoactive FAPbI(3) films for highly stable perovskite solar cells

S. Sanchez; S. Cacovich; G. Vidon; J-F. Guillemoles; F. Eickemeyer et al. 

Energy & Environmental Science. 2022. Vol. 15, num. 9, p. 3862 – 3876. DOI : 10.1039/d2ee01196d.

Revealing fundamentals of charge extraction in photovoltaic devices through potentiostatic photoluminescence imaging

L. Wagner; P. Schygulla; J. P. Herterich; M. Elshamy; D. Bogachuk et al. 

Matter. 2022. Vol. 5, num. 7. DOI : 10.1016/j.matt.2022.05.024.

Covalent Organic Framework Nanoplates Enable Solution-Processed Crystalline Nanofilms for Photoelectrochemical Hydrogen Evolution

L. Yao; A. Rodriguez-Camargo; M. Xia; D. Mucke; R. Guntermann et al. 

Journal Of The American Chemical Society. 2022. Vol. 144, num. 23, p. 10291 – 10300. DOI : 10.1021/jacs.2c0143310291.

Over 24% efficient MA-free Cs(x)FA(1-x)PbX(3) perovskite solar cells

S. Wang; L. Tan; J. Zhou; M. Li; X. Zhao et al. 

Joule. 2022. Vol. 6, num. 6, p. 1344 – 1356. DOI : 10.1016/j.joule.2022.05.002.

Photo De-Mixing in Dion-Jacobson 2D Mixed Halide Perovskites

Y-R. Wang; A. Senocrate; M. Mladenovic; A. Ducinskas; G. Y. Kim et al. 

Advanced Energy Materials. 2022.  p. 2200768. DOI : 10.1002/aenm.202200768.

In situ growth of graphene on both sides of a Cu-Ni alloy electrode for perovskite solar cells with improved stability

X. Lin; H. Su; S. He; Y. Song; Y. Wang et al. 

Nature Energy. 2022. DOI : 10.1038/s41560-022-01038-1.

Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23%

S. Wang; P. Wang; B. Chen; R. Li; N. Ren et al. 

Escience. 2022. Vol. 2, num. 3, p. 339 – 346. DOI : 10.1016/j.esci.2022.04.001.

Photoelectrochemical Oxygen Evolution on Mesoporous Hematite Films Prepared from Maghemite Nanoparticles

N. C. Verissimo; D. Ren; C. C. C. Kleiner; F. A. B. Hesse; S. M. Zakeeruddin et al. 

Journal Of The Electrochemical Society. 2022. Vol. 169, num. 5, p. 056522. DOI : 10.1149/1945-7111/ac70fd.

Efficient and stable noble-metal-free catalyst for acidic water oxidation

S. Pan; H. Li; D. Liu; R. Huang; X. Pan et al. 

Nature Communications. 2022. Vol. 13, num. 1, p. 2294. DOI : 10.1038/s41467-022-30064-6.

Kinetics and energetics of metal halide perovskite conversion reactions at the nanoscale

N. Arora; A. Greco; S. Meloni; A. Hinderhofer; A. Mattoni et al. 

Communications Materials. 2022. Vol. 3, num. 1, p. 22. DOI : 10.1038/s43246-022-00239-1.

Nanosegregation in arene-perfluoroarene pi-systems for hybrid layered Dion-Jacobson perovskites

M. Almalki; A. Ducinskas; L. C. Carbone; L. Pfeifer; L. Piveteau et al. 

Nanoscale. 2022. Vol. 14, num. 18, p. 6771 – 6776. DOI : 10.1039/d1nr08311b.

Transparency and Morphology Control of Cu2O Photocathodes via an in Situ Electroconversion

M. Caretti; L. Lazouni; M. Xia; R. A. Wells; S. Nussbaum et al. 

Acs Energy Letters. 2022. Vol. 7, num. 5, p. 1618 – 1625. DOI : 10.1021/acsenergylett.2c00474.

Interfacial engineering from material to solvent: A mechanistic understanding on stabilizing alpha-formamidinium lead triiodide perovskite photovoltaics

J. Suo; B. Yang; J. Jeong; T. Zhang; S. Olthof et al. 

Nano Energy. 2022. Vol. 94, p. 106924. DOI : 10.1016/j.nanoen.2022.106924.

Molecularly Engineered Low-Cost Organic Hole-Transporting Materials for Perovskite Solar Cells: The Substituent Effect on Non-fused Three-Dimensional Systems

D. Molina; E. Sheibani; B. Yang; H. Mohammadi; M. Ghiasabadi et al. 

Acs Applied Energy Materials. 2022. Vol. 5, num. 3, p. 3156 – 3165. DOI : 10.1021/acsaem.1c03775.

Reversible Pressure-Dependent Mechanochromism of Dion-Jacobson and Ruddlesden-Popper Layered Hybrid Perovskites

L. A. Muscarella; A. Ducinskas; M. Dankl; M. Andrzejewski; N. P. M. Casati et al. 

Advanced Materials. 2022.  p. 2108720. DOI : 10.1002/adma.202108720.

Efficient and Stable Large Bandgap MAPbBr(3) Perovskite Solar Cell Attaining an Open Circuit Voltage of 1.65 V

H. Zhu; L. Pan; F. T. Eickemeyer; M. A. Hope; O. Ouellette et al. 

Acs Energy Letters. 2022. Vol. 7, num. 3, p. 1112 – 1119. DOI : 10.1021/acsenergylett.1c02431.

CNT-based bifacial perovskite solar cells towards highly efficient 4-terminal tandem photovoltaics

C. Zhang; C. Min; F. Fu; H. Zhu; T. Feurer et al. 

Energy & Environmental Science. 2022. Vol. 15, num. 4, p. 1536 – 1544. DOI : 10.1039/d1ee04008a.

Solid-state synthesis of CdFe2O4 binary catalyst for potential application in renewable hydrogen fuel generation

A. M. Asiri; W. A. Adeosun; S. B. Khan; K. A. Alamry; H. M. Marwani et al. 

Scientific Reports. 2022. Vol. 12, num. 1, p. 1632. DOI : 10.1038/s41598-022-04999-1.

Solar Water Splitting Using Earth-Abundant Electrocatalysts Driven by High-Efficiency Perovskite Solar Cells

A. M. Asiri; D. Ren; H. Zhang; S. B. Khan; K. A. Alamry et al. 

Chemsuschem. 2022.  p. e202102471. DOI : 10.1002/cssc.202102471.

Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells

M. Kim; J. Jeong; H. Lu; T. K. Lee; F. T. Eickemeyer et al. 

Science. 2022. Vol. 375, num. 6578, p. 302 – 306. DOI : 10.1126/science.abh1885.

A universal co-solvent dilution strategy enables facile and cost-effective fabrication of perovskite photovoltaics

H. Zhang; K. Darabi; N. Y. Nia; A. Krishna; P. Ahlawat et al. 

Nature Communications. 2022. Vol. 13, p. 89. DOI : 10.1038/s41467-021-27740-4.

Revisiting the Impact of Morphology and Oxidation State of Cu on CO2 Reduction Using Electrochemical Flow Cell

A. M. Asiri; J. Gao; S. B. Khan; K. A. Alamry; H. M. Marwani et al. 

The Journal of Physical Chemistry Letters. 2022. Vol. 13, num. 1, p. 345 – 351. DOI : 10.1021/acs.jpclett.1c03957.

Hole transport material, synthesis thereof, and solar cell

Y. Liu; S. M. Zakeeruddin; M. Graetzel; M. Bauer; P. Bäuerle 

EP3950661; US11680035; EP3950661; US2022033342.

2022.

Structure-property relationships and mixed conductivity in layered hybrid perovskites based on phenyl-derived spacers

A. Ducinskas / M. Graetzel; J. Maier (Dir.)  

Lausanne, EPFL, 2022. 

Luminescent and electronic properties of perovskite solar cells

B. I. Carlsen / M. Graetzel; W. R. Tress (Dir.)  

Lausanne, EPFL, 2022. 

Compositional and interfacial optimization for enhancement of perovskite solar cells performance

E. A. R. Alharbi / M. Graetzel; S. M. Zakeeruddin (Dir.)  

Lausanne, EPFL, 2022. 

Bulk and surface engineering to improve performance and stability of perovskite solar cells

T. P. Baumeler / M. Graetzel; S. M. Zakeeruddin (Dir.)  

Lausanne, EPFL, 2022. 

Method of modifying the structure of perovskite films

H. Zhang; S. M. Zakeeruddin; M. Graetzel 

EP3940806; EP3940806.

2022.

2021

Solid-state dye-sensitized solar cells using polymeric hole conductors

N. Vlachopoulos; M. Gratzel; A. Hagfeldt 

Rsc Advances. 2021. Vol. 11, num. 62, p. 39570 – 39581. DOI : 10.1039/d1ra05911d.

Ti-1-graphene single-atom material for improved energy level alignment in perovskite solar cells

C. Zhang; S. Liang; W. Liu; F. T. Eickemeyer; X. Cai et al. 

Nature Energy. 2021. Vol. 6, num. 12, p. 1154 – 1163. DOI : 10.1038/s41560-021-00944-0.

Structural and Compositional Investigations on the Stability of Cuprous Oxide Nanowire Photocathodes for Photoelectrochemical Water Splitting

M-K. Son; L. Pan; M. T. Mayer; A. Hagfeldt; M. Gratzel et al. 

ACS Applied Materials & Interfaces. 2021. Vol. 13, num. 46, p. 55080 – 55091. DOI : 10.1021/acsami.1c16590.

Thermodynamic stability screening of IR-photonic processed multication halide perovskite thin films

S. Sanchez; B. Carlsen; V. Skorjanc; N. Flores; P. Serafini et al. 

Journal of Materials Chemistry A. 2021. Vol. 9, num. 47, p. 26885 – 26895. DOI : 10.1039/d1ta05248a.

Multi-Length Scale Structure of 2D/3D Dion-Jacobson Hybrid Perovskites Based on an Aromatic Diammonium Spacer

A. Ummadisingu; A. Mishra; D. J. Kubicki; T. LaGrange; A. Ducinskas et al. 

Small. 2021.  p. 2104287. DOI : 10.1002/smll.202104287.

Combined Precursor Engineering and Grain Anchoring Leading to MA-Free, Phase-Pure, and Stable alpha-Formamidinium Lead Iodide Perovskites for Efficient Solar Cells

X. Ling; H. Zhu; W. Xu; C. Liu; L. Pan et al. 

Angewandte Chemie International Edition. 2021. Vol. 60, num. 52, p. 27299 – 27306. DOI : 10.1002/anie.202112555.

Interfacial Passivation Engineering of Perovskite Solar Cells with Fill Factor over 82% and Outstanding Operational Stability on n-i-p Architecture

B. Yang; J. Suo; F. Di Giacomo; S. Olthof; D. Bogachuk et al. 

Acs Energy Letters. 2021. Vol. 6, num. 11, p. 3916 – 3923. DOI : 10.1021/acsenergylett.1c01811.

Carbazol-phenyl-phenothiazine-based sensitizers for dye-sensitized solar cells

Y. Jiao; S. Liu; Z. Shen; L. Mao; Y. Ding et al. 

Journal of Materials Chemistry A. 2021. Vol. 9, num. 46, p. 26311 – 26322. DOI : 10.1039/d1ta08020b.

NiCuCoS3 chalcogenide as an efficient electrocatalyst for hydrogen and oxygen evolution

A. M. Asiri; W. A. Adeosun; S. B. Khan; K. A. Alamry; H. M. Marwani et al. 

Journal Of Materials Research And Technology-Jmr&T. 2021. Vol. 15, p. 4826 – 4837. DOI : 10.1016/j.jmrt.2021.09.122.

The Role of Alkyl Chain Length and Halide Counter Ion in Layered Dion−Jacobson Perovskites with Aromatic Spacers

A. Dučinskas; G. C. Fish; M. A. Hope; L. Merten; D. Moia et al. 

The Journal of Physical Chemistry Letters. 2021. Vol. 12, num. 42, p. 10325 – 10332. DOI : 10.1021/acs.jpclett.1c02937.

Identifying Reactive Sites and Surface Traps in Chalcopyrite Photocathodes

Y. Liu; M. Bouri; L. Yao; M. Xia; M. Mensi et al. 

Angewandte Chemie International Edition. 2021. Vol. 60, num. 44, p. 23651 – 23655. DOI : 10.1002/anie.202108994.

Methylammonium Triiodide for Defect Engineering of High-Efficiency Perovskite Solar Cells

E. A. Alharbi; A. Krishna; T. P. Baumeler; M. Dankl; G. C. Fish et al. 

Acs Energy Letters. 2021. Vol. 6, p. 3650 – 3660. DOI : 10.1021/acsenergylett.1c01754.

Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics

A. Krishna; H. Zhang; Z. Zhou; T. Gallet; M. Dankl et al. 

Energy & Environmental Science. 2021. Vol. 14, p. 5552 – 5562. DOI : 10.1039/d1ee02454j.

A Fully Printable Hole-Transporter-Free Semi-Transparent Perovskite Solar Cell

A. Saleh; N. Pellet; S. M. Zakeeruddin; M. I. Dar; M. Graetzel 

European Journal Of Inorganic Chemistry. 2021. num. 36, p. 3752 – 3760. DOI : 10.1002/ejic.202100544.

Crystal-Size-Induced Band Gap Tuning in Perovskite Films

A. Ummadisingu; S. Meloni; A. Mattoni; W. Tress; M. Graetzel 

Angewandte Chemie International Edition. 2021. Vol. 60, num. 39, p. 21368 – 21376. DOI : 10.1002/anie.202106394.

New Insights into the Interface of Electrochemical Flow Cells for Carbon Dioxide Reduction to Ethylene

D. Ren; J. Gao; S. M. Zakeeruddin; M. Gratzel 

The Journal of Physical Chemistry Letters. 2021. Vol. 12, num. 31, p. 7583 – 7589. DOI : 10.1021/acs.jpclett.1c02043.

Naphthalenediimide/Formamidinium-Based Low-Dimensional Perovskites

A. Mishra; P. Ahlawat; G. C. Fish; F. Jahanbakhshi; M. Mladenovic et al. 

Chemistry of Materials. 2021. Vol. 33, num. 16, p. 6412 – 6420. DOI : 10.1021/acs.chemmater.1c01635.

Dopant Engineering for Spiro‐OMeTAD Hole‐Transporting Materials towards Efficient Perovskite Solar Cells

J. Seo; S. Akin; M. Zalibera; M. A. Ruiz Preciado; H-S. Kim et al. 

Advanced Functional Materials. 2021.  p. 2102124. DOI : 10.1002/adfm.202102124.

Methylamine Gas Treatment Affords Improving Semitransparency, Efficiency, and Stability of CH3NH3PbBr3-Based Perovskite Solar Cells

A. Singh; F. Matteocci; H. Zhu; D. Rossi; S. Mejaouri et al. 

Solar Rrl. 2021.  p. 2100277. DOI : 10.1002/solr.202100277.

Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer

Q. Cao; Y. Li; H. Zhang; J. Yang; J. Han et al. 

Science Advances. 2021. Vol. 7, num. 28, p. eabg0633. DOI : 10.1126/sciadv.abg0633.

Micro-Electrode with Fast Mass Transport for Enhancing Selectivity of Carbonaceous Products in Electrochemical CO2 Reduction

Q. Zhang; D. Ren; S. Pan; M. Wang; J. Luo et al. 

Advanced Functional Materials. 2021.  p. 2103966. DOI : 10.1002/adfm.202103966.

Cyclopentadiene-Based Hole-Transport Material for Cost-Reduced Stabilized Perovskite Solar Cells with Power Conversion Efficiencies Over 23%

M. Bauer; H. Zhu; T. Baumeler; Y. Liu; F. T. Eickemeyer et al. 

Advanced Energy Materials. 2021.  p. 2003953. DOI : 10.1002/aenm.202003953.

Surface Reconstruction Engineering with Synergistic Effect of Mixed‐Salt Passivation Treatment toward Efficient and Stable Perovskite Solar Cells

J. Suo; B. Yang; E. Mosconi; H. Choi; Y. Kim et al. 

Advanced Functional Materials. 2021.  p. 2102902. DOI : 10.1002/adfm.202102902.

Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability

Q. Dong; M. Chen; Y. Liu; F. T. Eickemeyer; W. Zhao et al. 

Joule. 2021. Vol. 5, num. 6, p. 1587 – 1601. DOI : 10.1016/j.joule.2021.04.014.

Layered Hybrid Formamidinium Lead Iodide Perovskites: Challenges and Opportunities

J. V. Milic; S. M. Zakeeruddin; M. Graetzel 

Accounts Of Chemical Research. 2021. Vol. 54, num. 12, p. 2729 – 2740. DOI : 10.1021/acs.accounts.0c00879.

Copolymer-Templated Nickel Oxide for High-Efficiency Mesoscopic Perovskite Solar Cells in Inverted Architecture

F. Sadegh; S. Akin; M. Moghadam; R. Keshavarzi; V. Mirkhani et al. 

Advanced Functional Materials. 2021.  p. 2102237. DOI : 10.1002/adfm.202102237.

Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2

X. Wang; P. Ou; J. Wicks; Y. Xie; Y. Wang et al. 

Nature Communications. 2021. Vol. 12, num. 1, p. 3387. DOI : 10.1038/s41467-021-23699-4.

Multimodal host–guest complexation for efficient and stable perovskite photovoltaics

H. Zhang; F. T. Eickemeyer; Z. Zhou; M. Mladenović; F. Jahanbakhshi et al. 

Nature Communications. 2021. Vol. 12, num. 1, p. 3383. DOI : 10.1038/s41467-021-23566-2.

Benzylammonium‐Mediated Formamidinium Lead Iodide Perovskite Phase Stabilization for Photovoltaics

A. Q. Alanazi; M. H. Almalki; A. Mishra; D. J. Kubicki; Z. Wang et al. 

Advanced Functional Materials. 2021.  p. 2101163. DOI : 10.1002/adfm.202101163.

Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells

H. Xie; Z. Wang; Z. Chen; C. Pereyra; M. Pols et al. 

Joule. 2021. Vol. 5, num. 5, p. 1246 – 1266. DOI : 10.1016/j.joule.2021.04.003.

Water Stable Haloplumbate Modulation for Efficient and Stable Hybrid Perovskite Photovoltaics

H. Wang; Z. Zhang; J. V. Milic; L. Tan; Z. Wang et al. 

Advanced Energy Materials. 2021.  p. 2101082. DOI : 10.1002/aenm.202101082.

Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis

J. Li; A. Ozden; M. Wan; Y. Hu; F. Li et al. 

Nature Communications. 2021. Vol. 12, num. 1, p. 2808. DOI : 10.1038/s41467-021-23023-0.

Function and Electronic Structure of the SnO2 Buffer Layer between the alpha-Fe2O3 Water Oxidation Photoelectrode and the Transparent Conducting Oxide Current Collector

Y. Hu; F. Boudoire; M. T. Mayer; S. Yoon; M. Graetzel et al. 

Journal Of Physical Chemistry C. 2021. Vol. 125, num. 17, p. 9158 – 9168. DOI : 10.1021/acs.jpcc.1c01809.

Quantifying Stabilized Phase Purity in Formamidinium-Based Multiple-Cation Hybrid Perovskites

L. Merten; A. Hinderhofer; T. Baumeler; N. Arora; J. Hagenlocher et al. 

Chemistry Of Materials. 2021. Vol. 33, num. 8, p. 2769 – 2776. DOI : 10.1021/acs.chemmater.0c04185.

Transparent and Colorless Dye-Sensitized Solar Cells Exceeding 75% Average Visible Transmittance

W. Naim; V. Novelli; I. Nikolinakos; N. Barbero; I. Dzeba et al. 

Jacs Au. 2021. Vol. 1, num. 4, p. 409 – 426. DOI : 10.1021/jacsau.1c00045.

A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure α-FAPbI3

P. Ahlawat; A. Hinderhofer; E. A. R. Alharbi; H. Lu; A. Ummadisingu et al. 

Science Advances. 2021. Vol. 7, num. 17, p. eabe3326. DOI : 10.1126/sciadv.abe3326.

Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2

Y. Yang; H. Lu; S. Feng; L. Yang; H. Dong et al. 

Energy & Environmental Science. 2021. Vol. 14, num. 6, p. 3447 – 3454. DOI : 10.1039/d1ee00056j.

A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion dagger

L. Yao; Y. Liu; H-H. Cho; M. Xia; A. Sekar et al. 

Energy & Environmental Science. 2021. Vol. 14, num. 5, p. 3141 – 3151. DOI : 10.1039/d1ee00152c.

How free exciton-exciton annihilation lets bound exciton emission dominate the photoluminescence of 2D-perovskites under high-fluence pulsed excitation at cryogenic temperatures

M. Kaiser; Y. Li; J. Schwenzer; M. Jakoby; I. Allegro et al. 

Journal Of Applied Physics. 2021. Vol. 129, num. 12, p. 123101. DOI : 10.1063/5.0037800.

A molecular photosensitizer achieves a Voc of 1.24 V enabling highly efficient and stable dye-sensitized solar cells with copper(II/I)-based electrolyte

D. Zhang; M. Stojanovic; Y. Ren; Y. Cao; F. T. Eickemeyer et al. 

Nature Communications. 2021. Vol. 12, num. 1, p. 1777 (1 – 10). DOI : 10.1038/s41467-021-21945-3.

Molecular Origin of the Asymmetric Photoluminescence Spectra of CsPbBr3 at Low Temperature

A. Boziki; M. I. Dar; G. Jacopin; M. Gratzel; U. Rothlisberger 

The Journal of Physical Chemistry Letters. 2021. Vol. 12, num. 10, p. 2699 – 2704. DOI : 10.1021/acs.jpclett.1c00263.

Xanthan-Based Hydrogel for Stable and Efficient Quasi-Solid Truly Aqueous Dye-Sensitized Solar Cell with Cobalt Mediator

S. Galliano; F. Bella; M. Bonomo; F. Giordano; M. Gratzel et al. 

Solar Rrl. 2021.  p. 2000823. DOI : 10.1002/solr.202000823.

Formation of High-Performance Multi-Cation Halide Perovskites Photovoltaics by delta-CsPbI3/delta-RbPbI3 Seed-Assisted Heterogeneous Nucleation

E. A. Alharbi; T. P. Baumeler; A. Krishna; A. Y. Alyamani; F. T. Eickemeyer et al. 

Advanced Energy Materials. 2021.  p. 2003785. DOI : 10.1002/aenm.202003785.

Orientation‐Engineered Small‐Molecule Semiconductors as Dopant‐Free Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells

Z. Zhou; Q. Wu; R. Cheng; H. Zhang; S. Wang et al. 

Advanced Functional Materials. 2021.  p. 2011270. DOI : 10.1002/adfm.202011270.

Organic Ammonium Halide Modulators as Effective Strategy for Enhanced Perovskite Photovoltaic Performance

S. Akin; B. Dong; L. Pfeifer; Y. Liu; M. Graetzel et al. 

Advanced Science. 2021.  p. 2004593. DOI : 10.1002/advs.202004593.

Synergistic Effect of Fluorinated Passivator and Hole Transport Dopant Enables Stable Perovskite Solar Cells with an Efficiency Near 24%

H. Zhu; Y. Ren; L. Pan; O. Ouellette; F. T. Eickemeyer et al. 

Journal Of The American Chemical Society. 2021. Vol. 143, num. 8, p. 3231 – 3237. DOI : 10.1021/jacs.0c12802.

Chemically tailored molecular surface modifiers for efficient and stable perovskite photovoltaics

Y. Liu; B. Dong; A. Hagfeldt; J. Luo; M. Graetzel 

Smartmat. 2021. Vol. 2, num. 1, p. 33 – 37. DOI : 10.1002/smm2.1025.

Unravelling the Behavior of Dion-Jacobson Layered Hybrid Perovskites in Humid Environments

A. Ducinskas; G. Y. Kim; D. Moia; A. Senocrate; Y-R. Wang et al. 

Acs Energy Letters. 2021. Vol. 6, num. 2, p. 337 – 344. DOI : 10.1021/acsenergylett.0c02344.

Nanoscale Phase Segregation in Supramolecular π-Templating for Hybrid Perovskite Photovoltaics from NMR Crystallography

M. A. Hope; T. Nakamura; P. Ahlawat; A. Mishra; M. Cordova et al. 

Journal of the American Chemical Society. 2021. Vol. 143, num. 3, p. 1529 – 1538. DOI : 10.1021/jacs.0c11563.

Low-Cost Dopant Additive-Free Hole-Transporting Material for a Robust Perovskite Solar Cell with Efficiency Exceeding 21%

H. Zhu; Z. Shen; L. Pan; J. Han; F. T. Eickemeyer et al. 

Acs Energy Letters. 2021. Vol. 6, num. 1, p. 208 – 215. DOI : 10.1021/acsenergylett.0c02210.

Facile and low-cost synthesis of a novel dopant-free hole transporting material that rivals Spiro-OMeTAD for high efficiency perovskite solar cells

I. M. Abdellah; T. H. Chowdhury; J-J. Lee; A. Islam; M. K. Nazeeruddin et al. 

Sustainable Energy & Fuels. 2021. Vol. 5, num. 1, p. 199 – 211. DOI : 10.1039/d0se01323d.

Role of ions and interfaces for efficient and stable perovskite solar cells

A. Agarwalla / M. Graetzel; U. A. Hagfeldt (Dir.)  

Lausanne, EPFL, 2021. 

Spectroelectrochemical and Chemical Evidence of Surface Passivation at Zinc Ferrite (ZnFe 2 O 4 ) Photoanodes for Solar Water Oxidation

Y. Liu; M. Xia; L. Yao; M. Mensi; D. Ren et al. 

Advanced Functional Materials. 2021.  p. 2010081. DOI : 10.1002/adfm.202010081.

Understanding the design principles of organic sensitizers for highly efficient dye sensitized solar cells

M. Stojanovic / M. Graetzel; S. M. Zakeeruddin (Dir.)  

Lausanne, EPFL, 2021. 

Compositional Engineering of Perovskite Light Absorbers for Enhanced Stability and Performance through 2D/3D Interfacing

A. Q. M. Alanazi / M. Graetzel; S. M. Zakeeruddin (Dir.)  

Lausanne, EPFL, 2021. 

2020

Minimizing the Trade-Off between Photocurrent and Photovoltage in Triple-Cation Mixed-Halide Perovskite Solar Cells

T. Baumeler; N. Arora; A. Hinderhofer; S. Akin; A. Greco et al. 

The Journal of Physical Chemistry Letters. 2020. Vol. 11, num. 23, p. 10188 – 10195. DOI : 10.1021/acs.jpclett.0c02791.

Crown Ether Modulation Enables over 23% Efficient Formamidinium-Based Perovskite Solar Cells

T-S. Su; F. T. Eickemeyer; M. A. Hope; F. Jahanbakhshi; M. Mladenovic et al. 

Journal Of The American Chemical Society. 2020. Vol. 142, num. 47, p. 19980 – 19991. DOI : 10.1021/jacs.0c08592.

A Hierarchical 3D TiO2/Ni Nanostructure as an Efficient Hole-Extraction and Protection Layer for GaAs Photoanodes

M. Alqahtani; A. Kafizas; S. Sathasivam; M. Ebaid; F. Cui et al. 

Chemsuschem. 2020. Vol. 13, num. 22, p. 6028 – 6036. DOI : 10.1002/cssc.202002004.

Vapor-assisted deposition of highly efficient, stable black-phase FAPbI(3) perovskite solar cells

H. Lu; Y. Liu; P. Ahlawat; A. Mishra; W. R. Tress et al. 

Science. 2020. Vol. 370, num. 6512, p. eabb898574. DOI : 10.1126/science.abb8985.

Why choosing the right partner is important: stabilization of ternary Cs(y)GUA(x)FA((1-y-x))PbI(3)perovskites

A. Boziki; M. Mladenovic; M. Gratzel; U. Rothlisberger 

Physical Chemistry Chemical Physics. 2020. Vol. 22, num. 36, p. 20880 – 20890. DOI : 10.1039/d0cp03882b.

Unravelling the structural complexity and photophysical properties of adamantyl-based layered hybrid perovskites

F. Jahanbakhshi; M. Mladenovic; E. Kneschaurek; L. Merten; M. C. Gelvez-Rueda et al. 

Journal of Materials Chemistry A. 2020. Vol. 8, num. 34, p. 17732 – 17740. DOI : 10.1039/d0ta05022a.

Blue Photosensitizer with Copper(II/I) Redox Mediator for Efficient and Stable Dye‐Sensitized Solar Cells

Y. Ren; N. Flores‐Díaz; D. Zhang; Y. Cao; J. Decoppet et al. 

Advanced Functional Materials. 2020. Vol. 30, num. 50, p. 2004804. DOI : 10.1002/adfm.202004804.

Impact of the Synthesis Route on the Water Oxidation Kinetics of Hematite Photoanodes

C. A. Mesa; L. Steier; B. Moss; L. Francas; J. E. Thorne et al. 

The Journal of Physical Chemistry Letters. 2020. Vol. 11, num. 17, p. 7285 – 7290. DOI : 10.1021/acs.jpclett.0c02004.

Highly efficient, stable and hysteresis-less planar perovskite solar cell based on chemical bath treated Zn2SnO4 electron transport layer

F. Sadegh; S. Akin; M. Moghadam; V. Mirkhani; M. A. Ruiz-Preciado et al. 

Nano Energy. 2020. Vol. 75, p. 105038. DOI : 10.1016/j.nanoen.2020.105038.

Cyclopentadithiophene-Based Hole-Transporting Material for Highly Stable Perovskite Solar Cells with Stabilized Efficiencies Approaching 21%

S. Akin; M. Bauer; R. Uchida; N. Arora; G. Jacopin et al. 

Acs Applied Energy Materials. 2020. Vol. 3, num. 8, p. 7456 – 7463. DOI : 10.1021/acsaem.0c00811.

Formamidinium-Based Dion-Jacobson Layered Hybrid Perovskites: Structural Complexity and Optoelectronic Properties

M. C. Gelvez-Rueda; P. Ahlawat; L. Merten; F. Jahanbakhshi; M. Mladenovic et al. 

Advanced Functional Materials. 2020.  p. 2003428. DOI : 10.1002/adfm.202003428.

Compositional and Interface Engineering of Organic-Inorganic Lead Halide Perovskite Solar Cells

H. Lu; A. Krishna; S. M. Zakeeruddin; M. Grätzel; A. Hagfeldt 

iScience. 2020. Vol. 23, num. 8, p. 101359. DOI : 10.1016/j.isci.2020.101359.

High-Performance Lead-Free Solar Cells Based on Tin-Halide Perovskite Thin Films Functionalized by a Divalent Organic

M. Chen; Q. Dong; F. T. Eickemeyer; Y. Liu; Z. Dai et al. 

Acs Energy Letters. 2020. Vol. 5, num. 7, p. 2223 – 2230. DOI : 10.1021/acsenergylett.0c00888.

Hybrid 2D [Pb(CH3NH2)I-2](n) Coordination Polymer Precursor for Scalable Perovskite Deposition

B. Febriansyah; T. M. Koh; P. J. S. Rana; T. J. N. Hooper; Z. Z. Ang et al. 

Acs Energy Letters. 2020. Vol. 5, num. 7, p. 2305 – 2312. DOI : 10.1021/acsenergylett.0c00781.

Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells

F. Ansari; E. Shirzadi; M. Salavati-Niasari; T. LaGrange; K. Nonomura et al. 

Journal Of The American Chemical Society. 2020. Vol. 142, num. 26, p. 11428 – 11433. DOI : 10.1021/jacs.0c01704.

Stabilization of Highly Efficient and Stable Phase-Pure FAPbI(3)Perovskite Solar Cells by Molecularly Tailored 2D-Overlayers

Y. Liu; S. Akin; A. Hinderhofer; F. T. Eickemeyer; H. Zhu et al. 

Angewandte Chemie International Edition. 2020. Vol. 59, num. 36, p. 15688 – 15694. DOI : 10.1002/anie.202005211.

Guanidinium-Assisted Surface Matrix Engineering for Highly Efficient Perovskite Quantum Dot Photovoltaics

X. Ling; J. Yuan; X. Zhang; Y. Qian; S. M. Zakeeruddin et al. 

Advanced Materials. 2020.  p. 2001906. DOI : 10.1002/adma.202001906.

Reduced Graphene Oxide Improves Moisture and Thermal Stability of Perovskite Solar Cells

H-S. Kim; B. Yang; M. M. Stylianakis; E. Kymakis; S. M. Zakeeruddin et al. 

Cell Reports Physical Science. 2020. Vol. 1, num. 5, p. 100053. DOI : 10.1016/j.xcrp.2020.100053.

Interfacial and bulk properties of hole transporting materials in perovskite solar cells: spiro-MeTAD versus spiro-OMeTAD

X. Sallenave; M. Shasti; E. H. Anaraki; D. Volyniuk; J. V. Grazulevicius et al. 

Journal of Materials Chemistry A. 2020. Vol. 8, num. 17, p. 8527 – 8539. DOI : 10.1039/d0ta00623h.

Photovoltaic Performance of Porphyrin-Based Dye-Sensitized Solar Cells with Binary Ionic Liquid Electrolytes

S. B. Khan; P. K. Yadav; J-D. Decoppet; C. Yi; M. S. A. Al-Ghamdi et al. 

Energy Technology. 2020.  p. 2000092. DOI : 10.1002/ente.202000092.

Phenanthrene-Fused-Quinoxaline as a Key Building Block for Highly Efficient and Stable Sensitizers in Copper-Electrolyte-Based Dye-Sensitized Solar Cells

H. Jiang; Y. Ren; W. Zhang; Y. Wu; E. C. Socie et al. 

Angewandte Chemie International Edition. 2020. Vol. 59, p. 9324 – 9329. DOI : 10.1002/anie.202000892.

Black phosphorus quantum dots in inorganic perovskite thin films for efficient photovoltaic application

X. Gong; L. Guan; Q. Li; Y. Li; T. Zhang et al. 

Science Advances. 2020. Vol. 6, num. 15, p. eaay5661. DOI : 10.1126/sciadv.aay5661.

A Blue Photosensitizer Realizing Efficient and Stable Green Solar Cells via Color Tuning by the Electrolyte

Y. Ren; Y. Cao; D. Zhang; S. M. Zakeeruddin; A. Hagfeldt et al. 

Advanced Materials. 2020. Vol. 32, num. 17, p. 2000193. DOI : 10.1002/adma.202000193.

Electron-Selective Layers for Dye-Sensitized Solar Cells Based on TiO2 and SnO2

L. Kavan; Z. V. Zivcova; M. Zlamalova; S. M. Zakeeruddin; M. Graetzel 

Journal Of Physical Chemistry C. 2020. Vol. 124, num. 12, p. 6512 – 6521. DOI : 10.1021/acs.jpcc.9b11883.

Liquid State and Zombie Dye Sensitized Solar Cells with Copper Bipyridine Complexes Functionalized with Alkoxy Groups

Y. Saygili; M. Stojanovic; H-S. Kim; J. Teuscher; R. Scopelliti et al. 

The Journal of Physical Chemistry C. 2020. Vol. C124, num. 13, p. 7071 – 7081. DOI : 10.1021/acs.jpcc.0c00671.

Solution-based heteroepitaxial growth of stable mixed cation/anion hybrid perovskite thin film under ambient condition via a scalable crystal engineering approach

N. Y. Nia; F. Giordano; M. Zendehdel; L. Cina; A. L. Palma et al. 

Nano Energy. 2020. Vol. 69, p. 104441. DOI : 10.1016/j.nanoen.2019.104441.

Atomistic origins of the limited phase stability of Cs+-rich FAxCs(1-x)PbI3 mixtures

A. Boziki; D. J. Kubicki; A. Mishra; S. Meloni; L. Emsley et al. 

Chemistry of Materials. 2020. Vol. 32, num. 6, p. 2605 – 2614. DOI : 10.1021/acs.chemmater.0c00120.

Hybrid perovskites for photovoltaics and optoelectronics

A. Tejeda; W. C. H. Choy; E. Deleporte; M. Graetzel 

Journal Of Physics D-Applied Physics. 2020. Vol. 53, num. 7, p. 070201. DOI : 10.1088/1361-6463/ab59b2.

Suppressing recombination in perovskite solar cells via surface engineering of TiO2 ETL

D. Prochowicz; M. M. Tavakoli; M. Wolska-Pietkiewicz; M. Jedrzejewska; S. Trivedi et al. 

Solar Energy. 2020. Vol. 197, p. 50 – 57. DOI : 10.1016/j.solener.2019.12.070.

Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting

L. Pan; Y. Liu; L. Yao; D. Ren; K. Sivula et al. 

Nature Communications. 2020. Vol. 11, num. 1, p. 318. DOI : 10.1038/s41467-019-13987-5.

Intermediate Phase Enhances Inorganic Perovskite and Metal Oxide Interface for Efficient Photovoltaics

J. Zhang; Z. Wang; A. Mishra; M. Yu; M. Shasti et al. 

Joule. 2020. Vol. 4, num. 1, p. 222 – 234. DOI : 10.1016/j.joule.2019.11.007.

Molecular Engineering of Simple Metal-Free Organic Dyes Derived from Triphenylamine for Dye-Sensitized Solar Cell Applications

P. Ferdowsi; Y. Saygili; F. Jazaeri; T. Edvinsson; J. Mokhtari et al. 

Chemsuschem. 2020. Vol. 13, num. 1, p. 212 – 220. DOI : 10.1002/cssc.201902245.

Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures

M. V. Khenkin; E. A. Katz; A. Abate; G. Bardizza; J. J. Berry et al. 

Nature Energy. 2020. Vol. 5, num. 1, p. 35 – 49. DOI : 10.1038/s41560-019-0529-5.

Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT

C. A. Mesa; L. Francas; K. R. Yang; P. Garrido-Barros; E. Pasto et al. 

Nature Chemistry. 2020. Vol. 12, num. 1, p. 82 – 89. DOI : 10.1038/s41557-019-0347-1.

2019

Atomistic Mechanism of the Nucleation of Methylammonium Lead Iodide Perovskite from Solution

P. Ahlawat; M. I. Dar; p. piaggi; M. Graetzel; M. Parrinello et al. 

Chemistry of Materials. 2019. Vol. 32, num. 1, p. 529 – 536. DOI : 10.1021/acs.chemmater.9b04259.

Solar Water Splitting with Perovskite/Silicon Tandem Cell and TiC-Supported Pt Nanocluster Electrocatalyst

J. Gao; F. Sahli; C. Liu; D. Ren; X. Guo et al. 

Joule. 2019. Vol. 3, num. 12, p. 2930 – 2941. DOI : 10.1016/j.joule.2019.10.002.

Low-Cost and Highly Efficient Carbon-Based Perovskite Solar Cells Exhibiting Excellent Long-Term Operational and UV Stability

N. Arora; M. I. Dar; S. Akin; R. Uchida; T. Baumeler et al. 

Small. 2019. Vol. 15, num. 49, p. 1904746. DOI : 10.1002/smll.201904746.

Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design

C. Zhang; S. Wang; H. Zhang; Y. Feng; W. Tian et al. 

Energy & Environmental Science. 2019. Vol. 12, num. 12, p. 3585 – 3594. DOI : 10.1039/c9ee02391g.

Thermochemical Stability of Hybrid Halide Perovskites

A. Senocrate; G. Y. Kim; M. Gratzel; J. Maier 

Acs Energy Letters. 2019. Vol. 4, num. 12, p. 2859 – 2870. DOI : 10.1021/acsenergylett.9b01605.

Selective C-C Coupling in Carbon Dioxide Electroreduction via Efficient Spillover of Intermediates As Supported by Operando Raman Spectroscopy

J. Gao; H. Zhang; X. Guo; J. Luo; S. M. Zakeeruddin et al. 

Journal Of The American Chemical Society. 2019. Vol. 141, num. 47, p. 18704 – 18714. DOI : 10.1021/jacs.9b07415.

Efficient Perovskite Solar Cell Modules with High Stability Enabled by Iodide Diffusion Barriers

E. Bi; W. Tang; H. Chen; Y. Wang; J. Barbaud et al. 

Joule. 2019. Vol. 3, num. 11, p. 2748 – 2760. DOI : 10.1016/j.joule.2019.07.030.

New Strategies for Defect Passivation in High-Efficiency Perovskite Solar Cells

S. Akin; N. Arora; S. M. Zakeeruddin; M. Graetzel; R. H. Friend et al. 

Advanced Energy Materials. 2019.  p. 1903090. DOI : 10.1002/aenm.201903090.

Mechanoperovskites for Photovoltaic Applications: Preparation, Characterization, and Device Fabrication

D. Prochowicz; M. Saski; P. Yadav; M. Gratzel; J. Lewinski 

Accounts Of Chemical Research. 2019. Vol. 52, num. 11, p. 3233 – 3243. DOI : 10.1021/acs.accounts.9b00454.

Bimetallic Electrocatalysts for Carbon Dioxide Reduction

D. Ren; J. Gao; S. M. Zakeeruddin; M. Graetzel 

Chimia. 2019. Vol. 73, num. 11, p. 928 – 935. DOI : 10.2533/chimia.2019.928.

Charge Accumulation, Recombination, and Their Associated Time Scale in Efficient (GUA)(x)(MA)(1-x)PbI3-Based Perovskite Solar Cells

D. Prochowicz; M. M. Tavakoli; A. Q. Alanazi; S. Trivedi; H. T. Dastjerdi et al. 

ACS Omega. 2019. Vol. 4, num. 16, p. 16840 – 16846. DOI : 10.1021/acsomega.9b01701.

Ba-induced phase segregation and band gap reduction in mixed-halide inorganic perovskite solar cells

W. Xiang; Z. Wang; D. J. Kubicki; X. Wang; W. Tress et al. 

Nature Communications. 2019. Vol. 10, p. 4686. DOI : 10.1038/s41467-019-12678-5.

Atomic-Level Microstructure of Efficient Formamidinium-Based Perovskite Solar Cells Stabilized by 5-Ammonium Valeric Acid Iodide Revealed by Multinuclear and Two-Dimensional Solid-State NMR

A. Q. M. Alanazi; D. J. Kubicki; D. Prochowicz; E. A. R. Alharbi; M. E. F. Bouduban et al. 

Journal of the American Chemical Society. 2019. Vol. 141, num. 44, p. 17659 – 17669. DOI : 10.1021/jacs.9b07381.

Elucidation of photovoltage origin and charge transport in Cu2O heterojunctions for solar energy conversion

P. Cendula; M. T. Mayer; J. Luo; M. Gratzel 

Sustainable Energy & Fuels. 2019. Vol. 3, num. 10, p. 2633 – 2641. DOI : 10.1039/c9se00385a.

Elucidation of photovoltage origin and charge transport in Cu2O heterojunctions for solar energy conversion (vol 3, pg 2633, 2019)

P. Cendula; M. T. Mayer; J. Luo; M. Graetzel 

Sustainable Energy & Fuels. 2019. Vol. 3, num. 10, p. 2873 – 2874. DOI : 10.1039/c9se90042j.

A chain is as strong as its weakest link – Stability study of MAPbI(3) under light and temperature

P. Holzhey; P. Yadav; S-H. Turren-Cruz; A. Ummadisingu; M. Graetzel et al. 

Materials Today. 2019. Vol. 29, p. 10 – 19. DOI : 10.1016/j.mattod.2018.10.017.

Atomic Layer Deposition of ZnO on CuO Enables Selective and Efficient Electroreduction of Carbon Dioxide to Liquid Fuels

D. Ren; J. Gao; L. Pan; Z. Wang; J. Luo et al. 

Angewandte Chemie International Edition. 2019. Vol. 58, num. 42, p. 15036 – 15040. DOI : 10.1002/anie.201909610.

In situ observation of picosecond polaron self-localisation in alpha-Fe2O3 photoelectrochemical cells

E. Pastor; J-S. Park; L. Steier; S. Kim; M. Gratzel et al. 

Nature Communications. 2019. Vol. 10, p. 3962. DOI : 10.1038/s41467-019-11767-9.

Understanding the surface dynamics of hydrogen and CO in the electrochemical reduction of CO2

M. Schreier; M. Graetzel; Y. Surendranath 

2019. ACS Fall National Meeting and Exposition, San Diego, CA, Aug 25-29, 2019.

Thermodynamically stabilized beta-CsPbI3-based perovskite solar cells with efficiencies > 18%

Y. Wang; M. I. Dar; L. K. Ono; T. Zhang; M. Kan et al. 

Science. 2019. Vol. 365, num. 6453, p. 591 – 595. DOI : 10.1126/science.aav8680.

Halide Versus Nonhalide Salts: The Effects of Guanidinium Salts on the Structural, Morphological, and Photovoltaic Performances of Perovskite Solar Cells

M. H. Alotaibi; Y. A. Alzahrani; N. Arora; A. Alyamani; A. Albadri et al. 

Solar Rrl. 2019.  p. 1900234. DOI : 10.1002/solr.201900234.

Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells

E. A. Alharbi; A. Y. Alyamani; D. J. Kubicki; A. R. Uhl; B. J. Walder et al. 

Nature Communications. 2019. Vol. 10, p. 3008. DOI : 10.1038/s41467-019-10985-5.

Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions

W. Tress; K. Domanski; B. Carlsen; A. Agarwalla; E. A. Alharbi et al. 

Nature Energy. 2019. Vol. 4, num. 7, p. 568 – 574. DOI : 10.1038/s41560-019-0400-8.

Sequential catalysis enables enhanced C-C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts

J. Gao; D. Ren; X. Guo; S. M. Zakeeruddin; M. Graetzel 

Faraday Discussions. 2019. Vol. 215, p. 282 – 296. DOI : 10.1039/c8fd00219c.

Power output stabilizing feature in perovskite solar cells at operating condition: Selective contact-dependent charge recombination dynamics

H-S. Kim; J-Y. Seo; S. Akin; E. Simon; M. Fleischer et al. 

Nano Energy. 2019. Vol. 61, p. 126 – 131. DOI : 10.1016/j.nanoen.2019.04.051.

Ruddlesden–Popper Phases of Methylammonium-Based Two-Dimensional Perovskites with 5-Ammonium Valeric Acid AVA2MAn–1PbnI3n+1 with n = 1, 2, and 3

N. Ashari Astani; F. Jahanbakhshi; M. Mladenovic; A. Q. M. Alanazi; I. Ahmadabadi et al. 

The Journal of Physical Chemistry Letters. 2019. Vol. 10, p. 3543 – 3549. DOI : 10.1021/acs.jpclett.9b01111.

Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%

Y. Liu; S. Akin; L. Pan; R. Uchida; N. Arora et al. 

Science Advances. 2019. Vol. 5, num. 6, p. eaaw2543. DOI : 10.1126/sciadv.aaw2543.

Electrochemical Characterization of CuSCN Hole-Extracting Thin Films for Perovskite Photovoltaics

L. Kavan; Z. V. Zivcova; P. Hubik; N. Arora; M. I. Dar et al. 

Acs Applied Energy Materials. 2019. Vol. 2, num. 6, p. 4264 – 4273. DOI : 10.1021/acsaem.9b00496.

An Oxa[5]helicene-Based Racemic Semiconducting Glassy Film for Photothermally Stable Perovskite Solar Cells

N. Xu; Y. Li; D. Ricciarelli; J. Wang; E. Mosconi et al. 

Iscience. 2019. Vol. 15, p. 234 – 242. DOI : 10.1016/j.isci.2019.04.031.

Supramolecular Engineering for Formamidinium-Based Layered 2D Perovskite Solar Cells: Structural Complexity and Dynamics Revealed by Solid-State NMR Spectroscopy

J. V. Milic; J-H. Im; D. J. Kubicki; A. Ummadisingu; J-Y. Seo et al. 

Advanced Energy Materials. 2019. Vol. 9, num. 20, p. 1900284. DOI : 10.1002/aenm.201900284.

Dual effect of humidity on cesium lead bromide: enhancement and degradation of perovskite films

D. Di Girolamo; M. I. Dar; D. Dini; L. Gontrani; R. Caminiti et al. 

Journal of Materials Chemistry A. 2019. Vol. 7, num. 19, p. 12292 – 12302. DOI : 10.1039/c9ta00715f.

A tandem redox system with a cobalt complex and 2-azaadamantane-N-oxyl for fast dye regeneration and open circuit voltages exceeding 1 V

N. Flores-Diaz; H-w. Bahng; N. Vlachopoulos; J-E. Moser; S. M. Zakeeruddin et al. 

Journal of Materials Chemistry A. 2019. Vol. 7, num. 18, p. 10998 – 11006. DOI : 10.1039/c9ta00490d.

Influence of Alkoxy Chain Length on the Properties of Two-Dimensionally Expanded Azulene-Core-Based Hole-Transporting Materials for Efficient Perovskite Solar Cells

M. A. Truong; J. Lee; T. Nakamura; J-Y. Seo; M. Jung et al. 

Chemistry-A European Journal. 2019. Vol. 25, num. 27, p. 6741 – 6752. DOI : 10.1002/chem.201806317.

Toward an alternative approach for the preparation of low-temperature titanium dioxide blocking underlayers for perovskite solar cells

S. H. Aung; L. Zhao; K. Nonomura; T. Z. Oo; S. M. Zakeeruddin et al. 

Journal of Materials Chemistry A. 2019. Vol. 7, num. 17, p. 10729 – 10738. DOI : 10.1039/c8ta04246b.

Perovskite Solar Cells Based on Oligotriarylamine Hexaarylbenzene as Hole-Transporting Materials

M. Shasti; S. F. Volker; S. Collavini; S. Valero; F. Ruiperez et al. 

Organic Letters. 2019. Vol. 21, num. 9, p. 3261 – 3264. DOI : 10.1021/acs.orglett.9b00988.

SnS Quantum Dots as Hole Transporter of Perovskite Solar Cells

Y. Li; Z. Wang; D. Ren; Y. Liu; A. Zheng et al. 

Acs Applied Energy Materials. 2019. Vol. 2, num. 5, p. 3822 – 3829. DOI : 10.1021/acsaem.9b00510.

A partially-planarised hole-transporting quart-p-phenylene for perovskite solar cells

J. P. Mora-Fuentes; D. Cortizo-Lacalle; S. Collavini; K. Strutynski; W. R. Tress et al. 

Journal of Materials Chemistry C. 2019. Vol. 7, num. 15, p. 4332 – 4335. DOI : 10.1039/c9tc01076a.

Boosting the efficiency of aqueous solar cells: A photoelectrochemical estimation on the effectiveness of TiCl4 treatment

F. Bella; S. Galliano; G. Piana; G. Giacona; G. Viscardi et al. 

Electrochimica Acta. 2019. Vol. 302, p. 31 – 37. DOI : 10.1016/j.electacta.2019.01.180.

Multifunctional Molecular Modulation for Efficient and Stable Hybrid Perovskite Solar Cells

J. V. Milic; D. J. Kubicki; L. Emsley; M. Gratzel 

Chimia. 2019. Vol. 73, num. 4, p. 317 – 323. DOI : 10.2533/chimia.2019.317.

Solid-state NMR approaches to lead halide perovskites

D. Kubicki; D. Prochowicz; A. Hofstetter; M. Graetzel; L. Emsley 

2019. National Meeting of the American-Chemical-Society (ACS), Orlando, FL, Mar 31-Apr 04, 2019.

Dopant-Free Hole-Transporting Polymers for Efficient and Stable Perovskite Solar Cells

S. Valero; S. Collavini; S. F. Volker; M. Saliba; W. R. Tress et al. 

Macromolecules. 2019. Vol. 52, num. 6, p. 2243 – 2254. DOI : 10.1021/acs.macromol.9b00165.

An ultrathin cobalt-iron oxide catalyst for water oxidation on nanostructured hematite photoanodes

L. Liardet; J. E. Katz; J. Luo; M. Gratzel; X. Hu 

Journal of Materials Chemistry A. 2019. Vol. 7, num. 11, p. 6012 – 6020. DOI : 10.1039/c8ta12295d.

Engineering of Perovskite Materials Based on Formamidinium and Cesium Hybridization for High-Efficiency Solar Cells

D. Prochowicz; R. Runjhun; M. M. Tavakoli; P. Yadav; M. Saski et al. 

Chemistry Of Materials. 2019. Vol. 31, num. 5, p. 1620 – 1627. DOI : 10.1021/acs.chemmater.8b04871.

Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites (vol 10, 484, 2019)

B. Wu; H. Yuan; Q. Xu; J. A. Steele; D. Giovanni et al. 

Nature Communications. 2019. Vol. 10, p. 1145. DOI : 10.1038/s41467-019-09172-3.

Design, synthesis and characterization of 1,8-naphthalimide based fullerene derivative as electron transport material for inverted perovskite solar cells

G. Sivakumar; A. H. Bertoni; H-S. Kim; P. E. Marchezi; D. R. Bernardo et al. 

Synthetic Metals. 2019. Vol. 249, p. 25 – 30. DOI : 10.1016/j.synthmet.2019.01.014.

Site-selective Synthesis of -[70]PCBM-like Fullerenes: Efficient Application in Perovskite Solar Cells

S. Vidal; M. Izquierdo; S. Filippone; I. Fernandez; S. Akin et al. 

Chemistry-A European Journal. 2019. Vol. 25, num. 13, p. 3224 – 3228. DOI : 10.1002/chem.201806053.

Metal Coordination Complexes as Redox Mediators in Regenerative Dye-Sensitized Solar Cells

Y. Saygili; M. Stojanovic; N. Flores-Diaz; S. M. Zakeeruddin; N. Vlachopoulos et al. 

Inorganics. 2019. Vol. 7, num. 3, p. 30. DOI : 10.3390/inorganics7030030.

Doping and phase segregation in Mn2+- and Co2+-doped lead halide perovskites from Cs-133 and H-1 NMR relaxation enhancement

D. J. Kubicki; D. Prochowicz; A. Pinon; G. Stevanato; A. Hofstetter et al. 

Journal of Materials Chemistry A. 2019. Vol. 7, num. 5, p. 2326 – 2333. DOI : 10.1039/c8ta11457a.

Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices

M. Abdi-Jalebi; M. I. Dar; S. P. Senanayak; A. Sadhanala; Z. Andaji-Garmaroudi et al. 

Science Advances. 2019. Vol. 5, num. 2, p. eaav2012. DOI : 10.1126/sciadv.aav2012.

PbZrTiO3 ferroelectric oxide as an electron extraction material for stable halide perovskite solar cells

A. Perez-Tomas; H. Xie; Z. Wang; H-S. Kim; I. Shirley et al. 

Sustainable Energy & Fuels. 2019. Vol. 3, num. 2, p. 382 – 389. DOI : 10.1039/c8se00451j.

Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites

B. Wu; H. Yuan; Q. Xu; J. A. Steele; D. Giovanni et al. 

Nature Communications. 2019. Vol. 10, p. 484. DOI : 10.1038/s41467-019-08326-7.

A peri-Xanthenoxanthene Centered Columnar-Stacking Organic Semiconductor for Efficient, Photothermally Stable Perovskite Solar Cells

N. Xu; Y. Li; R. Wu; R. Zhu; J. Zhang et al. 

Chemistry-A European Journal. 2019. Vol. 25, num. 4, p. 945 – 948. DOI : 10.1002/chem.201806015.

Europium-Doped CsPbI2Br for Stable and Highly Efficient Inorganic Perovskite Solar Cells

W. Xiang; Z. Wang; D. J. Kubicki; W. Tress; J. Luo et al. 

Joule. 2019. Vol. 3, num. 1, p. 205 – 214. DOI : 10.1016/j.joule.2018.10.008.

Synergistic Crystal and Interface Engineering for Efficient and Stable Perovskite Photovoltaics

M. M. Tavakoli; M. Saliba; P. Yadav; P. Holzhey; A. Hagfeldt et al. 

Advanced Energy Materials. 2019. Vol. 9, num. 1, p. 1802646. DOI : 10.1002/aenm.201802646.

Electron specific oxide double layer contacts for highly efficient and uv stable perovskite device

M. M. Tavakoli; S. M. Zakeeruddin; M. Graetzel 

US2020388442; WO2019116338; EP3499597.

2019.

Perovskite Solar Cells Yielding Reproducible Photovoltage of 1.20 V

E. A. Alharbi; M. I. Dar; N. Arora; M. H. Alotaibi; Y. A. Alzhrani et al. 

Research. 2019. Vol. 2019, p. 8474698. DOI : 10.34133/2019/8474698.

The Advent of Molecular Photovoltaics and Hybrid Perovskite Solar Cells

M. Grätzel; J. Milić 

Substantia. An International Journal of the History of Chemis. 2019. Vol. 3, num. 2, p. 23 – 27. DOI : 10.13128/substantia-697.

Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics

I. Turkevych; S. Kazaoui; N. A. Belich; A. Y. Grishko; S. A. Fateev et al. 

Nature Nanotechnology. 2019. Vol. 14, num. 1, p. 57 – 63. DOI : 10.1038/s41565-018-0304-y.

Bifunctional Organic Spacers for Formamidinium-Based Hybrid Dion-Jacobson Two-Dimensional Perovskite Solar Cells

Y. Li; J. V. Milic; A. Ummadisingu; J-Y. Seo; J-H. Im et al. 

Nano Letters. 2019. Vol. 19, num. 1, p. 150 – 157. DOI : 10.1021/acs.nanolett.8b03552.

Crystal defects mitigating agents for high power conversion efficiency and stability of perovskite photovoltaic devices

M. M. Tavakoli; Y. Liu; S. M. Zakeeruddin; M. Graetzel 

US2021054288; WO2019145841; EP3518301.

2019.

2018

Kinetics of Ion-Exchange Reactions in Hybrid Organic-Inorganic Perovskite Thin Films Studied by In Situ Real-Time X-ray Scattering

A. Greco; A. Hinderhofer; M. I. Dar; N. Arora; J. Hagenlocher et al. 

The Journal of Physical Chemistry Letters. 2018. Vol. 9, num. 23, p. 6750 – 6754. DOI : 10.1021/acs.jpclett.8b02916.

Reduced Graphene Oxide as a Stabilizing Agent in Perovskite Solar Cells

J. V. Milic; N. Arora; M. I. Dar; S. M. Zakeeruddin; M. Gratzel 

Advanced Materials Interfaces. 2018. Vol. 5, num. 22, p. 1800416. DOI : 10.1002/admi.201800416.

High Open Circuit Voltage for Perovskite Solar Cells with S,Si-Heteropentacene-Based Hole Conductors

M. I. Dar; N. Arora; C. Steck; A. Mishra; M. H. Alotaibi et al. 

European Journal Of Inorganic Chemistry. 2018. num. 41, p. 4573 – 4578. DOI : 10.1002/ejic.201800680.

Hydrothermally processed CuCrO2 nanoparticles as an inorganic hole transporting material for low-cost perovskite solar cells with superior stability

S. Akin; Y. Liu; M. I. Dar; S. M. Zakeeruddin; M. Gratzel et al. 

Journal of Materials Chemistry A. 2018. Vol. 6, num. 41, p. 20327 – 20337. DOI : 10.1039/c8ta07368f.

Addition of adamantylammonium iodide to hole transport layers enables highly efficient and electroluminescent perovskite solar cells

M. M. Tavakoli; W. Tress; J. V. Milic; D. Kubicki; L. Emsley et al. 

Energy & Environmental Science. 2018. Vol. 11, num. 11, p. 3310 – 3320. DOI : 10.1039/c8ee02404a.

Illumination Time Dependent Learning in Dye Sensitized Solar Cells

H. N. Tsao; M. Gratzel 

ACS Applied Materials & Interfaces. 2018. Vol. 10, num. 43, p. 36602 – 36607. DOI : 10.1021/acsami.8b12027.

Electron-Affinity-Triggered Variations on the Optical and Electrical Properties of Dye Molecules Enabling Highly Efficient Dye-Sensitized Solar Cells

Y. Liu; Y. Cao; W. Zhang; M. Stojanovic; M. I. Dar et al. 

Angewandte Chemie International Edition. 2018. Vol. 57, num. 43, p. 14125 – 14128. DOI : 10.1002/anie.201808609.

Stable and Efficient Organic Dye-Sensitized Solar Cell Based on Ionic Liquid Electrolyte

P. Wang; L. Yang; H. Wu; Y. Cao; J. Zhang et al. 

Joule. 2018. Vol. 2, num. 10, p. 2145 – 2153. DOI : 10.1016/j.joule.2018.07.023.

Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals

M. Li; R. Begum; J. Fu; Q. Xu; T. M. Koh et al. 

Nature Communications. 2018. Vol. 9, p. 4197. DOI : 10.1038/s41467-018-06596-1.

Novel p-dopant toward highly efficient and stable perovskite solar cells

J-Y. Seo; H-S. Kim; S. Akin; M. Stojanovic; E. Simon et al. 

Energy & Environmental Science. 2018. Vol. 11, num. 10, p. 2985 – 2992. DOI : 10.1039/c8ee01500g.

Slow CH3NH3+ Diffusion in CH3NH3PbI3 under Light Measured by Solid-State NMR and Tracer Diffusion

A. Senocrate; I. Moudrakovski; T. Acartuerk; R. Merkle; G. Y. Kim et al. 

Journal Of Physical Chemistry C. 2018. Vol. 122, num. 38, p. 21803 – 21806. DOI : 10.1021/acs.jpcc.8b06814.

Insights about the Absence of Rb Cation from the 3D Perovskite Lattice: Effect on the Structural, Morphological, and Photophysical Properties and Photovoltaic Performance

R. Uchida; S. Binet; N. Arora; G. Jacopin; M. H. Alotaibi et al. 

Small. 2018. Vol. 14, num. 36, p. 1802033. DOI : 10.1002/smll.201802033.

How the formation of interfacial charge causes hysteresis in perovskite solar cells

S. A. L. Weber; I. M. Hermes; S-H. Turren-Cruz; C. Gort; V. W. Bergmann et al. 

Energy & Environmental Science. 2018. Vol. 11, num. 9, p. 2404 – 2413. DOI : 10.1039/c8ee01447g.

From Organics to Photochemistry – GDCh-Meetings in September

T. Bach; M. Graetzel 

Chemie Ingenieur Technik. 2018. Vol. 90, num. 9, p. 1126 – 1127.

Template synthesis of methylammonium lead iodide in the matrix of anodic titanium dioxide via the direct conversion of electrodeposited elemental lead

N. A. Belich; A. S. Tychinina; V. V. Kuznetsov; E. A. Goodilin; M. Gratzel et al. 

Mendeleev Communications. 2018. Vol. 28, num. 5, p. 487 – 489. DOI : 10.1016/j.mencom.2018.09.011.

Guanidinium cations roles in perovskites solar cells

M. Alotaibi; I. Dar; N. Arora; Y. Alzahrani; A. Alyamani et al. 

2018. 256th National Meeting and Exposition of the American-Chemical-Society (ACS) – Nanoscience, Nanotechnology and Beyond, Boston, MA, Aug 19-23, 2018.

Understanding the electrochemical reduction of carbon dioxide at copper surfaces

D. Ren; M. Graetzel 

2018. 256th National Meeting and Exposition of the American-Chemical-Society (ACS) – Nanoscience, Nanotechnology and Beyond, Boston, MA, Aug 19-23, 2018.

Greener, Nonhalogenated Solvent Systems for Highly Efficient Perovskite Solar Cells

M. Yavari; M. Mazloum-Ardakani; S. Gholipour; M. M. Tavakoli; S-H. Turren-Cruz et al. 

Advanced Energy Materials. 2018. Vol. 8, num. 21, p. 1800177. DOI : 10.1002/aenm.201800177.

Electrodeposition of porous CuSCN layers as hole-conducting material for perovskite solar cells

N. N. Shlenskaya; A. S. Tutantsev; N. A. Belich; E. A. Goodilin; M. Gratzel et al. 

Mendeleev Communications. 2018. Vol. 28, num. 4, p. 378 – 380. DOI : 10.1016/j.mencom.2018.07.012.

Device and method for performing maximum power point tracking for photovoltaic devices in presence of hysteresis

N. Pellet; F. Giordano; S. M. Zakeeruddin; M. Grätzel 

US10488879; US2018259990.

2018.

Cyclometalated Ruthenium Complexes for Dye-Sensitized Solar Cells

S. Aghazada / M. K. Nazeeruddin; M. Graetzel (Dir.)  

Lausanne, EPFL, 2018. 

Redox melts formed by copper (i)/(ii) complexes as charge transfer and charge storage materials

M. Stojanovic; S. M. Zakeeruddin; M. Graetzel; A. Hagfeldt; Y. Cao et al. 

EP3407361.

2018.

Optoelectronic and/or electrochemical learning device

H. N. Tsao; M. Graetzel 

WO2018041995; WO2018041995.

2018.

Molecular Engineering Towards High Efficiency Perovskite Solar Cells

J. Seo / M. Graetzel; S. M. Zakeeruddin (Dir.)  

Lausanne, EPFL, 2018. 

Defect chemistry of methylammonium lead iodide

A. Senocrate / J. Maier; M. Graetzel (Dir.)  

Lausanne, EPFL, 2018. 

Fundamentals of perovskite formation for photovoltaics

A. Ummadisingu / M. Graetzel (Dir.)  

Lausanne, EPFL, 2018. 

Composition and Interface Engineering of Organic-Inorganic Hybrid Perovskites to Improve Photovoltaic Performance and Stability

K. T. Cho / M. K. Nazeeruddin; M. Graetzel (Dir.)  

Lausanne, EPFL, 2018. 

The Quest for Stability of Perovskite Solar Cells: Understanding Degradation, Improving Lifetimes and Towards Experimental Standards

K. Domanski / M. Graetzel; W. R. Tress (Dir.)  

Lausanne, EPFL, 2018. 

Compositional Characterization of Organo-Lead tri-Halide Perovskite Solar Cells

P. Gratia / M. K. Nazeeruddin; M. Graetzel (Dir.)  

Lausanne, EPFL, 2018. 

Method for inkjet printing an organic-inorganic perovskite

S. G. Hashmi; M. Özkan; D. Martineau; X. Li; S. M. Zakeeruddin et al. 

US11177440; US2020028081; EP3494605; CN109804480; WO2018024777; EP3279960.

2018.

Analysis of Optical Losses in a Photoelectrochemical Cell: A Tool for Precise Absorptance Estimation

P. Cendula; L. Steier; P. A. Losio; M. Graetzel; J. O. Schumacher 

Advanced Functional Materials. 2018. Vol. 28, num. 1, p. 1702768. DOI : 10.1002/adfm.201702768.

Inorganic hole conductor based perovskite photoelectric conversion device with high operational stability at long term

N. Arora; M. I. Dar; S. M. Zakeeruddin; M. Graetzel 

US11594694; JP2020519020; US2020111981; EP3619753; CN110754004; KR20190141742; WO2018203279; EP3399564.

2018.

Mixed cation perovskite solid state solar cell and fabrication thereof

M. Saliba; T. Matsui; K. Domanski; J. Seo; S. M. Zakeeruddin et al. 

JP7129066; CN109563108; US11195959; EP3497107; US2019312155; JP2019527934; EP3497107; CN109563108; WO2018015831; EP3272757.

2018.

2017

A wire shaped coaxial photovoltaic solar cell

I. Jones; G. Durand; M. K. Nazeeruddin; M. I. Dar; M. Graetzel et al. 

EP3168877; WO2017081531; EP3168877.

2017.

Charge transporting material for optoelectronic and/or photoelectrochemical devices

M. K. Nazeeruddin; M. Graetzel; I. Zimmermann; C. Roldán Carmona; P. Gratia et al. 

WO2017098455; EP3178823.

2017.

Hill climbing hysteresis of perovskite-based solar cells: a maximum power point tracking investigation

N. Pellet; F. Giordano; M. I. Dar; G. Gregori; S. M. Zakeeruddin et al. 

Progress In Photovoltaics. 2017. Vol. 25, num. 11, p. 942 – 950. DOI : 10.1002/pip.2894.

Crystal Structure of DMF-Intermediate Phases Uncovers the Link Between CH3NH3PbI3 Morphology and Precursor Stoichiometry

A. A. Petrov; I. P. Sokolova; N. A. Belich; G. S. Peters; P. V. Dorovatovskii et al. 

Journal Of Physical Chemistry C. 2017. Vol. 121, num. 38, p. 20739 – 20743. DOI : 10.1021/acs.jpcc.7b08468.

The Nature of Ion Conduction in Methylammonium Lead Iodide: A Multimethod Approach

A. Senocrate; I. Moudrakovski; G. Y. Kim; T-Y. Yang; G. Gregori et al. 

Angewandte Chemie International Edition. 2017. Vol. 56, num. 27, p. 7755 – 7759. DOI : 10.1002/anie.201701724.

Phase Segregation in Cs-, Rb- and K-Doped Mixed-Cation (MA)(x)(FA)(1-x)Pbl(3) Hybrid Perovskites from Solid-State NMR

D. J. Kubicki; D. Prochowicz; A. Hofstetter; S. M. Zakeeruddin; M. Graetzel et al. 

Journal Of The American Chemical Society. 2017. Vol. 139, num. 40, p. 14173 – 14180. DOI : 10.1021/jacs.7b07223.

Photoanode/Electrolyte Interface Stability in Aqueous Dye-Sensitized Solar Cells

S. Galliano; F. Bella; C. Gerbaldi; M. Falco; G. Viscardi et al. 

Energy Technology. 2017. Vol. 5, num. 2, p. 300 – 311. DOI : 10.1002/ente.201600285.

High Temperature-Stable Perovskite Solar Cell Based on Low-Cost Carbon Nanotube Hole Contact

K. Aitola; K. Domanski; J-P. Correa-Baena; K. Sveinbjornsson; M. Saliba et al. 

Advanced Materials. 2017. Vol. 29, num. 17, p. 1606398. DOI : 10.1002/adma.201606398.

Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells

E. Bi; H. Chen; F. Xie; Y. Wu; W. Chen et al. 

Nature Communications. 2017. Vol. 8, p. 15330. DOI : 10.1038/ncomms15330.

Investigation on the Interface Modification of TiO2 Surfaces by Functional Co-Adsorbents for High-Efficiency Dye-Sensitized Solar Cells

A. K. Chandiran; S. M. Zakeeruddin; R. Humphry-Baker; M. K. Nazeeruddin; M. Graetzel et al. 

Chemphyschem. 2017. Vol. 18, num. 19, p. 2724 – 2731. DOI : 10.1002/cphc.201700486.

In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6](4-) cage nanoparticles

Q. Hu; L. Zhao; J. Wu; K. Gao; D. Luo et al. 

Nature Communications. 2017. Vol. 8, p. 15688. DOI : 10.1038/ncomms15688.

Reduction in the Interfacial Trap Density of Mechanochemically Synthesized MAPbI(3)

D. Prochowicz; P. Yadav; M. Saliba; M. Sasi; S. M. Zakeeruddin et al. 

ACS Applied Materials & Interfaces. 2017. Vol. 9, num. 34, p. 28418 – 28425. DOI : 10.1021/acsami.7b06788.

High photovoltage in perovskite solar cells: New physical insights from the ultrafast transient absorption spectroscopy

M. I. Dar; M. Franckevicius; N. Arora; K. Redeckas; M. Vengris et al. 

Chemical Physics Letters. 2017. Vol. 683, p. 211 – 215. DOI : 10.1016/j.cplett.2017.04.046.

Solar-driven reduction of CO₂ : from homogeneous to heterogeneous catalytic systems

M. R. Schreier / M. Graetzel; K. Sivula (Dir.)  

Lausanne, EPFL, 2017. 

Additives, Hole Transporting Materials and Spectroscopic Methods to Characterize the Properties of Perovskite Films

A. Ummadisingu; J-Y. Seo; M. Stojanovic; S. M. Zakeeruddin; M. Gratzel et al. 

Chimia. 2017. Vol. 71, num. 11, p. 754 – 761. DOI : 10.2533/chimia.2017.754.

A cockspur for the DSS cells: Erythrina crista-galli sensitizers

P. Enciso; J-D. Decoppet; M. Gratzel; M. Woerner; F. M. Cabrerizo et al. 

Spectrochimica Acta Part A-Molecular And Biomolecular Spectroscopy. 2017. Vol. 176, p. 91 – 98. DOI : 10.1016/j.saa.2017.01.002.

The rapid evolution of highly efficient perovskite solar cells

J-P. Correa-Baena; A. Abate; M. Saliba; W. Tress; T. J. Jacobsson et al. 

Energy & Environmental Science. 2017. Vol. 10, num. 3, p. 710 – 727. DOI : 10.1039/c6ee03397k.

Defects on surface and interface for photoelectrochemical properties of hematite photoanodes

Y. Hu / M. Graetzel; A. Braun (Dir.)  

Lausanne, EPFL, 2017. 

Computational Characterization of the Dependence of Halide Perovskite Effective Masses on Chemical Composition and Structure

N. Ashari-Astani; S. Meloni; A. H. Salavati; G. Palermo; M. Gratzel et al. 

Journal Of Physical Chemistry C. 2017. Vol. 121, num. 43, p. 23886 – 23895. DOI : 10.1021/acs.jpcc.7b04898.

The effect of illumination on the formation of metal halide perovskite films

A. Ummadisingu; L. Steier; J-Y. Seo; T. Matsui; A. Abate et al. 

Nature. 2017. Vol. 545, num. 7653, p. 208 – 212. DOI : 10.1038/nature22072.

Interfacial Kinetics of Efficient Perovskite Solar Cells

P. Yadav; D. Prochowicz; M. Saliba; P. P. Boix; S. M. Zakeeruddin et al. 

Crystals. 2017. Vol. 7, num. 8, p. 252. DOI : 10.3390/cryst7080252.

Monovalent Cation Doping of CH3NH3PbI3 for Efficient Perovskite Solar Cells

M. Abdi-Jalebi; M. I. Dar; A. Sadhanala; S. P. Senanayak; M. Gratzel et al. 

Jove-Journal Of Visualized Experiments. 2017. num. 121, p. e55307. DOI : 10.3791/55307.

Electrochemical Properties of Cu(II/I)-Based Redox Mediators for Dye-Sensitized Solar Cells

L. Kavan; Y. Saygili; M. Freitag; S. M. Zakeeruddin; A. Hagfeldt et al. 

Electrochimica Acta. 2017. Vol. 227, p. 194 – 202. DOI : 10.1016/j.electacta.2016.12.185.

Investigations on hybrid organic-inorganic perovskites for high performance solar cells

N. Pellet / M. Graetzel; J. Maier (Dir.)  

Lausanne, EPFL, 2017. 

Organic Dyes Containing Coplanar Dihexyl-Substituted Dithienosilole Groups for Efficient Dye-Sensitised Solar Cells

C. Lyons; N. Rathi; P. Dev; O. Byrne; P. K. Surolia et al. 

International Journal Of Photoenergy. 2017.  p. 7594869. DOI : 10.1155/2017/7594869.

Approaching truly sustainable solar cells by the use of water and cellulose derivatives

F. Bella; S. Galliano; M. Falco; G. Viscardi; C. Barolo et al. 

Green Chemistry. 2017. Vol. 19, num. 4, p. 1043 – 1051. DOI : 10.1039/c6gc02625g.

All Solution-Processed, Hybrid Organic-Inorganic Photocathode for Hydrogen Evolution

H. Comas Rojas; S. Bellani; E. Aluicio Sarduy; F. Fumagalli; M. T. Mayer et al. 

Acs Omega. 2017. Vol. 2, num. 7, p. 3424 – 3431. DOI : 10.1021/acsomega.7b00558.

Room temperature formation of organic-inorganic lead halide perovskites: design of nanostructured and highly reactive intermediates

H. Zhang; D. Li; J. Cheng; F. Lin; J. Mao et al. 

Journal of Materials Chemistry A. 2017. Vol. 5, num. 7, p. 3599 – 3608. DOI : 10.1039/c6ta09845b.

Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals

W. Chen; S. Bhaumik; S. A. Veldhuis; G. Xing; Q. Xu et al. 

Nature Communications. 2017. Vol. 8, p. 15198. DOI : 10.1038/ncomms15198.

A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes

M-K. Son; L. Steier; M. Schreier; M. T. Mayer; J. Luo et al. 

Energy & Environmental Science. 2017. Vol. 10, num. 4, p. 912 – 918. DOI : 10.1039/c6ee03613a.

Promises and challenges of perovskite solar cells

J-P. Correa-Baena; M. Saliba; T. Buonassisi; M. Graetzel; A. Abate et al. 

Science. 2017. Vol. 358, num. 6364, p. 739 – 744. DOI : 10.1126/science.aam6323.

Significance of pi-bridge contribution in pyrido[3,4-b]pyrazine featured D-A-pi-A organic dyes for dye-sensitized solar cells

Z. Shen; X. Zhang; F. Giordano; Y. Hu; J. Hua et al. 

Materials Chemistry Frontiers. 2017. Vol. 1, num. 1, p. 181 – 189. DOI : 10.1039/c6qm00119j.

Effect of Cs-Incorporated NiOx on the Performance of Perovskite Solar Cells

H-S. Kim; J-Y. Seo; H. Xie; M. Lira-Cantu; S. M. Zakeeruddin et al. 

Acs Omega. 2017. Vol. 2, num. 12, p. 9074 – 9079. DOI : 10.1021/acsomega.7b01179.

Understanding the Limit and Potential in Emerging Perovskite Solar Cells

W. Tress; M. Graetzel 

2017. IEEE Electron Devices Technology and Manufacturing Conference (EDTM), Toyama, JAPAN, FEB 28-MAR 02, 2017. p. 15 – 16. DOI : 10.1109/EDTM.2017.7947503.

Long term stability of air processed inkjet infiltrated carbon-based printed perovskite solar cells under intense ultra-violet light soaking

S. G. Hashmi; A. Tiihonen; D. Martineau; M. Ozkan; P. Vivo et al. 

Journal of Materials Chemistry A. 2017. Vol. 5, num. 10, p. 4797 – 4802. DOI : 10.1039/c6ta10605f.

Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes

C. A. Mesa; A. Kafizas; L. Francas; S. R. Pendlebury; E. Pastor et al. 

Journal Of The American Chemical Society. 2017. Vol. 139, num. 33, p. 11537 – 11543. DOI : 10.1021/jacs.7b05184.

Function Follows Form: Correlation between the Growth and Local Emission of Perovskite Structures and the Performance of Solar Cells

M. I. Dar; A. Hinderhofer; G. Jacopin; V. Belova; N. Arora et al. 

Advanced Functional Materials. 2017. Vol. 27, num. 26, p. 1701433. DOI : 10.1002/adfm.201701433.

Spectroelectrochemical analysis of the mechanism of (photo)electrochemical hydrogen evolution at a catalytic interface

E. Pastor; F. Le Formal; M. T. Mayer; S. D. Tilley; L. Francas et al. 

Nature Communications. 2017. Vol. 8, p. 14280. DOI : 10.1038/ncomms14280.

Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells

J-P. Correa-Baena; W. Tress; K. Domanski; E. H. Anaraki; S-H. Turren-Cruz et al. 

Energy & Environmental Science. 2017. Vol. 10, num. 5, p. 1207 – 1212. DOI : 10.1039/c7ee00421d.

Intrinsic and interfacial kinetics of perovskite solar cells under photo and bias-induced degradation and recovery

P. Yadav; D. Prochowicz; E. A. Alharbi; S. M. Zakeeruddin; M. Gratzel 

Journal of Materials Chemistry C. 2017. Vol. 5, num. 31, p. 7799 – 7805. DOI : 10.1039/c7tc02652h.

Ultrathin Buffer Layers of SnO2 by Atomic Layer Deposition: Perfect Blocking Function and Thermal Stability

L. Kavan; L. Steier; M. Gratzel 

Journal Of Physical Chemistry C. 2017. Vol. 121, num. 1, p. 342 – 350. DOI : 10.1021/acs.jpcc.6b09965.

Dopant-free star-shaped hole-transport materials for efficient and stable perovskite solar cells

F. Zhang; X. Zhao; C. Yi; D. Bi; X. Bi et al. 

Dyes And Pigments. 2017. Vol. 136, p. 273 – 277. DOI : 10.1016/j.dyepig.2016.08.002.

New Insight into the Formation of Hybrid Perovskite Nanowires via Structure Directing Adducts

A. A. Petrov; N. Pellet; J-Y. Seo; N. A. Belich; D. Y. Kovalev et al. 

Chemistry Of Materials. 2017. Vol. 29, num. 2, p. 587 – 594. DOI : 10.1021/acs.chemmater.6b03965.

High performance carbon-based printed perovskite solar cells with humidity assisted thermal treatment

S. G. Hashmi; D. Martineau; M. I. Dar; T. T. T. Myllymaki; T. Sarikka et al. 

Journal of Materials Chemistry A. 2017. Vol. 5, num. 24, p. 12060 – 12067. DOI : 10.1039/c7ta04132b.

An Unsymmetrical, Push-Pull Porphyrazine for Dye-Sensitized Solar Cells

J. Fernandez-Ariza; M. Urbani; M. Graetzel; M. Salome Rodriguez-Morgade; M. K. Nazeeruddin et al. 

Chemphotochem. 2017. Vol. 1, num. 5, p. 164 – 166. DOI : 10.1002/cptc.201600004.

Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials

F. Zhang; Z. Wang; H. Zhu; N. Pellet; J. Luo et al. 

Nano Energy. 2017. Vol. 41, p. 469 – 475. DOI : 10.1016/j.nanoen.2017.09.035.

A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules

H. Chen; F. Ye; W. Tang; J. He; M. Yin et al. 

Nature. 2017. Vol. 550, num. 7674, p. 92 – 95. DOI : 10.1038/nature23877.

Template enhanced organic inorganic perovskite heterojunction photovoltaic device

X. Li; S. M. Zakeeruddin; M. Graetzel; S. M. Zakeeruddin 

JP2017520931; US2017162811; CN106716664; EP3167496; KR20170030625; AU2015287324; AU2015287324; WO2016005868; EP2966703.

2017.

Globularity-Selected Large Molecules for a New Generation of Multication Perovskites

S. Gholipour; A. M. Ali; J-P. Correa-Baena; S-H. Turren-Cruz; F. Tajabadi et al. 

Advanced Materials. 2017. Vol. 29, num. 38, p. 1702005. DOI : 10.1002/adma.201702005.

Nondestructive Probing of Perovskite Silicon Tandem Solar Cells Using Multiwavelength Photoluminescence Mapping

L. E. Mundt; F. D. Heinz; S. Albrecht; M. Mundus; M. Saliba et al. 

Ieee Journal Of Photovoltaics. 2017. Vol. 7, num. 4, p. 1081 – 1086. DOI : 10.1109/Jphotov.2017.2688022.

Pyridyl- and Picolinic Acid Substituted Zinc(II) Phthalocyanines for Dye-Sensitized Solar Cells

J. Suanzes Pita; M. Urbani; G. Bottari; M. Ince; S. A. Kumar et al. 

Chempluschem. 2017. Vol. 82, num. 7, p. 1057 – 1061. DOI : 10.1002/cplu.201700048.

Redox Catalysis for Improved Counter-Electrode Kinetics in Dye-Sensitized Solar Cells

L. Fan; J. R. Jennings; S. M. Zakeeruddin; M. Graetzel; Q. Wang 

Chemelectrochem. 2017. Vol. 4, num. 6, p. 1356 – 1361. DOI : 10.1002/celc.201700103.

Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%

N. Arora; M. I. Dar; A. Hinderhofer; N. Pellet; F. Schreiber et al. 

Science. 2017. Vol. 358, num. 6364, p. 768 – 771. DOI : 10.1126/science.aam5655.

Influence of Ionic Liquid Electrolytes on the Photovoltaic Performance of Dye-Sensitized Solar Cells

J-D. Decoppet; S. B. Khan; M. S. A. Al-Ghamdi; B. G. Alhogbi; A. M. Asiri et al. 

Energy Technology. 2017. Vol. 5, num. 2, p. 321 – 326. DOI : 10.1002/ente.201600308.

Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals

M. Li; S. Bhaumik; T. W. Goh; M. S. Kumar; N. Yantara et al. 

Nature Communications. 2017. Vol. 8, p. 14350. DOI : 10.1038/ncomms14350.

Isomer-Pure Bis-PCBM-Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability

F. Zhang; W. Shi; J. Luo; N. Pellet; C. Yi et al. 

Advanced Materials. 2017. Vol. 29, num. 17, p. 1606806. DOI : 10.1002/adma.201606806.

Perovskite solar cell – electrochemical double layer capacitor interplay

S. Intermite; C. Arbizzani; F. Soavi; S. Gholipour; S-H. Turren-Cruz et al. 

Electrochimica Acta. 2017. Vol. 258, p. 825 – 833. DOI : 10.1016/j.electacta.2017.11.132.

Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water-Splitting Devices

K. Gurudayal; R. A. John; P. P. Boix; C. Yi; C. Shi et al. 

Chemsuschem. 2017. Vol. 10, num. 11, p. 2449 – 2456. DOI : 10.1002/cssc.201700159.

The Rise of Highly Efficient and Stable Perovskite Solar Cells

M. Graetzel 

Accounts Of Chemical Research. 2017. Vol. 50, num. 3, p. 487 – 491. DOI : 10.1021/acs.accounts.6b00492.

Spontaneous crystal coalescence enables highly efficient perovskite solar cells

B. Roose; A. Ummadisingu; J-P. Correa-Baena; M. Saliba; A. Hagfeldt et al. 

Nano Energy. 2017. Vol. 39, p. 24 – 29. DOI : 10.1016/j.nanoen.2017.06.037.

Morphology Engineering: A Route to Highly Reproducible and High Efficiency Perovskite Solar Cells

D. Bi; J. Luo; F. Zhang; A. Magrez; E. N. Athanasopoulou et al. 

Chemsuschem. 2017. Vol. 10, num. 7, p. 1624 – 1630. DOI : 10.1002/cssc.201601387.

Migration of cations induces reversible performance losses over day​/night cycling in perovskite solar cells

K. Domanski; B. Roose; T. Matsui; M. Saliba; S-H. Turren-Cruz et al. 

Energy & Environmental Science. 2017. Vol. 10, num. 2, p. 604 – 613. DOI : 10.1039/C6EE03352K.

Cation Dynamics in Mixed-Cation (MA)(x)(FA)(1-x)PbI3 Hybrid Perovskites from Solid-State NMR

D. J. Kubicki; D. Prochowicz; A. Hofstetter; P. Pechy; S. M. Zakeeruddin et al. 

Journal Of The American Chemical Society. 2017. Vol. 139, num. 29, p. 10055 – 10061. DOI : 10.1021/jacs.7b04930.

Room-Temperature Formation of Highly Crystalline Multication Perovskites for Efficient, Low-Cost Solar Cells

T. Matsui; J-Y. Seo; M. Saliba; S. M. Zakeeruddin; M. Gratzel 

Advanced Materials. 2017. Vol. 29, num. 15, p. 1606258. DOI : 10.1002/adma.201606258.

High efficiency large area perovskite solar cells and process for producing the same

X. Li; C. Yi; D. Bi; S. M. Zakeeruddin; M. Graetzel et al. 

CN109155366; JP7166613; KR102464556; US11355720; JP2019508902; US2019044080; EP3430655; CN109155366; KR20180122706; WO2017158551; EP3223323; WO2017158551.

2017.

A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts

A. A. Petrov; N. A. Belich; A. Y. Grishko; N. M. Stepanov; S. G. Dorofeev et al. 

Materials Horizons. 2017. Vol. 4, num. 4, p. 625 – 632. DOI : 10.1039/c7mh00201g.

Metal complex used as dopant and other usage

J. Burschka; F. J. Kessler; E. Baranoff; M. K. Nazeeruddin; M. Graetzel 

JP6568142; KR101957534; EP2678346; US10038150; EP2678346; US9779879; JP2017168450; CN103492402; JP6092787; CN103492401; US9559321; US2016233439; JP2014517807; JP2014513057; US2014060641; KR20140016298; KR20140015398; EP2678346; CN103492401; CN103492402; EP2678345; US2013330632; EP2551949; EP2511924; WO2012114316; WO2012114315; EP2492277.

2017.

The Role of Rubidium in Multiple-Cation-Based High-Efficiency Perovskite Solar Cells

P. Yadav; M. I. Dar; N. Arora; E. A. Alharbi; F. Giordano et al. 

Advanced Materials. 2017. Vol. 29, num. 40, p. 1701077. DOI : 10.1002/adma.201701077.

Novel highly active Pt/graphene catalyst for cathodes of Cu(II/I)-mediated dye-sensitized solar cells

L. Kavan; H. Krysova; P. Janda; H. Tarabkova; Y. Saygili et al. 

2017. 11th International Symposium on Electrochemical Micro and Nanosystem Technologies (EMNT), Royal Belgian Inst Nat Sci, Brussels, BELGIUM, AUG 17-19, 2016. p. 167 – 175. DOI : 10.1016/j.electacta.2017.08.080.

Air Processed Inkjet Infiltrated Carbon Based Printed Perovskite Solar Cells with High Stability and Reproducibility

S. G. Hashmi; D. Martineau; X. Li; M. Ozkan; A. Tiihonen et al. 

Advanced Materials Technologies. 2017. Vol. 2, num. 1, p. 1600183. DOI : 10.1002/admt.201600183.

Unraveling the Impact of Rubidium Incorporation on the Transport-Recombination Mechanisms in Highly Efficient Perovskite Solar Cells by Small-Perturbation Techniques

A. Albadri; P. Yadav; M. Alotaibi; N. Arora; A. Alyamani et al. 

Journal Of Physical Chemistry C. 2017. Vol. 121, num. 45, p. 24903 – 24908. DOI : 10.1021/acs.jpcc.7b04766.

Toward All Room-Temperature, Solution- Processed, High-Performance Planar Perovskite Solar Cells: A New Scheme of Pyridine-Promoted Perovskite Formation

Z. Hong; J. Cheng; D. Li; F. Lin; M. Jian et al. 

Advanced Materials. 2017. Vol. 29, num. 13, p. 1604695. DOI : 10.1002/adma.201604695.

One-Year stable perovskite solar cells by 2D/3D interface engineering

G. Grancini; C. Roldan-Carmona; I. Zimmermann; E. Mosconi; X. Lee et al. 

Nature Communications. 2017. Vol. 8, p. 15684. DOI : 10.1038/ncomms15684.

Chemical Distribution of Multiple Cation (Rb+, Cs+, MA(+), and FA(+)) Perovskite Materials by Photoelectron Spectroscopy

B. Philippe; M. Saliba; J-P. Correa-Baena; U. B. Cappel; S-H. Turren-Cruz et al. 

Chemistry Of Materials. 2017. Vol. 29, num. 8, p. 3589 – 3596. DOI : 10.1021/acs.chemmater.7b00126.

2016

Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells

F. Giordano; A. Abate; J. P. C. Baena; M. Saliba; T. Matsui et al. 

Nature Communications. 2016. Vol. 7, p. 10379. DOI : 10.1038/ncomms10379.

A New 1,3,4-Oxadiazole-Based Hole-Transport Material for Efficient CH3NH3PbBr3 Perovskite Solar Cells

S. Carli; J. P. C. Baena; G. Marianetti; N. Marchetti; M. Lessi et al. 

Chemsuschem. 2016. Vol. 9, num. 7, p. 657 – 661. DOI : 10.1002/cssc.201501665.

Hole transporting and light absorbing material for solid state solar cells

P. Qin; M. K. Nazeeruddin; M. Graetzel; J. Ko; S. Paek et al. 

EP3094688; EP3094688; JP2017506621; EP3094688; US2016329162; CN106062086; KR20160111431; WO2015107454; EP2896660.

2016.

Small molecule hole transporting material for optoelectronic and photoelectrochemical devices

P. Gratia; M. K. Nazeeruddin; M. Graetzel; V. Getautis; A. Magomedov et al. 

CN107438597; JP6737798; US10680180; JP2018510149; US2018033973; EP3266050; CN107438597; KR20170130445; WO2016139570; EP3065190.

2016.

A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells

X. Li; D. Bi; C. Yi; J-D. Decoppet; J. Luo et al. 

Science. 2016. Vol. 353, num. 6294, p. 58 – 62. DOI : 10.1126/science.aaf8060.

Tin oxide as stable protective layer for composite cuprous oxide water-splitting photocathodes

J. Azevedo; S. D. Tilley; M. Schreier; M. Stefik; C. Sousa et al. 

Nano Energy. 2016. Vol. 24, p. 10 – 16. DOI : 10.1016/j.nanoen.2016.03.022.

Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells

K. Aitola; K. Sveinbjornsson; J-P. Correa-Baena; A. Kaskela; A. Abate et al. 

Energy & Environmental Science. 2016. Vol. 9, num. 2, p. 461 – 466. DOI : 10.1039/c5ee03394b.

Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells

C. Yi; J. Luo; S. Meloni; A. Boziki; N. Ashari-Astani et al. 

Energy & Environmental Science. 2016. Vol. 9, num. 2, p. 656 – 662. DOI : 10.1039/C5EE03255E.

Low-temperature Fabrication of Highly-Efficient, Optically-Transparent (FTO-free) Graphene Cathode for Co-Mediated Dye-Sensitized Solar Cells with Acetonitrile-free Electrolyte Solution

L. Kavan; P. Liska; S. M. Zakeeruddin; M. Graetzel 

Electrochimica Acta. 2016. Vol. 195, p. 34 – 42. DOI : 10.1016/j.electacta.2016.02.097.

New Insights Into the Role of Imidazolium-Based Promoters for the Electroreduction of CO2 on a Silver Electrode

G. P. S. Lau; M. Schreier; D. Vasilyev; R. Scopelliti; M. Gratzel et al. 

Journal Of The American Chemical Society. 2016. Vol. 138, num. 25, p. 7820 – 7823. DOI : 10.1021/jacs.6b03366.

Novel Blue Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-Based Electrolytes and by Co-Sensitization

Y. Hao; Y. Saygili; J. Cong; A. Eriksson; W. Yang et al. 

ACS Applied Materials & Interfaces. 2016. Vol. 8, num. 48, p. 32797 – 32804. DOI : 10.1021/acsami.6b09671.

Unveiling iodine-based electrolytes chemistry in aqueous dye-sensitized solar cells

F. Bella; S. Galliano; M. Falco; G. Viscardi; C. Barolo et al. 

Chemical Science. 2016. Vol. 7, num. 8, p. 4880 – 4890. DOI : 10.1039/c6sc01145d.

Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature

S. Albrecht; M. Saliba; J. P. C. Baena; F. Lang; L. Kegelmann et al. 

Energy & Environmental Science. 2016. Vol. 9, num. 1, p. 81 – 88. DOI : 10.1039/c5ee02965a.

Unbroken Perovskite: Interplay of Morphology, Electro-optical Properties, and Ionic Movement

J-P. Correa-Baena; M. Anaya; G. Lozano; W. Tress; K. Domanski et al. 

Advanced Materials. 2016. Vol. 28, num. 25, p. 5031 – 5037. DOI : 10.1002/adma.201600624.

Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%

D. Bi; B. Xu; P. Gao; L. Sun; M. Graetzel et al. 

Nano Energy. 2016. Vol. 23, p. 138 – 144. DOI : 10.1016/j.nanoen.2016.03.020.

Polymer-based photocathodes with a solution-processable cuprous iodide anode layer and a polyethyleneimine protective coating

H. C. Rojas; S. Bellani; F. Fumagalli; G. Tullii; S. Leonardi et al. 

Energy & Environmental Science. 2016. Vol. 9, num. 12, p. 3710 – 3723. DOI : 10.1039/c6ee01655c.

Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells

B. Roose; J-P. C. Baena; K. C. Godel; M. Graetzel; A. Hagfeldt et al. 

Nano Energy. 2016. Vol. 30, p. 517 – 522. DOI : 10.1016/j.nanoen.2016.10.055.

Bipolar Membrane-Assisted Solar Water Splitting in Optimal pH

J. Luo; D. A. Vermaas; D. Bi; A. Hagfeldt; W. A. Smith et al. 

Advanced Energy Materials. 2016. Vol. 6, num. 13, p. 1600100. DOI : 10.1002/aenm.201600100.

Enhancing Efficiency of Perovskite Solar Cells via N-doped Graphene: Crystal Modification and Surface Passivation

M. Hadadian; J-P. Correa-Baena; E. K. Goharshadi; A. Ummadisingu; J-Y. Seo et al. 

Advanced Materials. 2016. Vol. 28, num. 39, p. 8681 – 8686. DOI : 10.1002/adma.201602785.

Molecular Origin and Electrochemical Influence of Capacitive Surface States on Iron Oxide Photoanodes

Y. Hu; F. Boudoire; I. Hermann-Geppert; P. Bogdanoff; G. Tsekouras et al. 

Journal Of Physical Chemistry C. 2016. Vol. 120, num. 6, p. 3250 – 3258. DOI : 10.1021/acs.jpcc.5b08013.

Molecular Design Principles for Near-Infrared Absorbing and Emitting Indolizine Dyes

A. J. Huckaba; A. Yella; L. E. Mcnamara; A. E. Steen; J. S. Murphy et al. 

Chemistry-A European Journal. 2016. Vol. 22, num. 43, p. 15536 – 15542. DOI : 10.1002/chem.201603165.

Molecular Engineering of Potent Sensitizers for Very Efficient Light Harvesting in Thin-Film Solid-State Dye-Sensitized Solar Cells

X. Zhang; Y. Xu; F. Giordano; M. Schreier; N. Pellet et al. 

Journal Of The American Chemical Society. 2016. Vol. 138, num. 34, p. 10742 – 10745. DOI : 10.1021/jacs.6b05281.

Thieno[3,4-b]pyrazine as an Electron Deficient pi-Bridge in D-A-pi-A DSCs

N. P. Liyanage; A. Yella; M. Nazeeniddin; M. Graetzel; J. H. Delcamp 

ACS Applied Materials & Interfaces. 2016. Vol. 8, num. 8, p. 5376 – 5384. DOI : 10.1021/acsami.5b12503.

A Novel Dopant-Free Triphenylamine Based Molecular “Butterfly” Hole-Transport Material for Highly Efficient and Stable Perovskite Solar Cells

F. Zhang; C. Yi; P. Wei; X. Bi; J. Luo et al. 

Advanced Energy Materials. 2016. Vol. 6, num. 14, p. 1600401. DOI : 10.1002/aenm.201600401.

Inverted solar cell and process for producing the same

M. K. Nazeeruddin; M. Graetzel; H. J. Bolink; O. Malinkiewicz; A. Soriano Portillo 

PL3044817; ES2907076; EP3044817; DK3044817; EP3044817; US10665800; JP6526013; CN105900255; JP2016532314; CN105900255; US2016226011; EP3044817; WO2015036905; EP2846371.

2016.

Vector Control in Developing Countries: Challenges and Solutions

C. S. Allardyce; P. J. Dyson; M. Gratzel 

Chimia. 2016. Vol. 70, num. 10, p. 709 – 714. DOI : 10.2533/chimia.2016.709.

Lead-Free MA(2)CuCl(x)Br(4-x), Hybrid Perovskites

D. Cortecchia; H. A. Dewi; J. Yin; A. Bruno; S. Chen et al. 

Inorganic Chemistry. 2016. Vol. 55, num. 3, p. 1044 – 1052. DOI : 10.1021/acs.inorgchem.5b01896.

Introducing rigid pi-conjugated peripheral substituents in phthalocyanines for DSSCs

L. Tejerina; E. Caballero; M. Victoria Martinez-Diaz; M. K. Nazeeruddin; M. Gratzel et al. 

Journal Of Porphyrins And Phthalocyanines. 2016. Vol. 20, num. 8-11, p. 1361 – 1367. DOI : 10.1142/S1088424616501121.

High Absorption Coefficient Cyclopentadithiophene Donor-Free Dyes for Liquid and Solid-State Dye-Sensitized Solar Cells

Y. Hu; A. Abate; Y. Cao; A. Ivaturi; S. M. Zakeeruddin et al. 

Journal of Physical Chemistry C. 2016. Vol. 120, num. 28, p. 15027 – 15034. DOI : 10.1021/acs.jpcc.6b03610.

Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells

T. J. Jacobsson; J-P. Correa-Baen; M. Pazoki; M. Saliba; K. Schenk et al. 

Energy & Environmental Science. 2016. Vol. 9, num. 5, p. 1706 – 1724. DOI : 10.1039/c6ee00030d.

Solar cell and process for producing the same

Y. Aswani; M. K. Nazeeruddin; M. Graetzel 

KR102258500; JP6616291; AU2014285760; CN105493213; US10332689; EP3017456; EP3017456; AU2014285760; JP2016530703; US2016141112; EP3017456; CN105493213; KR20160029790; WO2015001459; EP2822009.

2016.

Inverted Current-Voltage Hysteresis in Mixed Perovskite Solar Cells: Polarization, Energy Barriers, and Defect Recombination

W. Tress; J. P. C. Baena; M. Saliba; A. Abate; M. Graetzel 

Advanced Energy Materials. 2016. Vol. 6, num. 19, p. 1600396. DOI : 10.1002/aenm.201600396.

Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells

P. Gratia; G. Grancini; J-N. Audinot; X. Jeanbourquin; E. Mosconi et al. 

Journal Of The American Chemical Society. 2016. Vol. 138, num. 49, p. 15821 – 15824. DOI : 10.1021/jacs.6b10049.

Influence of the Adsorption of Phycocyanin on the Performance in DSS Cells: and Electrochemical and QCM Evaluation

P. Enciso; J-D. Decoppet; T. Moehl; M. Graetzel; M. Woerner et al. 

International Journal Of Electrochemical Science. 2016. Vol. 11, num. 5, p. 3604 – 3614. DOI : 10.20964/110443.

Copper Phenanthroline as a Fast and High-Performance Redox Mediator for Dye-Sensitized Solar Cells

M. Freitag; F. Giordano; W. Yang; M. Pazoki; Y. Hao et al. 

Journal Of Physical Chemistry C. 2016. Vol. 120, num. 18, p. 9595 – 9603. DOI : 10.1021/acs.jpcc.6b01658.

A New Design Paradigm for Smart Windows: Photocurable Polymers for Quasi-Solid Photoelectrochromic Devices with Excellent Long-Term Stability under Real Outdoor Operating Conditions

F. Bella; G. Leftheriotis; G. Griffini; G. Syrrokostas; S. Turri et al. 

Advanced Functional Materials. 2016. Vol. 26, num. 7, p. 1127 – 1137. DOI : 10.1002/adfm.201503762.

Beyond Vibrationally Mediated Electron Transfer: Coherent Phenomena Induced by Ultrafast Charge Separation

R. Huber; L. Dworak; J. E. Moser; M. Grätzel; J. Wachtveitl 

Journal of Physical Chemistry C. 2016. Vol. 120, p. 8534 – 8539. DOI : 10.1021/acs.jpcc.6b02012.

Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency

M. Saliba; T. Matsui; J-Y. Seo; K. Domanski; J-P. Correa-Baena et al. 

Energy & Environmental Science. 2016. Vol. 9, num. 6, p. 1989 – 1997. DOI : 10.1039/c5ee03874j.

Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells

S. Albrecht; M. Saliba; J-P. Correa-Baena; K. Jaeger; L. Korte et al. 

Journal Of Optics. 2016. Vol. 18, num. 6, p. 064012. DOI : 10.1088/2040-8978/18/6/064012.

A novel one-step synthesized and dopant-free hole transport material for efficient and stable perovskite solar cells

X. Zhao; F. Zhang; C. Yi; D. Bi; X. Bi et al. 

Journal of Materials Chemistry A. 2016. Vol. 4, num. 42, p. 16330 – 16334. DOI : 10.1039/c6ta05254a.

Impact of a Mesoporous Titania-Perovskite Interface on the Performance of Hybrid Organic-Inorganic Perovskite Solar Cells

M. Abdi-Jalebi; M. I. Dar; A. Sadhanala; S. P. Senanayak; F. Giordano et al. 

The Journal of Physical Chemistry Letters. 2016. Vol. 7, num. 16, p. 3264 – 3269. DOI : 10.1021/acs.jpclett.6b01617.

Growth Engineering of CH3NH3PbI3 Structures for High-Efficiency Solar Cells

M. I. Dar; M. Abdi-Jalebi; N. Arora; M. Graetzel; M. K. Nazeeruddin 

Advanced Energy Materials. 2016. Vol. 6, num. 2, p. 1501358. DOI : 10.1002/aenm.201501358.

Ultrafast charge separation dynamics in opaque, operational dye-sensitized solar cells revealed by femtosecond diffuse reflectance spectroscopy

E. Ghadiri; S. M. Zakeeruddin; A. Hagfeldt; M. Grätzel; J-E. Moser 

Scientific Reports. 2016. Vol. 6, p. 24465. DOI : 10.1038/srep24465.

Enhanced Efficiency and Stability of Perovskite Solar Cells Through Nd-Doping of Mesostructured TiO2

B. Roose; K. C. Godel; S. Pathak; A. Sadhanala; J. P. C. Baena et al. 

Advanced Energy Materials. 2016. Vol. 6, num. 2, p. 1501868. DOI : 10.1002/aenm.201501868.

A Computational and Experimental Study of Thieno[3,4-b]thiophene as a Proaromatic pi-Bridge in Dye-Sensitized Solar Cells

P. Brogdon; F. Giordano; G. A. Puneky; A. Dass; S. M. Zakeeruddin et al. 

Chemistry-A European Journal. 2016. Vol. 22, num. 2, p. 694 – 703. DOI : 10.1002/chem.201503187.

Optical analysis of CH3NH3SnxPb1-I-x(3) absorbers: a roadmap for perovskite-on-perovskite tandem solar cells

M. Anaya; J. P. Correa-Baena; G. Lozano; M. Saliba; P. Anguita et al. 

Journal of Materials Chemistry A. 2016. Vol. 4, num. 29, p. 11214 – 11221. DOI : 10.1039/c6ta04840d.

Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells

X. Zhang; M. Gratzel; J. Hua 

Frontiers Of Optoelectronics. 2016. Vol. 9, num. 1, p. 3 – 37. DOI : 10.1007/s12200-016-0563-x.

Synthesis and optoelectronic properties of chemically modified bi-fluorenylidenes

M. Wielopolski; M. Marszalek; F. G. Brunetti; D. Joly; J. Calbo et al. 

Journal of Materials Chemistry C. 2016. Vol. 4, p. 3798 – 3808. DOI : 10.1039/C5TC03501E.

Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide

E. H. Anaraki; A. Kermanpur; L. Steier; K. Domanski; T. Matsui et al. 

Energy & Environmental Science. 2016. Vol. 9, num. 10, p. 3128 – 3134. DOI : 10.1039/c6ee02390h.

Preface to the special issue on Mesoscopic Solar Cells

M. Gratzel 

Frontiers Of Optoelectronics. 2016. Vol. 9, num. 1, p. 1 – 2. DOI : 10.1007/s12200-016-0605-4.

Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers

F. Bella; G. Griffini; J-P. Correa-Baena; G. Saracco; M. Gratzel et al. 

Science. 2016. Vol. 354, num. 6309, p. 203 – 206. DOI : 10.1126/science.aah4046.

High Solar Flux Concentration Water Splitting with Hematite ( alpha-Fe2O3) Photoanodes

G. Segev; H. Dotan; K. D. Malviya; A. Kay; M. T. Mayer et al. 

Advanced Energy Materials. 2016. Vol. 6, num. 1, p. 1500817. DOI : 10.1002/aenm.201500817.

Hole-Transport Materials for Perovskite Solar Cells

L. Calio; S. Kazim; M. Graetzel; S. Ahmad 

Angewandte Chemie International Edition. 2016. Vol. 55, num. 47, p. 14522 – 14545. DOI : 10.1002/anie.201601757.

Solution-Processed Tin-Based Perovskite for Near-Infrared Lasing

G. Xing; M. H. Kumar; W. K. Chong; X. Liu; Y. Cai et al. 

Advanced Materials. 2016. Vol. 28, num. 37, p. 8191 – 8196. DOI : 10.1002/adma.201601418.

Functional hole transport materials for optoelectronic and/or electrochemical devices

M. Saliba; M. K. Nazeeruddin; M. Graetzel; K-h. Dahmen; G. Pozzi et al. 

US10727414; US2018190911; WO2016207775; EP3109912.

2016.

Band Alignment Engineering at Cu2O/ZnO Heterointerfaces

S. Siol; J. C. Hellmann; S. D. Tilley; M. Graetzel; J. Morasch et al. 

ACS Applied Materials & Interfaces. 2016. Vol. 8, num. 33, p. 21824 – 21831. DOI : 10.1021/acsami.6b07325.

Synthesis, characterization and ab initio investigation of a panchromatic ullazine–porphyrin photosensitizer for dye-sensitized solar cells

S. Mathew; N. A. Astani; B. F. E. Curchod; J. H. Delcamp; M. Marszalek et al. 

Journal of Materials Chemistry A. 2016. Vol. 4, num. 6, p. 2332 – 2339. DOI : 10.1039/C5TA08728G.

Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells

S. Meloni; T. Moehl; W. Tress; M. Franckevičius; M. Saliba et al. 

Nature Communications. 2016. Vol. 7, p. 10334. DOI : 10.1038/ncomms10334.

Identifying Fundamental Limitations in Halide Perovskite Solar Cells

W. L. Leong; Z-E. Ooi; D. Sabba; C. Yi; S. M. Zakeeruddin et al. 

Advanced Materials. 2016. Vol. 28, num. 12, p. 2439 – 2445. DOI : 10.1002/adma.201505480.

Mesoscopic framework for organic-inorganic perovskite based photoelectric conversion device and method for manufacturing the same

M. Wang; K. Cao; J. Cui; Z. Zuo; Y. Shen et al. 

EP3172776; EP3172776; US10515767; US2017213651; EP3172776; CN104124291; WO2016012987; CN104124291.

2016.

The electronic, chemical and electrocatalytic processes and intermediates on iron oxide surfaces during photoelectrochemical water splitting

A. Braun; Y. Hu; F. Boudoire; D. K. Bora; D. D. Sarma et al. 

Catalysis Today. 2016. Vol. 260, p. 72 – 81. DOI : 10.1016/j.cattod.2015.07.024.

Hole transporting and light absorbing material for solid state solar cells

S. M. Zakeeruddin; M. Graetzel; M. K. Nazeeruddin; P. Qin; A. Mishra et al. 

JP2017505995; EP3100313; US2016351342; CN106062984; KR20160114611; WO2015114521; EP2903047.

2016.

Hybrid organic-inorganic H-2-evolving photocathodes: understanding the route towards high performance organic photoelectrochemical water splitting

F. Fumagalli; S. Bellani; M. Schreier; S. Leonardi; H. C. Rojas et al. 

Journal of Materials Chemistry A. 2016. Vol. 4, num. 6, p. 2178 – 2187. DOI : 10.1039/c5ta09330a.

Dye-sensitized solar cells with inkjet-printed dyes

S. G. Hashmi; M. Ozkan; J. Halme; S. M. Zakeeruddin; J. Paltakari et al. 

Energy & Environmental Science. 2016. Vol. 9, num. 7, p. 2453 – 2462. DOI : 10.1039/c6ee00826g.

Porphyrin based sensitizer for dye-sensitized solar cell

C. Yi; F. Giordano; S. M. Zakeeruddin; M. Graetzel 

EP3080206; EP3080206; JP6510527; CN105980484; US9812658; JP2017502004; US2016308150; EP3080206; CN105980484; KR20160098409; WO2015087210; EP2883915.

2016.

A low-cost spiro[fluorene-9,9 ‘-xanthene]-based hole transport material for highly efficient solid-state dye-sensitized solar cells and perovskite solar cells

B. Xu; D. Bi; Y. Hua; P. Liu; M. Cheng et al. 

Energy & Environmental Science. 2016. Vol. 9, num. 3, p. 873 – 877. DOI : 10.1039/c6ee00056h.

Covalent Immobilization of a Molecular Catalyst on Cu2O Photocathodes for CO2 Reduction

M. Schreier; J. Luo; P. Gao; T. Moehl; M. T. Mayer et al. 

Journal Of The American Chemical Society. 2016. Vol. 138, num. 6, p. 1938 – 1946. DOI : 10.1021/jacs.5b12157.

Ionic Liquid Control Crystal Growth to Enhance Planar Perovskite Solar Cells Efficiency

J. Seo; T. Matsui; J. Luo; J-P. Correa-Baena; F. Giordano et al. 

Advanced Energy Materials. 2016. Vol. 6, num. 20, p. 1600767. DOI : 10.1002/aenm.201600767.

Towards stable and commercially available perovskite solar cells

N-G. Park; M. Gratzel; T. Miyasaka; K. Zhu; K. Emery 

Nature Energy. 2016. Vol. 1, p. 16152. DOI : 10.1038/Nenergy.2016.152.

Efficient Blue-Colored Solid-State Dye-Sensitized Solar Cells: Enhanced Charge Collection by Using an in Situ Photoelectrochemically Generated Conducting Polymer Hole Conductor

J. Zhang; N. Vlachopoulos; Y. Hao; T. W. Holcombe; G. Boschloo et al. 

Chemphyschem. 2016. Vol. 17, num. 10, p. 1441 – 1445. DOI : 10.1002/cphc.201600064.

Fabrication and Characterization of Functional ALD Metal Oxide Thin Films for Solar Applications

L. Steier / M. Graetzel; K. Sivula (Dir.)  

Lausanne, EPFL, 2016. 

Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance

M. Saliba; T. Matsui; K. Domanski; J-Y. Seo; A. Ummadisingu et al. 

Science. 2016. Vol. 354, num. 6309, p. 206 – 209. DOI : 10.1126/science.aah5557.

Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites

M. I. Dar; G. Jacopin; S. Meloni; A. Mattoni; N. Arora et al. 

Science Advances. 2016. Vol. 2, num. 10, p. e1601156 – e1601156. DOI : 10.1126/sciadv.1601156.

Perovskite Photovoltaics with Outstanding Performance Produced by Chemical Conversion of Bilayer Mesostructured Lead Halide/TiO2 Films

C. Yi; X. Li; J. Luo; S. M. Zakeeruddin; M. Graetzel 

Advanced Materials. 2016. Vol. 28, num. 15, p. 2964 – 2970. DOI : 10.1002/adma.201506049.

Highly Efficient and Stable Perovskite Solar Cells based on a Low-Cost Carbon Cloth

S. Gholipour; J-P. Correa-Baena; K. Domanski; T. Matsui; L. Steier et al. 

Advanced Energy Materials. 2016. Vol. 6, num. 20, p. 1601116. DOI : 10.1002/aenm.201601116.

Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting

J. Luo; L. Steier; M-K. Son; M. Schreier; M. T. Mayer et al. 

Nano Letters. 2016. Vol. 16, num. 3, p. 1848 – 1857. DOI : 10.1021/acs.nanolett.5b04929.

Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI2-CH3NH3I-H2O System

Z. Song; A. Abate; S. C. Watthage; G. K. Liyanage; A. B. Phillips et al. 

Advanced Energy Materials. 2016. Vol. 6, num. 19, p. 1600846. DOI : 10.1002/aenm.201600846.

2015

Direct light-induced polymerization of cobalt-based redox shuttles: an ultrafast way towards stable dye-sensitized solar cells

F. Bella; N. Vlachopoulos; K. Nonomura; S. M. Zakeeruddin; M. Graetzel et al. 

Chemical Communications (ChemComm). 2015. Vol. 51, num. 91, p. 16308 – 16311. DOI : 10.1039/c5cc05533d.

Solution Transformation of Cu2O into CuInS2 for Solar Water Splitting

J. Luo; S. D. Tilley; L. Steier; M. Schreier; M. T. Mayer et al. 

Nano Letters. 2015. Vol. 15, num. 2, p. 1395 – 1402. DOI : 10.1021/nl504746b.

Rate Law Analysis of Water Oxidation on a Hematite Surface

F. Le Formal; E. Pastor; S. D. Tilley; C. A. Mesa; S. R. Pendlebury et al. 

Journal Of The American Chemical Society. 2015. Vol. 137, num. 20, p. 6629 – 6637. DOI : 10.1021/jacs.5b02576.

Nanocolumnar 1-dimensional TiO2 photoanodes deposited by PVD-OAD for perovskite solar cell fabrication

F. Javier Ramos; M. Oliva-Ramirez; M. K. Nazeeruddin; M. Graetzel; A. R. Gonzalez-Elipe et al. 

Journal of Materials Chemistry A. 2015. Vol. 3, num. 25, p. 13291 – 13298. DOI : 10.1039/c5ta02238j.

High efficiency stable inverted perovskite solar cells without current hysteresis

C-G. Wu; C-H. Chiang; Z-L. Tseng; M. K. Nazeeruddin; A. Hagfeldt et al. 

Energy & Environmental Science. 2015. Vol. 8, num. 9, p. 2725 – 2733. DOI : 10.1039/c5ee00645g.

Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells

K. Rakstys; A. Abate; M. I. Dar; P. Gao; V. Jankauskas et al. 

Journal Of The American Chemical Society. 2015. Vol. 137, num. 51, p. 16172 – 16178. DOI : 10.1021/jacs.5b11076.

Efficient and selective carbon dioxide reduction on low cost protected Cu2O photocathodes using a molecular catalyst

M. Schreier; P. Gao; M. T. Mayer; J. Luo; T. Moehl et al. 

Energy & Environmental Science. 2015. Vol. 8, num. 3, p. 855 – 861. DOI : 10.1039/c4ee03454f.

Nanocomposite Semi-Solid Redox Ionic Liquid Electrolytes with Enhanced Charge-Transport Capabilities for Dye-Sensitized Solar Cells

I. A. Rutkowska; M. Marszalek; J. Orlowska; W. Ozimek; S. M. Zakeeruddin et al. 

Chemsuschem. 2015. Vol. 8, num. 15, p. 2560 – 2568. DOI : 10.1002/cssc.201403475.

Highly Spin-Polarized Carrier Dynamics and Ultra large Photoinduced Magnetization in CH(3)NH(3)Pbl(3) Perovskite Thin Films

D. Giovanni; H. Ma; J. Chua; M. Graetzel; R. Ramesh et al. 

Nano Letters. 2015. Vol. 15, num. 3, p. 1553 – 1558. DOI : 10.1021/nl5039314.

Outdoor Performance and Stability under Elevated Temperatures and Long-Term Light Soaking of Triple-Layer Mesoporous Perovskite Photovoltaics

X. Li; M. Tschumi; H. Han; S. S. Babkair; R. A. Alzubaydi et al. 

Energy Technology. 2015. Vol. 3, num. 6, p. 551 – 555. DOI : 10.1002/ente.201500045.

Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics

M. Schreier; L. Curvat; F. Giordano; L. Steier; A. Abate et al. 

Nature Communications. 2015. Vol. 6, p. 7326. DOI : 10.1038/ncomms8326.

A dopant-free spirobi[cyclopenta[2,1-b:3,4-b ‘]dithiophene] based hole-transport material for efficient perovskite solar cells

M. Franckevicius; A. Mishra; F. Kreuzer; J. Luo; S. M. Zakeeruddin et al. 

Materials Horizons. 2015. Vol. 2, num. 6, p. 613 – 618. DOI : 10.1039/c5mh00154d.

Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells

A. Abate; S. Paek; F. Giordano; J-P. Correa-Baena; M. Saliba et al. 

Energy & Environmental Science. 2015. Vol. 8, num. 10, p. 2946 – 2953. DOI : 10.1039/c5ee02014j.

High-efficiency and stable quasi-solid-state dye-sensitized solar cell based on low molecular mass organogelator electrolyte

L. Tao; Z. Huo; Y. Ding; Y. Li; S. Dai et al. 

Journal of Materials Chemistry A. 2015. Vol. 3, num. 5, p. 2344 – 2352. DOI : 10.1039/c4ta06188h.

Low-temperature, solution-deposited metal chalcogenide films as highly efficient counter electrodes for sensitized solar cells

F. Liu; J. Zhu; L. Hu; B. Zhang; J. Yao et al. 

Journal of Materials Chemistry A. 2015. Vol. 3, num. 12, p. 6315 – 6323. DOI : 10.1039/c5ta00028a.

A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells

S. Kazim; F. J. Ramos; P. Gao; M. K. Nazeeruddin; M. Graetzel et al. 

Energy & Environmental Science. 2015. Vol. 8, num. 6, p. 1816 – 1823. DOI : 10.1039/c5ee00599j.

Synthesis of Amphiphilic Ru-II Heteroleptic Complexes Based on Benzo[1,2-b:4,5-b]dithiophene: Relevance of the Half-Sandwich Complex Intermediate and Solvent Compatibility

M. Urbani; M. Medel; S. A. Kumar; M. Ince; A. N. Bhaskarwar et al. 

Chemistry-A European Journal. 2015. Vol. 21, num. 45, p. 16252 – 16265. DOI : 10.1002/chem.201502417.

Loading of mesoporous titania films by CH3NH3PbI3 perovskite, single step vs. sequential deposition

N. Yantara; D. Sabba; F. Yanan; J. M. Kadro; T. Moehl et al. 

Chemical Communications (ChemComm). 2015. Vol. 51, num. 22, p. 4603 – 4606. DOI : 10.1039/c4cc09556a.

High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors

C. Roldan-Carmona; P. Gratia; I. Zimmermann; G. Grancini; P. Gao et al. 

Energy & Environmental Science. 2015. Vol. 8, num. 12, p. 3550 – 3556. DOI : 10.1039/c5ee02555a.

A Power Pack Based on Organometallic Perovskite Solar Cell and Supercapacitor

X. Xu; S. Li; H. Zhang; Y. Shen; S. M. Zakeeruddin et al. 

Acs Nano. 2015. Vol. 9, num. 2, p. 1782 – 1787. DOI : 10.1021/nn506651m.

A Smooth CH3NH3PbI3 Film via a New Approach for Forming the PbI2 Nanostructure Together with Strategically High CH3NH3I Concentration for High Efficient Planar-Heterojunction Solar Cells

H. Zhang; J. Mao; H. He; D. Zhang; H. L. Zhu et al. 

Advanced Energy Materials. 2015. Vol. 5, num. 23, p. 1501354. DOI : 10.1002/aenm.201501354.

A Redox-Flow Electrochromic Window

J. R. Jennings; W. Y. Lim; S. M. Zakeeruddin; M. Graetzel; Q. Wang 

ACS Applied Materials & Interfaces. 2015. Vol. 7, num. 4, p. 2827 – 2832. DOI : 10.1021/am508086u.

Cationic Iridium(III) Complexes with Two Carbene-Based Cyclometalating Ligands: Cis Versus Trans Isomers

F. Monti; M. G. I. La Placa; N. Armaroli; R. Scopelliti; M. Graetzel et al. 

Inorganic Chemistry. 2015. Vol. 54, num. 6, p. 3031 – 3042. DOI : 10.1021/acs.inorgchem.5b00148.

A Methoxydiphenylamine-Substituted Carbazole Twin Derivative: An Efficient Hole-Transporting Material for Perovskite Solar Cells

P. Gratia; A. Magomedov; T. Malinauskas; M. Daskeviciene; A. Abate et al. 

Angewandte Chemie International Edition. 2015. Vol. 54, num. 39, p. 11409 – 11413. DOI : 10.1002/anie.201504666.

Enhancing the Stability of Porphyrin Dye-Sensitized Solar Cells by Manipulation of Electrolyte Additives

G. P. S. Lau; H. N. Tsao; C. Yi; S. M. Zakeeruddin; M. Graetzel et al. 

Chemsuschem. 2015. Vol. 8, num. 2, p. 255 – 259. DOI : 10.1002/cssc.201403225.

Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells

T. Kinoshita; K. Nonomura; N. J. Jeon; F. Giordano; A. Abate et al. 

Nature Communications. 2015. Vol. 6, p. 8834. DOI : 10.1038/ncomms9834.