2025
Designing multi-metal-site nanosheet catalysts for CO2 photoreduction to ethylene
Nature communications. 2025. Vol. 16, num. 1. DOI : 10.1038/s41467-025-61850-7.Single junction CsPbBr3 solar cell coupled with electrolyzer for solar water splitting
Nature communications. 2025. Vol. 16, num. 1. DOI : 10.1038/s41467-025-58980-3.Electrolyte effects and stability of Zn/Li dual-ion batteries with water-in-salt electrolytes
Journal of Power Sources. 2025. Vol. 655, p. 237983. DOI : 10.1016/j.jpowsour.2025.237983.Reply to: On anisotropy in cubic Cu2O photoelectrodes
Nature. 2025. Vol. 646, num. 8087, p. E26 – E27. DOI : 10.1038/s41586-025-09629-0.Observation of transition from rate law to Butler-Volmer controlled water oxidation kinetics on Hematite Photoanodes
2025
Scaling Low Temperature CO2-to-Syngas Electroreduction: Insights into Engineering Bottlenecks and Mitigation Strategies
2025
Electroactive naphthalimide and naphthalenediimide interlayers for inverted perovskite solar cells
Journal of Materials Chemistry C. 2025. Vol. 13, num. 39, p. 20040 – 20048. DOI : 10.1039/d5tc01418b.Molecular-level understandings and device strategies for FAPbI3-based perovskite solar cells
Chemical Society Reviews. 2025. DOI : 10.1039/d5cs00474h.In-situ boundary bridging unlocks multi-grain-domain carrier diffusion in polycrystalline metal halide perovskites
Nature Communications. 2025. Vol. 16, num. 1. DOI : 10.1038/s41467-025-63777-5.Synergistic Electron-Deficient Surface Engineering: A Key Factor in Dictating Electron Carrier Extraction for Perovskite Photovoltaics
Journal of the American Chemical Society. 2025. DOI : 10.1021/jacs.5c07357.On the Accessibility of Higher-n Phases in Formamidinium-based Ruddlesden-popper and Dion-jacobson Layered Hybrid Perovskites
ADVANCED ELECTRONIC MATERIALS. 2025. DOI : 10.1002/aelm.202500164.Dopamine Dopes the Performance of Perovskite Solar Cells
Advanced Materials. 2025. DOI : 10.1002/adma.202501075.Silver Bismuth Iodides for Photovoltaic Applications: Insights from Ab Initio Calculations and Experimental Analysis
ACS Applied Energy Materials. 2025. DOI : 10.1021/acsaem.5c00796.Polyaniline-supported copper nanocrystals for electrochemical CO2 reduction to methane
Chem Catalysis. 2025. p. 101389. DOI : 10.1016/j.checat.2025.101389.Realizing Uniform Defect Passivation via Self‐Polymerization of Benzenesulfonate Molecules in Perovskite Photovoltaics
Advanced Materials. 2025. DOI : 10.1002/adma.202503435.Electrochemical co-upgrading CO2 and glycerol for selective formate production with 190% overall Faradaic efficiency
Nano Research. 2025. Vol. 18, num. 5, p. 94907399. DOI : 10.26599/NR.2025.94907399.Enhancing Indoor Photovoltaic Efficiency to 37.6% Through Triple Passivation Reassembly and n-Type to p-Type Modulation in Wide Bandgap Perovskites
Advanced Functional Materials. 2025. DOI : 10.1002/adfm.202502152.Strain-induced rubidium incorporation into wide-bandgap perovskites reduces photovoltage loss
Science. 2025. Vol. 388, num. 6742, p. 88 – 95. DOI : 10.1126/science.adt3417.Effect of imidazole-based additives on the voltage of dye sensitized solar cells with Cu(II/I) redox mediators
Electrochimica Acta. 2025. Vol. 517, p. 145758. DOI : 10.1016/j.electacta.2025.145758.Templating the crystallization of perovskite films for high PV performance.
2025. 12 International Conference on Hybrid and Organic Photovoltaics, Roma, Italy, 2025-05-12 – 2025-05-14. DOI : 10.29363/nanoge.hopv.2025.207.Computational Insights Into Organic Halide Perovskite Solar Devices Incorporating Electroactive Interlayers
2025. 12 International Conference on Hybrid and Organic Photovoltaics, Roma, Italy, 2025-05-12 – 2025-05-14. DOI : 10.29363/nanoge.hopv.2025.178.Cuprous oxide-Shewanella mediated photolytic hydrogen evolution
International Journal of Hydrogen Energy. 2025. Vol. 101, p. 731 – 740. DOI : 10.1016/j.ijhydene.2024.12.407.Aryl‐Acetylen‐Schichthybrid‐Perowskite in der Photovoltaik
Angewandte Chemie. 2025. Vol. 137, num. 9. DOI : 10.1002/ange.202417432.Aryl-Acetylene Layered Hybrid Perovskites in Photovoltaics
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION. 2025. DOI : 10.1002/anie.202417432.De-doping engineering for efficient and heat-stable perovskite solar cells
Joule. 2025. Vol. 9, num. 1, p. 101779. DOI : 10.1016/j.joule.2024.10.011.Unraveling the Role of Electron-Withdrawing Molecules for Highly Efficient and Stable Perovskite Photovoltaics
Angewandte Chemie (International ed. in English). 2025. Vol. 64, num. 2. DOI : 10.1002/anie.202414128.All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites
NATURE MATERIALS. 2025. DOI : 10.1038/s41563-024-02073-x.Suppressing wide-angle light loss and non-radiative recombination for efficient perovskite solar cells
Nature Photonics. 2025. DOI : 10.1038/s41566-024-01570-4.Self-assembled bilayer for perovskite solar cells with improved tolerance against thermal stresses
Nature Energy. 2025. p. 2191. DOI : 10.1038/s41560-024-01689-2.Unlocking high-performance photocapacitors for edge computing in low-light environments
Energy and Environmental Science. 2025. DOI : 10.1039/d5ee01052g.Spiro-Phenothiazine Hole-Transporting Materials: Unlocking Stability and Scalability in Perovskite Solar Cells
Advanced materials (Deerfield Beach, Fla.). 2025. DOI : 10.1002/adma.202505475.Enhancing the Functionality of Layered Hybrid Perovskites
Lausanne, EPFL, 2025.Solar photons beyond the band gap wavelengths: their effect on solution-processed solar cells
Materials Horizons. 2025. DOI : 10.1039/d5mh00186b.Conformationally Stable and Sterically Hindered Bicyclo[1.1.1]pentane-1,3-diammonium Modification of FAPbI3 Enhances the Performance of Perovskite Solar Cells
Angewandte Chemie (International ed. in English). 2025. DOI : 10.1002/anie.202421535. Low-temperature thermite reaction to form oxygen vacancies in metal-oxide semiconductors: A case study of photoelectrochemical cells
Chem. 2025. p. 102388. DOI : 10.1016/j.chempr.2024.12.006.TEMPO bulk passivation boosts the performance and operational stability of rapid-annealed FAPI perovskite solar cells
Joule. 2025. p. 101972. DOI : 10.1016/j.joule.2025.101972.2024
Upgrading Spiro-OMeTAD with β-Chloroethylcarbazole to Improve the Stability of Perovskite Solar Cells
ACS ENERGY LETTERS. 2024. num. 1, p. 69 – 77. DOI : 10.1021/acsenergylett.4c02507.Spatial Conformation Engineering of Aromatic Ketones for Highly Efficient and Stable Perovskite Solar Cells
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. 2024. Vol. 46, num. 50, p. 384833 – 34841. DOI : 10.1021/jacs.4c13866.Stabilization of highly efficient perovskite solar cells with a tailored supramolecular interface
Nature communications. 2024. Vol. 15, num. 1. DOI : 10.1038/s41467-024-51550-z.Advanced High-Throughput Rational Design of Porphyrin-Sensitized Solar Cells Using Interpretable Machine Learning
Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2024. Vol. 11, num. 43. DOI : 10.1002/advs.202407235.High-efficiency and thermally stable FACsPbI3 perovskite photovoltaics
Nature. 2024. Vol. 635, num. 8037, p. 82 – 88. DOI : 10.1038/s41586-024-08103-7. Graphene-Templated Achiral Hybrid Perovskite for Circularly Polarized Light Sensing
ACS applied materials & interfaces. 2024. Vol. 16, num. 39, p. 52789 – 52798. DOI : 10.1021/acsami.4c10289.Tailored Supramolecular Interactions in Host–Guest Complexation for Efficient and Stable Perovskite Solar Cells and Modules
Angewandte Chemie (International ed. in English). 2024. Vol. 63, num. 40. DOI : 10.1002/anie.202410454.Improving the operational stability of perovskite solar cells with cesium-doped graphene oxide interlayer
Journal Of Energy Chemistry. 2024. Vol. 96, p. 483 – 490. DOI : 10.1016/j.jechem.2024.04.037.Supramolecular Modulation for Hybrid Perovskite Photovoltaics
2024. MATSUS – Materials for Sustainable Development Fall 2024 Conference, Lausanne, Switzerland, 2024-11-12 – 2024-11-15. DOI : 10.29363/nanoge.matsusfall.2024.216.Boosting Interfacial Electron Transfer and CO2 Enrichment on ZIF-8/ZnTe for Selective Photoelectrochemical Reduction of CO2 to CO
ACS applied materials & interfaces. 2024. Vol. 16, num. 28, p. 36462 – 36470. DOI : 10.1021/acsami.4c06921. A crystal capping layer for formation of black-phase FAPbI3 perovskite in humid air
Science. 2024. Vol. 385, num. 6705, p. 161 – 167. DOI : 10.1126/science.adn9646. Triarylamine Trisamide Interfacial Modulation for Perovskite Photovoltaics
Advanced Materials Interfaces. 2024. DOI : 10.1002/admi.202301053.Carbazole Treated Waterproof Perovskite Films with Improved Solar Cell Performance
Advanced Energy Materials. 2024. DOI : 10.1002/aenm.202401965.Helical interfacial modulation for perovskite photovoltaics
Nanoscale Advances. 2024. Vol. 6, num. 12, p. 3029 – 3033. DOI : 10.1039/d4na00027g.[Correction] High carrier mobility along the [111] orientation in Cu2O photoelectrodes (vol 628, pg 765, 2024)
NATURE. 2024. Vol. 629, num. 8013. DOI : 10.1038/s41586-024-07489-8.Phase-stable indium sulfide achieves an energy conversion efficiency of 14.3% for solar-assisted carbon dioxide reduction to formate
Joule. 2024. Vol. 8, num. 5. DOI : 10.1016/j.joule.2024.03.008.Mixed ionic-electronic conduction in Ruddlesden-Popper and Dion-Jacobson layered hybrid perovskites with aromatic organic spacers
Journal of Materials Chemistry C. 2024. DOI : 10.1039/d4tc01010h.High carrier mobility along the [111] orientation in Cu2O photoelectrodes
Nature. 2024. Vol. 628, num. 8009. DOI : 10.1038/s41586-024-07273-8.Durable Perovskite Solar Cells with 24.5% Average Efficiency: The Role of Rigid Conjugated Core in Molecular Semiconductors
Advanced Materials. 2024. DOI : 10.1002/adma.202403403.Methylammonium Nitrate-Mediated Crystal Growth and Defect Passivation in Lead Halide Perovskite Solar Cells
Acs Energy Letters. 2024. DOI : 10.1021/acsenergylett.4c00154.Buried Interface Engineering Enables Efficient and 1,960‐hour Isos‐L‐2i Stable Inverted Perovskite Solar Cells
Advanced Materials. 2024. Vol. 36, num. 13, p. 2303869. DOI : 10.1002/adma.202303869.High-Performance Perovskite Solar Cells with Zwitterion-Capped-ZnO Quantum Dots as Electron Transport Layer and NH4X (X = F, Cl, Br) Assisted Interfacial Engineering
Energy & Environmental Materials. 2024. p. e12720. DOI : 10.1002/eem2.12720.Modulation of Ionically Generated Space Charge Effects at Hybrid Perovskite and Oxide Interfaces via Surface Modification
Advanced Materials Interfaces. 2024. DOI : 10.1002/admi.202300874.Infrared-reflective ultrathin-metal-film-based transparent electrode with ultralow optical loss for high efficiency in solar cells
Scientific Reports. 2024. Vol. 14, num. 1, p. 548. DOI : 10.1038/s41598-023-50988-3.Photo-doping of spiro-OMeTAD for highly stable and efficient perovskite solar cells
Joule. 2024. Vol. 8, num. 6, p. 1707 – 1722. DOI : 10.1016/j.joule.2024.03.012.Formamidinium Incorporates into Rb-based Non-Perovskite Phases in Solar Cell Formulations
Angewandte Chemie International Edition. 2024. DOI : 10.1002/anie.202416938.Surface and Electrolyte Engineering on Semiconductor Electrodes for solar-assisted CO2 Reduction
Lausanne, EPFL, 2024.Research data supporting “High carrier mobility along the [111] orientation in Cu2O photoelectrodes”
2024.2023
Molecular engineering of low-cost, efficient, and stable photosensitizers for dye-sensitized solar cells
Chem. 2023. Vol. 9, num. 12. DOI : 10.1016/j.chempr.2023.08.013.Efficient Cu2O Photocathodes for Aqueous Photoelectrochemical CO2 Reduction to Formate and Syngas
Journal Of The American Chemical Society. 2023. Vol. 145, num. 51, p. 27939 – 27949. DOI : 10.1021/jacs.3c06146.Conference on Artificial Photosynthesis and Green Catalysis
Chimia. 2023. Vol. 77, num. 12, p. 881 – 882. DOI : 10.2533/chimia.2023.881.Double Layer Composite Electrode Strategy for Efficient Perovskite Solar Cells with Excellent Reverse-Bias Stability
Nano-Micro Letters. 2023. Vol. 15, num. 1, p. 12. DOI : 10.1007/s40820-022-00985-4.Double Layer Composite Electrode Strategy for Efficient Perovskite Solar Cells with Excellent Reverse-Bias Stability (vol 15, 12, 2022)
Nano-Micro Letters. 2023. Vol. 15, num. 1, p. 43. DOI : 10.1007/s40820-023-01012-w.Understanding and decoupling the role of wavelength and defects in light-induced degradation of metal-halide perovskites
Energy & Environmental Science. 2023. Vol. 17, num. 1, p. 284 – 295. DOI : 10.1039/d3ee03511e.A critical perspective for emerging ultra-thin solar cells with ultra-high power-per-weight outputs
Applied Physics Reviews. 2023. Vol. 10, num. 4, p. 041303. DOI : 10.1063/5.0169185.Interfacial Modulation through Mixed-Dimensional Heterostructures for Efficient and Hole Conductor-Free Perovskite Solar Cells
Advanced Functional Materials. 2023. DOI : 10.1002/adfm.202309789.High-Work-Function 2D Perovskites as Passivation Agents in Perovskite Solar Cells
Acs Energy Letters. 2023. Vol. 8, num. 9, p. 3955 – 3961. DOI : 10.1021/acsenergylett.3c01326.Tautomeric mixture coordination enables efficient lead-free perovskite LEDs
Nature. 2023. Vol. 622, p. 493 – 498. DOI : 10.1038/s41586-023-06514-6.Champion Device Architectures for Low-Cost and Stable Single-Junction Perovskite Solar Cells
Acs Materials Letters. 2023. DOI : 10.1021/acsmaterialslett.3c00337.Mitigating the Heterointerface Driven Instability in Perovskite Photovoltaics
Acs Energy Letters. 2023. Vol. 8, num. 8, p. 3604 – 3613. DOI : 10.1021/acsenergylett.3c01029.Tailoring passivators for highly efficient and stable perovskite solar cells
Nature Reviews Chemistry. 2023. DOI : 10.1038/s41570-023-00510-0.Updates on Hydrogen Value Chain: A Strategic Roadmap
Global Challenges. 2023. DOI : 10.1002/gch2.202300073.2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells
Nature Energy. 2023. DOI : 10.1038/s41560-023-01295-8.Ion-Dipole Interaction Enabling Highly Efficient CsPbI3 Perovskite Indoor Photovoltaics
Advanced Materials. 2023. Vol. 35, num. 31, p. 2210106. DOI : 10.1002/adma.202210106.Nanocrystalline Flash Annealed Nickel Oxide for Large Area Perovskite Solar Cells
Advanced Science. 2023. DOI : 10.1002/advs.202302549.Stabilization of FAPbI(3) with Multifunctional Alkali-Functionalized Polymer
Advanced Materials. 2023. DOI : 10.1002/adma.202211619.Lead immobilization for environmentally sustainable perovskite solar cells
Nature. 2023. Vol. 617, num. 7962, p. 687 – 695. DOI : 10.1038/s41586-023-05938-4.Molecularly Tailored Surface Defect Modifier for Efficient and Stable Perovskite Solar Cells
Advanced Functional Materials. 2023. DOI : 10.1002/adfm.202302404.Surface Passivation of FAPbI3-Rich Perovskite with Cesium Iodide Outperforms Bulk Incorporation
Acs Energy Letters. 2023. Vol. 8, num. 5, p. 2456 – 2462. DOI : 10.1021/acsenergylett.3c00609.Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells
Nature Energy. 2023. DOI : 10.1038/s41560-023-01249-0.CsPbBr3 Quantum Dots-Sensitized Mesoporous TiO2 Electron Transport Layers for High-Efficiency Perovskite Solar Cells
Solar Rrl. 2023. DOI : 10.1002/solr.202300072.Electrochemical synthesis of propylene from carbon dioxide on copper nanocrystals
Nature Chemistry. 2023. DOI : 10.1038/s41557-023-01163-8.Suppressed phase segregation for triple-junction perovskite solar cells
Nature. 2023. Vol. 618, p. 74 – 79. DOI : 10.1038/s41586-023-06006-7.Photoelectrochemical CO2 Reduction at a Direct CuInGaS2/Electrolyte Junction
Acs Energy Letters. 2023. DOI : 10.1021/acsenergylett.3c00022.Exfoliated 2D Layered and Nonlayered Metal Phosphorous Trichalcogenides Nanosheets as Promising Electrocatalysts for CO2 Reduction
Angewandte Chemie International Edition. 2023. Vol. 62, num. 17, p. e202217253. DOI : 10.1002/anie.202217253.Combined Vacuum Evaporation and Solution Process for High-Efficiency Large-Area Perovskite Solar Cells with Exceptional Reproducibility
Advanced Materials. 2023. Vol. 35, num. 13, p. 2205027. DOI : 10.1002/adma.202205027.Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules
Science. 2023. Vol. 379, num. 6629, p. 288 – 294. DOI : 10.1126/science.add8786.Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells
Science. 2023. Vol. 379, num. 6628, p. 173 – 178. DOI : 10.1126/science.adf3349.Regulated CO adsorption by the electrode with OH− repulsive property for enhancing C–C coupling
Green Chemical Engineering. 2023. Vol. 4, num. 3, p. 331 – 337. DOI : 10.1016/j.gce.2022.07.007.Cooperative passivation of perovskite solar cells by alkyldimethylammonium halide amphiphiles
Joule. 2023. Vol. 7, num. 1, p. 183 – 200. DOI : 10.1016/j.joule.2022.11.013.Investigation of nickel iron layered double hydroxide for water oxidation in different pH electrolytes
Chinese Journal Of Catalysis. 2023. Vol. 44, p. 127 – 138. DOI : 10.1016/S1872-2067(22)64190-1.A Molecularly Tailored Photosensitizer with an Efficiency of 13.2% for Dye-Sensitized Solar Cells
Advanced Materials. 2023. Vol. 35, num. 5, p. 2207785. DOI : 10.1002/adma.202207785.Buried Interface Engineering Enables Efficient and 1,960-hour Isos-L-2i Stable Inverted Perovskite Solar Cells
2023.Optoelectronic or photovoltaic device with metal halide perovskite film treated by passivating agent
WO2023118938.
2023.A Complete Picture of Cation Dynamics in Hybrid Perovskite Materials from Solid-State NMR Spectroscopy
Journal Of The American Chemical Society. 2023. Vol. 145, num. 2, p. 978 – 990. DOI : 10.1021/jacs.2c10149.Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells
Science. 2023. Vol. 381, num. 6654, p. 209 – 215. DOI : 10.1126/science.adi4107.The Impact of Spacer Size on Charge Transfer Excitons in Dion–Jacobson and Ruddlesden–Popper Layered Hybrid Perovskites
The Journal of Physical Chemistry Letters. 2023. Vol. 14, p. 6248 – 6254. DOI : 10.1021/acs.jpclett.3c01125.Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells
Nature. 2023. Vol. 613, p. 60 – 65. DOI : 10.1038/s41586-022-05460-z.Dataset of “The Impact of Spacer Size on Charge Transfer Excitons in Dion-Jacobson and Ruddlesden-Popper Layered Hybrid Perovskites”
2023.Interface and structural engineering of perovskite solar cells towards enhanced stability and performance
Lausanne, EPFL, 2023.2022
Applications of vacuum vapor deposition for perovskite solar cells: A progress review
IENERGY. 2022. DOI : 10.23919/IEN.2022.0053.Solar reduction of carbon dioxide on copper-tin electrocatalysts with energy conversion efficiency near 20%
Nature Communications. 2022. Vol. 13, num. 1, p. 5898. DOI : 10.1038/s41467-022-33049-7.Facet Engineering for Stable, Efficient Perovskite Solar Cells
Acs Energy Letters. 2022. Vol. 7, num. 9, p. 3120 – 3128. DOI : 10.1021/acsenergylett.2c01623.Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids
Science Advances. 2022. Vol. 8, num. 35. DOI : 10.1126/sciadv.abo3733.Dynamic Nuclear Polarization Enables NMR of Surface Passivating Agents on Hybrid Perovskite Thin Films
Journal Of The American Chemical Society. 2022. Vol. 144, num. 33, p. 15175 – 15184. DOI : 10.1021/jacs.2c05316.Construction of Fe3O4 bridged Pt/g-C3N4 heterostructure with enhanced solar to fuel conversion
Applied Surface Science. 2022. Vol. 592, p. 153159. DOI : 10.1016/j.apsusc.2022.153159.Thiocyanate-Mediated Dimensionality Transformation of Low- Dimensional Perovskites for Photovoltaics
Chemistry Of Materials. 2022. Vol. 34, num. 14, p. 6331 – 6338. DOI : 10.1021/acs.chemmater.2c00760.Thermally controlled growth of photoactive FAPbI(3) films for highly stable perovskite solar cells
Energy & Environmental Science. 2022. Vol. 15, num. 9, p. 3862 – 3876. DOI : 10.1039/d2ee01196d.Revealing fundamentals of charge extraction in photovoltaic devices through potentiostatic photoluminescence imaging
Matter. 2022. Vol. 5, num. 7. DOI : 10.1016/j.matt.2022.05.024.Covalent Organic Framework Nanoplates Enable Solution-Processed Crystalline Nanofilms for Photoelectrochemical Hydrogen Evolution
Journal Of The American Chemical Society. 2022. Vol. 144, num. 23, p. 10291 – 10300. DOI : 10.1021/jacs.2c0143310291.Over 24% efficient MA-free Cs(x)FA(1-x)PbX(3) perovskite solar cells
Joule. 2022. Vol. 6, num. 6, p. 1344 – 1356. DOI : 10.1016/j.joule.2022.05.002.Photo De-Mixing in Dion-Jacobson 2D Mixed Halide Perovskites
Advanced Energy Materials. 2022. p. 2200768. DOI : 10.1002/aenm.202200768.In situ growth of graphene on both sides of a Cu-Ni alloy electrode for perovskite solar cells with improved stability
Nature Energy. 2022. DOI : 10.1038/s41560-022-01038-1.Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23%
Escience. 2022. Vol. 2, num. 3, p. 339 – 346. DOI : 10.1016/j.esci.2022.04.001.Photoelectrochemical Oxygen Evolution on Mesoporous Hematite Films Prepared from Maghemite Nanoparticles
Journal Of The Electrochemical Society. 2022. Vol. 169, num. 5, p. 056522. DOI : 10.1149/1945-7111/ac70fd.Efficient and stable noble-metal-free catalyst for acidic water oxidation
Nature Communications. 2022. Vol. 13, num. 1, p. 2294. DOI : 10.1038/s41467-022-30064-6.Kinetics and energetics of metal halide perovskite conversion reactions at the nanoscale
Communications Materials. 2022. Vol. 3, num. 1, p. 22. DOI : 10.1038/s43246-022-00239-1.Nanosegregation in arene-perfluoroarene pi-systems for hybrid layered Dion-Jacobson perovskites
Nanoscale. 2022. Vol. 14, num. 18, p. 6771 – 6776. DOI : 10.1039/d1nr08311b.Transparency and Morphology Control of Cu2O Photocathodes via an in Situ Electroconversion
Acs Energy Letters. 2022. Vol. 7, num. 5, p. 1618 – 1625. DOI : 10.1021/acsenergylett.2c00474.Interfacial engineering from material to solvent: A mechanistic understanding on stabilizing alpha-formamidinium lead triiodide perovskite photovoltaics
Nano Energy. 2022. Vol. 94, p. 106924. DOI : 10.1016/j.nanoen.2022.106924.Molecularly Engineered Low-Cost Organic Hole-Transporting Materials for Perovskite Solar Cells: The Substituent Effect on Non-fused Three-Dimensional Systems
Acs Applied Energy Materials. 2022. Vol. 5, num. 3, p. 3156 – 3165. DOI : 10.1021/acsaem.1c03775.Reversible Pressure-Dependent Mechanochromism of Dion-Jacobson and Ruddlesden-Popper Layered Hybrid Perovskites
Advanced Materials. 2022. p. 2108720. DOI : 10.1002/adma.202108720.Efficient and Stable Large Bandgap MAPbBr(3) Perovskite Solar Cell Attaining an Open Circuit Voltage of 1.65 V
Acs Energy Letters. 2022. Vol. 7, num. 3, p. 1112 – 1119. DOI : 10.1021/acsenergylett.1c02431.CNT-based bifacial perovskite solar cells towards highly efficient 4-terminal tandem photovoltaics
Energy & Environmental Science. 2022. Vol. 15, num. 4, p. 1536 – 1544. DOI : 10.1039/d1ee04008a.Solid-state synthesis of CdFe2O4 binary catalyst for potential application in renewable hydrogen fuel generation
Scientific Reports. 2022. Vol. 12, num. 1, p. 1632. DOI : 10.1038/s41598-022-04999-1.Solar Water Splitting Using Earth-Abundant Electrocatalysts Driven by High-Efficiency Perovskite Solar Cells
Chemsuschem. 2022. p. e202102471. DOI : 10.1002/cssc.202102471.Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells
Science. 2022. Vol. 375, num. 6578, p. 302 – 306. DOI : 10.1126/science.abh1885.A universal co-solvent dilution strategy enables facile and cost-effective fabrication of perovskite photovoltaics
Nature Communications. 2022. Vol. 13, p. 89. DOI : 10.1038/s41467-021-27740-4.Revisiting the Impact of Morphology and Oxidation State of Cu on CO2 Reduction Using Electrochemical Flow Cell
The Journal of Physical Chemistry Letters. 2022. Vol. 13, num. 1, p. 345 – 351. DOI : 10.1021/acs.jpclett.1c03957.Hole transport material, synthesis thereof, and solar cell
EP3950661; US11680035; EP3950661; US2022033342.
2022.Structure-property relationships and mixed conductivity in layered hybrid perovskites based on phenyl-derived spacers
Lausanne, EPFL, 2022.Luminescent and electronic properties of perovskite solar cells
Lausanne, EPFL, 2022.Compositional and interfacial optimization for enhancement of perovskite solar cells performance
Lausanne, EPFL, 2022.Bulk and surface engineering to improve performance and stability of perovskite solar cells
Lausanne, EPFL, 2022.Method of modifying the structure of perovskite films
EP3940806; EP3940806.
2022.2021
Solid-state dye-sensitized solar cells using polymeric hole conductors
Rsc Advances. 2021. Vol. 11, num. 62, p. 39570 – 39581. DOI : 10.1039/d1ra05911d.Ti-1-graphene single-atom material for improved energy level alignment in perovskite solar cells
Nature Energy. 2021. Vol. 6, num. 12, p. 1154 – 1163. DOI : 10.1038/s41560-021-00944-0.Structural and Compositional Investigations on the Stability of Cuprous Oxide Nanowire Photocathodes for Photoelectrochemical Water Splitting
ACS Applied Materials & Interfaces. 2021. Vol. 13, num. 46, p. 55080 – 55091. DOI : 10.1021/acsami.1c16590.Thermodynamic stability screening of IR-photonic processed multication halide perovskite thin films
Journal of Materials Chemistry A. 2021. Vol. 9, num. 47, p. 26885 – 26895. DOI : 10.1039/d1ta05248a.Multi-Length Scale Structure of 2D/3D Dion-Jacobson Hybrid Perovskites Based on an Aromatic Diammonium Spacer
Small. 2021. p. 2104287. DOI : 10.1002/smll.202104287.Combined Precursor Engineering and Grain Anchoring Leading to MA-Free, Phase-Pure, and Stable alpha-Formamidinium Lead Iodide Perovskites for Efficient Solar Cells
Angewandte Chemie International Edition. 2021. Vol. 60, num. 52, p. 27299 – 27306. DOI : 10.1002/anie.202112555.Interfacial Passivation Engineering of Perovskite Solar Cells with Fill Factor over 82% and Outstanding Operational Stability on n-i-p Architecture
Acs Energy Letters. 2021. Vol. 6, num. 11, p. 3916 – 3923. DOI : 10.1021/acsenergylett.1c01811.Carbazol-phenyl-phenothiazine-based sensitizers for dye-sensitized solar cells
Journal of Materials Chemistry A. 2021. Vol. 9, num. 46, p. 26311 – 26322. DOI : 10.1039/d1ta08020b.NiCuCoS3 chalcogenide as an efficient electrocatalyst for hydrogen and oxygen evolution
Journal Of Materials Research And Technology-Jmr&T. 2021. Vol. 15, p. 4826 – 4837. DOI : 10.1016/j.jmrt.2021.09.122.The Role of Alkyl Chain Length and Halide Counter Ion in Layered Dion−Jacobson Perovskites with Aromatic Spacers
The Journal of Physical Chemistry Letters. 2021. Vol. 12, num. 42, p. 10325 – 10332. DOI : 10.1021/acs.jpclett.1c02937.Identifying Reactive Sites and Surface Traps in Chalcopyrite Photocathodes
Angewandte Chemie International Edition. 2021. Vol. 60, num. 44, p. 23651 – 23655. DOI : 10.1002/anie.202108994.Methylammonium Triiodide for Defect Engineering of High-Efficiency Perovskite Solar Cells
Acs Energy Letters. 2021. Vol. 6, p. 3650 – 3660. DOI : 10.1021/acsenergylett.1c01754.Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics
Energy & Environmental Science. 2021. Vol. 14, p. 5552 – 5562. DOI : 10.1039/d1ee02454j.A Fully Printable Hole-Transporter-Free Semi-Transparent Perovskite Solar Cell
European Journal Of Inorganic Chemistry. 2021. num. 36, p. 3752 – 3760. DOI : 10.1002/ejic.202100544.Crystal-Size-Induced Band Gap Tuning in Perovskite Films
Angewandte Chemie International Edition. 2021. Vol. 60, num. 39, p. 21368 – 21376. DOI : 10.1002/anie.202106394.New Insights into the Interface of Electrochemical Flow Cells for Carbon Dioxide Reduction to Ethylene
The Journal of Physical Chemistry Letters. 2021. Vol. 12, num. 31, p. 7583 – 7589. DOI : 10.1021/acs.jpclett.1c02043.Naphthalenediimide/Formamidinium-Based Low-Dimensional Perovskites
Chemistry of Materials. 2021. Vol. 33, num. 16, p. 6412 – 6420. DOI : 10.1021/acs.chemmater.1c01635.Dopant Engineering for Spiro‐OMeTAD Hole‐Transporting Materials towards Efficient Perovskite Solar Cells
Advanced Functional Materials. 2021. p. 2102124. DOI : 10.1002/adfm.202102124.Methylamine Gas Treatment Affords Improving Semitransparency, Efficiency, and Stability of CH3NH3PbBr3-Based Perovskite Solar Cells
Solar Rrl. 2021. p. 2100277. DOI : 10.1002/solr.202100277.Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer
Science Advances. 2021. Vol. 7, num. 28, p. eabg0633. DOI : 10.1126/sciadv.abg0633.Micro-Electrode with Fast Mass Transport for Enhancing Selectivity of Carbonaceous Products in Electrochemical CO2 Reduction
Advanced Functional Materials. 2021. p. 2103966. DOI : 10.1002/adfm.202103966.Cyclopentadiene-Based Hole-Transport Material for Cost-Reduced Stabilized Perovskite Solar Cells with Power Conversion Efficiencies Over 23%
Advanced Energy Materials. 2021. p. 2003953. DOI : 10.1002/aenm.202003953.Surface Reconstruction Engineering with Synergistic Effect of Mixed‐Salt Passivation Treatment toward Efficient and Stable Perovskite Solar Cells
Advanced Functional Materials. 2021. p. 2102902. DOI : 10.1002/adfm.202102902.Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability
Joule. 2021. Vol. 5, num. 6, p. 1587 – 1601. DOI : 10.1016/j.joule.2021.04.014.Layered Hybrid Formamidinium Lead Iodide Perovskites: Challenges and Opportunities
Accounts Of Chemical Research. 2021. Vol. 54, num. 12, p. 2729 – 2740. DOI : 10.1021/acs.accounts.0c00879.Copolymer-Templated Nickel Oxide for High-Efficiency Mesoscopic Perovskite Solar Cells in Inverted Architecture
Advanced Functional Materials. 2021. p. 2102237. DOI : 10.1002/adfm.202102237.Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2
Nature Communications. 2021. Vol. 12, num. 1, p. 3387. DOI : 10.1038/s41467-021-23699-4.Multimodal host–guest complexation for efficient and stable perovskite photovoltaics
Nature Communications. 2021. Vol. 12, num. 1, p. 3383. DOI : 10.1038/s41467-021-23566-2.Benzylammonium‐Mediated Formamidinium Lead Iodide Perovskite Phase Stabilization for Photovoltaics
Advanced Functional Materials. 2021. p. 2101163. DOI : 10.1002/adfm.202101163.Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells
Joule. 2021. Vol. 5, num. 5, p. 1246 – 1266. DOI : 10.1016/j.joule.2021.04.003.Water Stable Haloplumbate Modulation for Efficient and Stable Hybrid Perovskite Photovoltaics
Advanced Energy Materials. 2021. p. 2101082. DOI : 10.1002/aenm.202101082.Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis
Nature Communications. 2021. Vol. 12, num. 1, p. 2808. DOI : 10.1038/s41467-021-23023-0.Function and Electronic Structure of the SnO2 Buffer Layer between the alpha-Fe2O3 Water Oxidation Photoelectrode and the Transparent Conducting Oxide Current Collector
Journal Of Physical Chemistry C. 2021. Vol. 125, num. 17, p. 9158 – 9168. DOI : 10.1021/acs.jpcc.1c01809.Quantifying Stabilized Phase Purity in Formamidinium-Based Multiple-Cation Hybrid Perovskites
Chemistry Of Materials. 2021. Vol. 33, num. 8, p. 2769 – 2776. DOI : 10.1021/acs.chemmater.0c04185.Transparent and Colorless Dye-Sensitized Solar Cells Exceeding 75% Average Visible Transmittance
Jacs Au. 2021. Vol. 1, num. 4, p. 409 – 426. DOI : 10.1021/jacsau.1c00045.A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure α-FAPbI3
Science Advances. 2021. Vol. 7, num. 17, p. eabe3326. DOI : 10.1126/sciadv.abe3326.Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2
Energy & Environmental Science. 2021. Vol. 14, num. 6, p. 3447 – 3454. DOI : 10.1039/d1ee00056j.A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion dagger
Energy & Environmental Science. 2021. Vol. 14, num. 5, p. 3141 – 3151. DOI : 10.1039/d1ee00152c.How free exciton-exciton annihilation lets bound exciton emission dominate the photoluminescence of 2D-perovskites under high-fluence pulsed excitation at cryogenic temperatures
Journal Of Applied Physics. 2021. Vol. 129, num. 12, p. 123101. DOI : 10.1063/5.0037800.A molecular photosensitizer achieves a Voc of 1.24 V enabling highly efficient and stable dye-sensitized solar cells with copper(II/I)-based electrolyte
Nature Communications. 2021. Vol. 12, num. 1, p. 1777 (1 – 10). DOI : 10.1038/s41467-021-21945-3.Molecular Origin of the Asymmetric Photoluminescence Spectra of CsPbBr3 at Low Temperature
The Journal of Physical Chemistry Letters. 2021. Vol. 12, num. 10, p. 2699 – 2704. DOI : 10.1021/acs.jpclett.1c00263.Xanthan-Based Hydrogel for Stable and Efficient Quasi-Solid Truly Aqueous Dye-Sensitized Solar Cell with Cobalt Mediator
Solar Rrl. 2021. p. 2000823. DOI : 10.1002/solr.202000823.Formation of High-Performance Multi-Cation Halide Perovskites Photovoltaics by delta-CsPbI3/delta-RbPbI3 Seed-Assisted Heterogeneous Nucleation
Advanced Energy Materials. 2021. p. 2003785. DOI : 10.1002/aenm.202003785.Orientation‐Engineered Small‐Molecule Semiconductors as Dopant‐Free Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells
Advanced Functional Materials. 2021. p. 2011270. DOI : 10.1002/adfm.202011270.Organic Ammonium Halide Modulators as Effective Strategy for Enhanced Perovskite Photovoltaic Performance
Advanced Science. 2021. p. 2004593. DOI : 10.1002/advs.202004593.Synergistic Effect of Fluorinated Passivator and Hole Transport Dopant Enables Stable Perovskite Solar Cells with an Efficiency Near 24%
Journal Of The American Chemical Society. 2021. Vol. 143, num. 8, p. 3231 – 3237. DOI : 10.1021/jacs.0c12802.Chemically tailored molecular surface modifiers for efficient and stable perovskite photovoltaics
Smartmat. 2021. Vol. 2, num. 1, p. 33 – 37. DOI : 10.1002/smm2.1025.Unravelling the Behavior of Dion-Jacobson Layered Hybrid Perovskites in Humid Environments
Acs Energy Letters. 2021. Vol. 6, num. 2, p. 337 – 344. DOI : 10.1021/acsenergylett.0c02344.Nanoscale Phase Segregation in Supramolecular π-Templating for Hybrid Perovskite Photovoltaics from NMR Crystallography
Journal of the American Chemical Society. 2021. Vol. 143, num. 3, p. 1529 – 1538. DOI : 10.1021/jacs.0c11563.Low-Cost Dopant Additive-Free Hole-Transporting Material for a Robust Perovskite Solar Cell with Efficiency Exceeding 21%
Acs Energy Letters. 2021. Vol. 6, num. 1, p. 208 – 215. DOI : 10.1021/acsenergylett.0c02210.Facile and low-cost synthesis of a novel dopant-free hole transporting material that rivals Spiro-OMeTAD for high efficiency perovskite solar cells
Sustainable Energy & Fuels. 2021. Vol. 5, num. 1, p. 199 – 211. DOI : 10.1039/d0se01323d.Role of ions and interfaces for efficient and stable perovskite solar cells
Lausanne, EPFL, 2021.Spectroelectrochemical and Chemical Evidence of Surface Passivation at Zinc Ferrite (ZnFe 2 O 4 ) Photoanodes for Solar Water Oxidation
Advanced Functional Materials. 2021. p. 2010081. DOI : 10.1002/adfm.202010081.Understanding the design principles of organic sensitizers for highly efficient dye sensitized solar cells
Lausanne, EPFL, 2021.Compositional Engineering of Perovskite Light Absorbers for Enhanced Stability and Performance through 2D/3D Interfacing
Lausanne, EPFL, 2021.2020
Minimizing the Trade-Off between Photocurrent and Photovoltage in Triple-Cation Mixed-Halide Perovskite Solar Cells
The Journal of Physical Chemistry Letters. 2020. Vol. 11, num. 23, p. 10188 – 10195. DOI : 10.1021/acs.jpclett.0c02791.Crown Ether Modulation Enables over 23% Efficient Formamidinium-Based Perovskite Solar Cells
Journal Of The American Chemical Society. 2020. Vol. 142, num. 47, p. 19980 – 19991. DOI : 10.1021/jacs.0c08592.A Hierarchical 3D TiO2/Ni Nanostructure as an Efficient Hole-Extraction and Protection Layer for GaAs Photoanodes
Chemsuschem. 2020. Vol. 13, num. 22, p. 6028 – 6036. DOI : 10.1002/cssc.202002004.Vapor-assisted deposition of highly efficient, stable black-phase FAPbI(3) perovskite solar cells
Science. 2020. Vol. 370, num. 6512, p. eabb898574. DOI : 10.1126/science.abb8985.Why choosing the right partner is important: stabilization of ternary Cs(y)GUA(x)FA((1-y-x))PbI(3)perovskites
Physical Chemistry Chemical Physics. 2020. Vol. 22, num. 36, p. 20880 – 20890. DOI : 10.1039/d0cp03882b.Unravelling the structural complexity and photophysical properties of adamantyl-based layered hybrid perovskites
Journal of Materials Chemistry A. 2020. Vol. 8, num. 34, p. 17732 – 17740. DOI : 10.1039/d0ta05022a.Blue Photosensitizer with Copper(II/I) Redox Mediator for Efficient and Stable Dye‐Sensitized Solar Cells
Advanced Functional Materials. 2020. Vol. 30, num. 50, p. 2004804. DOI : 10.1002/adfm.202004804.Impact of the Synthesis Route on the Water Oxidation Kinetics of Hematite Photoanodes
The Journal of Physical Chemistry Letters. 2020. Vol. 11, num. 17, p. 7285 – 7290. DOI : 10.1021/acs.jpclett.0c02004.Highly efficient, stable and hysteresis-less planar perovskite solar cell based on chemical bath treated Zn2SnO4 electron transport layer
Nano Energy. 2020. Vol. 75, p. 105038. DOI : 10.1016/j.nanoen.2020.105038.Cyclopentadithiophene-Based Hole-Transporting Material for Highly Stable Perovskite Solar Cells with Stabilized Efficiencies Approaching 21%
Acs Applied Energy Materials. 2020. Vol. 3, num. 8, p. 7456 – 7463. DOI : 10.1021/acsaem.0c00811.Formamidinium-Based Dion-Jacobson Layered Hybrid Perovskites: Structural Complexity and Optoelectronic Properties
Advanced Functional Materials. 2020. p. 2003428. DOI : 10.1002/adfm.202003428.Compositional and Interface Engineering of Organic-Inorganic Lead Halide Perovskite Solar Cells
iScience. 2020. Vol. 23, num. 8, p. 101359. DOI : 10.1016/j.isci.2020.101359.High-Performance Lead-Free Solar Cells Based on Tin-Halide Perovskite Thin Films Functionalized by a Divalent Organic
Acs Energy Letters. 2020. Vol. 5, num. 7, p. 2223 – 2230. DOI : 10.1021/acsenergylett.0c00888.Hybrid 2D [Pb(CH3NH2)I-2](n) Coordination Polymer Precursor for Scalable Perovskite Deposition
Acs Energy Letters. 2020. Vol. 5, num. 7, p. 2305 – 2312. DOI : 10.1021/acsenergylett.0c00781.Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells
Journal Of The American Chemical Society. 2020. Vol. 142, num. 26, p. 11428 – 11433. DOI : 10.1021/jacs.0c01704.Stabilization of Highly Efficient and Stable Phase-Pure FAPbI(3)Perovskite Solar Cells by Molecularly Tailored 2D-Overlayers
Angewandte Chemie International Edition. 2020. Vol. 59, num. 36, p. 15688 – 15694. DOI : 10.1002/anie.202005211.Guanidinium-Assisted Surface Matrix Engineering for Highly Efficient Perovskite Quantum Dot Photovoltaics
Advanced Materials. 2020. p. 2001906. DOI : 10.1002/adma.202001906.Reduced Graphene Oxide Improves Moisture and Thermal Stability of Perovskite Solar Cells
Cell Reports Physical Science. 2020. Vol. 1, num. 5, p. 100053. DOI : 10.1016/j.xcrp.2020.100053.Interfacial and bulk properties of hole transporting materials in perovskite solar cells: spiro-MeTAD versus spiro-OMeTAD
Journal of Materials Chemistry A. 2020. Vol. 8, num. 17, p. 8527 – 8539. DOI : 10.1039/d0ta00623h.Photovoltaic Performance of Porphyrin-Based Dye-Sensitized Solar Cells with Binary Ionic Liquid Electrolytes
Energy Technology. 2020. p. 2000092. DOI : 10.1002/ente.202000092.Phenanthrene-Fused-Quinoxaline as a Key Building Block for Highly Efficient and Stable Sensitizers in Copper-Electrolyte-Based Dye-Sensitized Solar Cells
Angewandte Chemie International Edition. 2020. Vol. 59, p. 9324 – 9329. DOI : 10.1002/anie.202000892.Black phosphorus quantum dots in inorganic perovskite thin films for efficient photovoltaic application
Science Advances. 2020. Vol. 6, num. 15, p. eaay5661. DOI : 10.1126/sciadv.aay5661.A Blue Photosensitizer Realizing Efficient and Stable Green Solar Cells via Color Tuning by the Electrolyte
Advanced Materials. 2020. Vol. 32, num. 17, p. 2000193. DOI : 10.1002/adma.202000193.Electron-Selective Layers for Dye-Sensitized Solar Cells Based on TiO2 and SnO2
Journal Of Physical Chemistry C. 2020. Vol. 124, num. 12, p. 6512 – 6521. DOI : 10.1021/acs.jpcc.9b11883.Liquid State and Zombie Dye Sensitized Solar Cells with Copper Bipyridine Complexes Functionalized with Alkoxy Groups
The Journal of Physical Chemistry C. 2020. Vol. C124, num. 13, p. 7071 – 7081. DOI : 10.1021/acs.jpcc.0c00671.Solution-based heteroepitaxial growth of stable mixed cation/anion hybrid perovskite thin film under ambient condition via a scalable crystal engineering approach
Nano Energy. 2020. Vol. 69, p. 104441. DOI : 10.1016/j.nanoen.2019.104441.Atomistic origins of the limited phase stability of Cs+-rich FAxCs(1-x)PbI3 mixtures
Chemistry of Materials. 2020. Vol. 32, num. 6, p. 2605 – 2614. DOI : 10.1021/acs.chemmater.0c00120.Hybrid perovskites for photovoltaics and optoelectronics
Journal Of Physics D-Applied Physics. 2020. Vol. 53, num. 7, p. 070201. DOI : 10.1088/1361-6463/ab59b2.Suppressing recombination in perovskite solar cells via surface engineering of TiO2 ETL
Solar Energy. 2020. Vol. 197, p. 50 – 57. DOI : 10.1016/j.solener.2019.12.070.Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting
Nature Communications. 2020. Vol. 11, num. 1, p. 318. DOI : 10.1038/s41467-019-13987-5.Intermediate Phase Enhances Inorganic Perovskite and Metal Oxide Interface for Efficient Photovoltaics
Joule. 2020. Vol. 4, num. 1, p. 222 – 234. DOI : 10.1016/j.joule.2019.11.007.Molecular Engineering of Simple Metal-Free Organic Dyes Derived from Triphenylamine for Dye-Sensitized Solar Cell Applications
Chemsuschem. 2020. Vol. 13, num. 1, p. 212 – 220. DOI : 10.1002/cssc.201902245.Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures
Nature Energy. 2020. Vol. 5, num. 1, p. 35 – 49. DOI : 10.1038/s41560-019-0529-5.Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT
Nature Chemistry. 2020. Vol. 12, num. 1, p. 82 – 89. DOI : 10.1038/s41557-019-0347-1.2019
Atomistic Mechanism of the Nucleation of Methylammonium Lead Iodide Perovskite from Solution
Chemistry of Materials. 2019. Vol. 32, num. 1, p. 529 – 536. DOI : 10.1021/acs.chemmater.9b04259.Solar Water Splitting with Perovskite/Silicon Tandem Cell and TiC-Supported Pt Nanocluster Electrocatalyst
Joule. 2019. Vol. 3, num. 12, p. 2930 – 2941. DOI : 10.1016/j.joule.2019.10.002.Low-Cost and Highly Efficient Carbon-Based Perovskite Solar Cells Exhibiting Excellent Long-Term Operational and UV Stability
Small. 2019. Vol. 15, num. 49, p. 1904746. DOI : 10.1002/smll.201904746.Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design
Energy & Environmental Science. 2019. Vol. 12, num. 12, p. 3585 – 3594. DOI : 10.1039/c9ee02391g.Thermochemical Stability of Hybrid Halide Perovskites
Acs Energy Letters. 2019. Vol. 4, num. 12, p. 2859 – 2870. DOI : 10.1021/acsenergylett.9b01605.Selective C-C Coupling in Carbon Dioxide Electroreduction via Efficient Spillover of Intermediates As Supported by Operando Raman Spectroscopy
Journal Of The American Chemical Society. 2019. Vol. 141, num. 47, p. 18704 – 18714. DOI : 10.1021/jacs.9b07415.Efficient Perovskite Solar Cell Modules with High Stability Enabled by Iodide Diffusion Barriers
Joule. 2019. Vol. 3, num. 11, p. 2748 – 2760. DOI : 10.1016/j.joule.2019.07.030.New Strategies for Defect Passivation in High-Efficiency Perovskite Solar Cells
Advanced Energy Materials. 2019. p. 1903090. DOI : 10.1002/aenm.201903090.Mechanoperovskites for Photovoltaic Applications: Preparation, Characterization, and Device Fabrication
Accounts Of Chemical Research. 2019. Vol. 52, num. 11, p. 3233 – 3243. DOI : 10.1021/acs.accounts.9b00454.Bimetallic Electrocatalysts for Carbon Dioxide Reduction
Chimia. 2019. Vol. 73, num. 11, p. 928 – 935. DOI : 10.2533/chimia.2019.928.Charge Accumulation, Recombination, and Their Associated Time Scale in Efficient (GUA)(x)(MA)(1-x)PbI3-Based Perovskite Solar Cells
ACS Omega. 2019. Vol. 4, num. 16, p. 16840 – 16846. DOI : 10.1021/acsomega.9b01701.Ba-induced phase segregation and band gap reduction in mixed-halide inorganic perovskite solar cells
Nature Communications. 2019. Vol. 10, p. 4686. DOI : 10.1038/s41467-019-12678-5.Atomic-Level Microstructure of Efficient Formamidinium-Based Perovskite Solar Cells Stabilized by 5-Ammonium Valeric Acid Iodide Revealed by Multinuclear and Two-Dimensional Solid-State NMR
Journal of the American Chemical Society. 2019. Vol. 141, num. 44, p. 17659 – 17669. DOI : 10.1021/jacs.9b07381.Elucidation of photovoltage origin and charge transport in Cu2O heterojunctions for solar energy conversion
Sustainable Energy & Fuels. 2019. Vol. 3, num. 10, p. 2633 – 2641. DOI : 10.1039/c9se00385a.Elucidation of photovoltage origin and charge transport in Cu2O heterojunctions for solar energy conversion (vol 3, pg 2633, 2019)
Sustainable Energy & Fuels. 2019. Vol. 3, num. 10, p. 2873 – 2874. DOI : 10.1039/c9se90042j.A chain is as strong as its weakest link – Stability study of MAPbI(3) under light and temperature
Materials Today. 2019. Vol. 29, p. 10 – 19. DOI : 10.1016/j.mattod.2018.10.017.Atomic Layer Deposition of ZnO on CuO Enables Selective and Efficient Electroreduction of Carbon Dioxide to Liquid Fuels
Angewandte Chemie International Edition. 2019. Vol. 58, num. 42, p. 15036 – 15040. DOI : 10.1002/anie.201909610.In situ observation of picosecond polaron self-localisation in alpha-Fe2O3 photoelectrochemical cells
Nature Communications. 2019. Vol. 10, p. 3962. DOI : 10.1038/s41467-019-11767-9.Understanding the surface dynamics of hydrogen and CO in the electrochemical reduction of CO2
2019. ACS Fall National Meeting and Exposition, San Diego, CA, Aug 25-29, 2019.Thermodynamically stabilized beta-CsPbI3-based perovskite solar cells with efficiencies > 18%
Science. 2019. Vol. 365, num. 6453, p. 591 – 595. DOI : 10.1126/science.aav8680.Halide Versus Nonhalide Salts: The Effects of Guanidinium Salts on the Structural, Morphological, and Photovoltaic Performances of Perovskite Solar Cells
Solar Rrl. 2019. p. 1900234. DOI : 10.1002/solr.201900234.Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells
Nature Communications. 2019. Vol. 10, p. 3008. DOI : 10.1038/s41467-019-10985-5.Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions
Nature Energy. 2019. Vol. 4, num. 7, p. 568 – 574. DOI : 10.1038/s41560-019-0400-8.Sequential catalysis enables enhanced C-C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts
Faraday Discussions. 2019. Vol. 215, p. 282 – 296. DOI : 10.1039/c8fd00219c.Power output stabilizing feature in perovskite solar cells at operating condition: Selective contact-dependent charge recombination dynamics
Nano Energy. 2019. Vol. 61, p. 126 – 131. DOI : 10.1016/j.nanoen.2019.04.051.Ruddlesden–Popper Phases of Methylammonium-Based Two-Dimensional Perovskites with 5-Ammonium Valeric Acid AVA2MAn–1PbnI3n+1 with n = 1, 2, and 3
The Journal of Physical Chemistry Letters. 2019. Vol. 10, p. 3543 – 3549. DOI : 10.1021/acs.jpclett.9b01111.Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%
Science Advances. 2019. Vol. 5, num. 6, p. eaaw2543. DOI : 10.1126/sciadv.aaw2543.Electrochemical Characterization of CuSCN Hole-Extracting Thin Films for Perovskite Photovoltaics
Acs Applied Energy Materials. 2019. Vol. 2, num. 6, p. 4264 – 4273. DOI : 10.1021/acsaem.9b00496.An Oxa[5]helicene-Based Racemic Semiconducting Glassy Film for Photothermally Stable Perovskite Solar Cells
Iscience. 2019. Vol. 15, p. 234 – 242. DOI : 10.1016/j.isci.2019.04.031.Supramolecular Engineering for Formamidinium-Based Layered 2D Perovskite Solar Cells: Structural Complexity and Dynamics Revealed by Solid-State NMR Spectroscopy
Advanced Energy Materials. 2019. Vol. 9, num. 20, p. 1900284. DOI : 10.1002/aenm.201900284.Dual effect of humidity on cesium lead bromide: enhancement and degradation of perovskite films
Journal of Materials Chemistry A. 2019. Vol. 7, num. 19, p. 12292 – 12302. DOI : 10.1039/c9ta00715f.A tandem redox system with a cobalt complex and 2-azaadamantane-N-oxyl for fast dye regeneration and open circuit voltages exceeding 1 V
Journal of Materials Chemistry A. 2019. Vol. 7, num. 18, p. 10998 – 11006. DOI : 10.1039/c9ta00490d.Influence of Alkoxy Chain Length on the Properties of Two-Dimensionally Expanded Azulene-Core-Based Hole-Transporting Materials for Efficient Perovskite Solar Cells
Chemistry-A European Journal. 2019. Vol. 25, num. 27, p. 6741 – 6752. DOI : 10.1002/chem.201806317.Toward an alternative approach for the preparation of low-temperature titanium dioxide blocking underlayers for perovskite solar cells
Journal of Materials Chemistry A. 2019. Vol. 7, num. 17, p. 10729 – 10738. DOI : 10.1039/c8ta04246b.Perovskite Solar Cells Based on Oligotriarylamine Hexaarylbenzene as Hole-Transporting Materials
Organic Letters. 2019. Vol. 21, num. 9, p. 3261 – 3264. DOI : 10.1021/acs.orglett.9b00988.SnS Quantum Dots as Hole Transporter of Perovskite Solar Cells
Acs Applied Energy Materials. 2019. Vol. 2, num. 5, p. 3822 – 3829. DOI : 10.1021/acsaem.9b00510.A partially-planarised hole-transporting quart-p-phenylene for perovskite solar cells
Journal of Materials Chemistry C. 2019. Vol. 7, num. 15, p. 4332 – 4335. DOI : 10.1039/c9tc01076a.Boosting the efficiency of aqueous solar cells: A photoelectrochemical estimation on the effectiveness of TiCl4 treatment
Electrochimica Acta. 2019. Vol. 302, p. 31 – 37. DOI : 10.1016/j.electacta.2019.01.180.Multifunctional Molecular Modulation for Efficient and Stable Hybrid Perovskite Solar Cells
Chimia. 2019. Vol. 73, num. 4, p. 317 – 323. DOI : 10.2533/chimia.2019.317.Solid-state NMR approaches to lead halide perovskites
2019. National Meeting of the American-Chemical-Society (ACS), Orlando, FL, Mar 31-Apr 04, 2019.Dopant-Free Hole-Transporting Polymers for Efficient and Stable Perovskite Solar Cells
Macromolecules. 2019. Vol. 52, num. 6, p. 2243 – 2254. DOI : 10.1021/acs.macromol.9b00165.An ultrathin cobalt-iron oxide catalyst for water oxidation on nanostructured hematite photoanodes
Journal of Materials Chemistry A. 2019. Vol. 7, num. 11, p. 6012 – 6020. DOI : 10.1039/c8ta12295d.Engineering of Perovskite Materials Based on Formamidinium and Cesium Hybridization for High-Efficiency Solar Cells
Chemistry Of Materials. 2019. Vol. 31, num. 5, p. 1620 – 1627. DOI : 10.1021/acs.chemmater.8b04871.Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites (vol 10, 484, 2019)
Nature Communications. 2019. Vol. 10, p. 1145. DOI : 10.1038/s41467-019-09172-3.Design, synthesis and characterization of 1,8-naphthalimide based fullerene derivative as electron transport material for inverted perovskite solar cells
Synthetic Metals. 2019. Vol. 249, p. 25 – 30. DOI : 10.1016/j.synthmet.2019.01.014.Site-selective Synthesis of -[70]PCBM-like Fullerenes: Efficient Application in Perovskite Solar Cells
Chemistry-A European Journal. 2019. Vol. 25, num. 13, p. 3224 – 3228. DOI : 10.1002/chem.201806053.Metal Coordination Complexes as Redox Mediators in Regenerative Dye-Sensitized Solar Cells
Inorganics. 2019. Vol. 7, num. 3, p. 30. DOI : 10.3390/inorganics7030030.Doping and phase segregation in Mn2+- and Co2+-doped lead halide perovskites from Cs-133 and H-1 NMR relaxation enhancement
Journal of Materials Chemistry A. 2019. Vol. 7, num. 5, p. 2326 – 2333. DOI : 10.1039/c8ta11457a.Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices
Science Advances. 2019. Vol. 5, num. 2, p. eaav2012. DOI : 10.1126/sciadv.aav2012.PbZrTiO3 ferroelectric oxide as an electron extraction material for stable halide perovskite solar cells
Sustainable Energy & Fuels. 2019. Vol. 3, num. 2, p. 382 – 389. DOI : 10.1039/c8se00451j.Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites
Nature Communications. 2019. Vol. 10, p. 484. DOI : 10.1038/s41467-019-08326-7.A peri-Xanthenoxanthene Centered Columnar-Stacking Organic Semiconductor for Efficient, Photothermally Stable Perovskite Solar Cells
Chemistry-A European Journal. 2019. Vol. 25, num. 4, p. 945 – 948. DOI : 10.1002/chem.201806015.Europium-Doped CsPbI2Br for Stable and Highly Efficient Inorganic Perovskite Solar Cells
Joule. 2019. Vol. 3, num. 1, p. 205 – 214. DOI : 10.1016/j.joule.2018.10.008.Synergistic Crystal and Interface Engineering for Efficient and Stable Perovskite Photovoltaics
Advanced Energy Materials. 2019. Vol. 9, num. 1, p. 1802646. DOI : 10.1002/aenm.201802646.Electron specific oxide double layer contacts for highly efficient and uv stable perovskite device
US2020388442; WO2019116338; EP3499597.
2019.Perovskite Solar Cells Yielding Reproducible Photovoltage of 1.20 V
Research. 2019. Vol. 2019, p. 8474698. DOI : 10.34133/2019/8474698.The Advent of Molecular Photovoltaics and Hybrid Perovskite Solar Cells
Substantia. An International Journal of the History of Chemis. 2019. Vol. 3, num. 2, p. 23 – 27. DOI : 10.13128/substantia-697.Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics
Nature Nanotechnology. 2019. Vol. 14, num. 1, p. 57 – 63. DOI : 10.1038/s41565-018-0304-y.Bifunctional Organic Spacers for Formamidinium-Based Hybrid Dion-Jacobson Two-Dimensional Perovskite Solar Cells
Nano Letters. 2019. Vol. 19, num. 1, p. 150 – 157. DOI : 10.1021/acs.nanolett.8b03552.Crystal defects mitigating agents for high power conversion efficiency and stability of perovskite photovoltaic devices
US2021054288; WO2019145841; EP3518301.
2019.2018
Kinetics of Ion-Exchange Reactions in Hybrid Organic-Inorganic Perovskite Thin Films Studied by In Situ Real-Time X-ray Scattering
The Journal of Physical Chemistry Letters. 2018. Vol. 9, num. 23, p. 6750 – 6754. DOI : 10.1021/acs.jpclett.8b02916.Reduced Graphene Oxide as a Stabilizing Agent in Perovskite Solar Cells
Advanced Materials Interfaces. 2018. Vol. 5, num. 22, p. 1800416. DOI : 10.1002/admi.201800416.High Open Circuit Voltage for Perovskite Solar Cells with S,Si-Heteropentacene-Based Hole Conductors
European Journal Of Inorganic Chemistry. 2018. num. 41, p. 4573 – 4578. DOI : 10.1002/ejic.201800680.Hydrothermally processed CuCrO2 nanoparticles as an inorganic hole transporting material for low-cost perovskite solar cells with superior stability
Journal of Materials Chemistry A. 2018. Vol. 6, num. 41, p. 20327 – 20337. DOI : 10.1039/c8ta07368f.Addition of adamantylammonium iodide to hole transport layers enables highly efficient and electroluminescent perovskite solar cells
Energy & Environmental Science. 2018. Vol. 11, num. 11, p. 3310 – 3320. DOI : 10.1039/c8ee02404a.Illumination Time Dependent Learning in Dye Sensitized Solar Cells
ACS Applied Materials & Interfaces. 2018. Vol. 10, num. 43, p. 36602 – 36607. DOI : 10.1021/acsami.8b12027.Electron-Affinity-Triggered Variations on the Optical and Electrical Properties of Dye Molecules Enabling Highly Efficient Dye-Sensitized Solar Cells
Angewandte Chemie International Edition. 2018. Vol. 57, num. 43, p. 14125 – 14128. DOI : 10.1002/anie.201808609.Stable and Efficient Organic Dye-Sensitized Solar Cell Based on Ionic Liquid Electrolyte
Joule. 2018. Vol. 2, num. 10, p. 2145 – 2153. DOI : 10.1016/j.joule.2018.07.023.Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals
Nature Communications. 2018. Vol. 9, p. 4197. DOI : 10.1038/s41467-018-06596-1.Novel p-dopant toward highly efficient and stable perovskite solar cells
Energy & Environmental Science. 2018. Vol. 11, num. 10, p. 2985 – 2992. DOI : 10.1039/c8ee01500g.Slow CH3NH3+ Diffusion in CH3NH3PbI3 under Light Measured by Solid-State NMR and Tracer Diffusion
Journal Of Physical Chemistry C. 2018. Vol. 122, num. 38, p. 21803 – 21806. DOI : 10.1021/acs.jpcc.8b06814.Insights about the Absence of Rb Cation from the 3D Perovskite Lattice: Effect on the Structural, Morphological, and Photophysical Properties and Photovoltaic Performance
Small. 2018. Vol. 14, num. 36, p. 1802033. DOI : 10.1002/smll.201802033.How the formation of interfacial charge causes hysteresis in perovskite solar cells
Energy & Environmental Science. 2018. Vol. 11, num. 9, p. 2404 – 2413. DOI : 10.1039/c8ee01447g.From Organics to Photochemistry – GDCh-Meetings in September
Chemie Ingenieur Technik. 2018. Vol. 90, num. 9, p. 1126 – 1127.Template synthesis of methylammonium lead iodide in the matrix of anodic titanium dioxide via the direct conversion of electrodeposited elemental lead
Mendeleev Communications. 2018. Vol. 28, num. 5, p. 487 – 489. DOI : 10.1016/j.mencom.2018.09.011.Guanidinium cations roles in perovskites solar cells
2018. 256th National Meeting and Exposition of the American-Chemical-Society (ACS) – Nanoscience, Nanotechnology and Beyond, Boston, MA, Aug 19-23, 2018.Understanding the electrochemical reduction of carbon dioxide at copper surfaces
2018. 256th National Meeting and Exposition of the American-Chemical-Society (ACS) – Nanoscience, Nanotechnology and Beyond, Boston, MA, Aug 19-23, 2018.Greener, Nonhalogenated Solvent Systems for Highly Efficient Perovskite Solar Cells
Advanced Energy Materials. 2018. Vol. 8, num. 21, p. 1800177. DOI : 10.1002/aenm.201800177.Electrodeposition of porous CuSCN layers as hole-conducting material for perovskite solar cells
Mendeleev Communications. 2018. Vol. 28, num. 4, p. 378 – 380. DOI : 10.1016/j.mencom.2018.07.012.Device and method for performing maximum power point tracking for photovoltaic devices in presence of hysteresis
US10488879; US2018259990.
2018.Cyclometalated Ruthenium Complexes for Dye-Sensitized Solar Cells
Lausanne, EPFL, 2018.Redox melts formed by copper (i)/(ii) complexes as charge transfer and charge storage materials
EP3407361.
2018.Optoelectronic and/or electrochemical learning device
WO2018041995; WO2018041995.
2018.Molecular Engineering Towards High Efficiency Perovskite Solar Cells
Lausanne, EPFL, 2018.Defect chemistry of methylammonium lead iodide
Lausanne, EPFL, 2018.Fundamentals of perovskite formation for photovoltaics
Lausanne, EPFL, 2018.Composition and Interface Engineering of Organic-Inorganic Hybrid Perovskites to Improve Photovoltaic Performance and Stability
Lausanne, EPFL, 2018.The Quest for Stability of Perovskite Solar Cells: Understanding Degradation, Improving Lifetimes and Towards Experimental Standards
Lausanne, EPFL, 2018.Compositional Characterization of Organo-Lead tri-Halide Perovskite Solar Cells
Lausanne, EPFL, 2018.Method for inkjet printing an organic-inorganic perovskite
US11177440; US2020028081; EP3494605; CN109804480; WO2018024777; EP3279960.
2018.Analysis of Optical Losses in a Photoelectrochemical Cell: A Tool for Precise Absorptance Estimation
Advanced Functional Materials. 2018. Vol. 28, num. 1, p. 1702768. DOI : 10.1002/adfm.201702768.Inorganic hole conductor based perovskite photoelectric conversion device with high operational stability at long term
US11594694; JP2020519020; US2020111981; EP3619753; CN110754004; KR20190141742; WO2018203279; EP3399564.
2018.Mixed cation perovskite solid state solar cell and fabrication thereof
JP7129066; CN109563108; US11195959; EP3497107; US2019312155; JP2019527934; EP3497107; CN109563108; WO2018015831; EP3272757.
2018.2017
A wire shaped coaxial photovoltaic solar cell
EP3168877; WO2017081531; EP3168877.
2017.Charge transporting material for optoelectronic and/or photoelectrochemical devices
WO2017098455; EP3178823.
2017.Hill climbing hysteresis of perovskite-based solar cells: a maximum power point tracking investigation
Progress In Photovoltaics. 2017. Vol. 25, num. 11, p. 942 – 950. DOI : 10.1002/pip.2894.Crystal Structure of DMF-Intermediate Phases Uncovers the Link Between CH3NH3PbI3 Morphology and Precursor Stoichiometry
Journal Of Physical Chemistry C. 2017. Vol. 121, num. 38, p. 20739 – 20743. DOI : 10.1021/acs.jpcc.7b08468.The Nature of Ion Conduction in Methylammonium Lead Iodide: A Multimethod Approach
Angewandte Chemie International Edition. 2017. Vol. 56, num. 27, p. 7755 – 7759. DOI : 10.1002/anie.201701724.Phase Segregation in Cs-, Rb- and K-Doped Mixed-Cation (MA)(x)(FA)(1-x)Pbl(3) Hybrid Perovskites from Solid-State NMR
Journal Of The American Chemical Society. 2017. Vol. 139, num. 40, p. 14173 – 14180. DOI : 10.1021/jacs.7b07223.Photoanode/Electrolyte Interface Stability in Aqueous Dye-Sensitized Solar Cells
Energy Technology. 2017. Vol. 5, num. 2, p. 300 – 311. DOI : 10.1002/ente.201600285.High Temperature-Stable Perovskite Solar Cell Based on Low-Cost Carbon Nanotube Hole Contact
Advanced Materials. 2017. Vol. 29, num. 17, p. 1606398. DOI : 10.1002/adma.201606398.Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells
Nature Communications. 2017. Vol. 8, p. 15330. DOI : 10.1038/ncomms15330.Investigation on the Interface Modification of TiO2 Surfaces by Functional Co-Adsorbents for High-Efficiency Dye-Sensitized Solar Cells
Chemphyschem. 2017. Vol. 18, num. 19, p. 2724 – 2731. DOI : 10.1002/cphc.201700486.In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6](4-) cage nanoparticles
Nature Communications. 2017. Vol. 8, p. 15688. DOI : 10.1038/ncomms15688.Reduction in the Interfacial Trap Density of Mechanochemically Synthesized MAPbI(3)
ACS Applied Materials & Interfaces. 2017. Vol. 9, num. 34, p. 28418 – 28425. DOI : 10.1021/acsami.7b06788.High photovoltage in perovskite solar cells: New physical insights from the ultrafast transient absorption spectroscopy
Chemical Physics Letters. 2017. Vol. 683, p. 211 – 215. DOI : 10.1016/j.cplett.2017.04.046.Solar-driven reduction of CO₂ : from homogeneous to heterogeneous catalytic systems
Lausanne, EPFL, 2017.Additives, Hole Transporting Materials and Spectroscopic Methods to Characterize the Properties of Perovskite Films
Chimia. 2017. Vol. 71, num. 11, p. 754 – 761. DOI : 10.2533/chimia.2017.754.A cockspur for the DSS cells: Erythrina crista-galli sensitizers
Spectrochimica Acta Part A-Molecular And Biomolecular Spectroscopy. 2017. Vol. 176, p. 91 – 98. DOI : 10.1016/j.saa.2017.01.002.The rapid evolution of highly efficient perovskite solar cells
Energy & Environmental Science. 2017. Vol. 10, num. 3, p. 710 – 727. DOI : 10.1039/c6ee03397k.Defects on surface and interface for photoelectrochemical properties of hematite photoanodes
Lausanne, EPFL, 2017.Computational Characterization of the Dependence of Halide Perovskite Effective Masses on Chemical Composition and Structure
Journal Of Physical Chemistry C. 2017. Vol. 121, num. 43, p. 23886 – 23895. DOI : 10.1021/acs.jpcc.7b04898.The effect of illumination on the formation of metal halide perovskite films
Nature. 2017. Vol. 545, num. 7653, p. 208 – 212. DOI : 10.1038/nature22072.Interfacial Kinetics of Efficient Perovskite Solar Cells
Crystals. 2017. Vol. 7, num. 8, p. 252. DOI : 10.3390/cryst7080252.Monovalent Cation Doping of CH3NH3PbI3 for Efficient Perovskite Solar Cells
Jove-Journal Of Visualized Experiments. 2017. num. 121, p. e55307. DOI : 10.3791/55307.Electrochemical Properties of Cu(II/I)-Based Redox Mediators for Dye-Sensitized Solar Cells
Electrochimica Acta. 2017. Vol. 227, p. 194 – 202. DOI : 10.1016/j.electacta.2016.12.185.Investigations on hybrid organic-inorganic perovskites for high performance solar cells
Lausanne, EPFL, 2017.Organic Dyes Containing Coplanar Dihexyl-Substituted Dithienosilole Groups for Efficient Dye-Sensitised Solar Cells
International Journal Of Photoenergy. 2017. p. 7594869. DOI : 10.1155/2017/7594869.Approaching truly sustainable solar cells by the use of water and cellulose derivatives
Green Chemistry. 2017. Vol. 19, num. 4, p. 1043 – 1051. DOI : 10.1039/c6gc02625g.All Solution-Processed, Hybrid Organic-Inorganic Photocathode for Hydrogen Evolution
Acs Omega. 2017. Vol. 2, num. 7, p. 3424 – 3431. DOI : 10.1021/acsomega.7b00558.Room temperature formation of organic-inorganic lead halide perovskites: design of nanostructured and highly reactive intermediates
Journal of Materials Chemistry A. 2017. Vol. 5, num. 7, p. 3599 – 3608. DOI : 10.1039/c6ta09845b.Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals
Nature Communications. 2017. Vol. 8, p. 15198. DOI : 10.1038/ncomms15198.A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes
Energy & Environmental Science. 2017. Vol. 10, num. 4, p. 912 – 918. DOI : 10.1039/c6ee03613a.Promises and challenges of perovskite solar cells
Science. 2017. Vol. 358, num. 6364, p. 739 – 744. DOI : 10.1126/science.aam6323.Significance of pi-bridge contribution in pyrido[3,4-b]pyrazine featured D-A-pi-A organic dyes for dye-sensitized solar cells
Materials Chemistry Frontiers. 2017. Vol. 1, num. 1, p. 181 – 189. DOI : 10.1039/c6qm00119j.Effect of Cs-Incorporated NiOx on the Performance of Perovskite Solar Cells
Acs Omega. 2017. Vol. 2, num. 12, p. 9074 – 9079. DOI : 10.1021/acsomega.7b01179.Understanding the Limit and Potential in Emerging Perovskite Solar Cells
2017. IEEE Electron Devices Technology and Manufacturing Conference (EDTM), Toyama, JAPAN, FEB 28-MAR 02, 2017. p. 15 – 16. DOI : 10.1109/EDTM.2017.7947503.Long term stability of air processed inkjet infiltrated carbon-based printed perovskite solar cells under intense ultra-violet light soaking
Journal of Materials Chemistry A. 2017. Vol. 5, num. 10, p. 4797 – 4802. DOI : 10.1039/c6ta10605f.Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes
Journal Of The American Chemical Society. 2017. Vol. 139, num. 33, p. 11537 – 11543. DOI : 10.1021/jacs.7b05184.Function Follows Form: Correlation between the Growth and Local Emission of Perovskite Structures and the Performance of Solar Cells
Advanced Functional Materials. 2017. Vol. 27, num. 26, p. 1701433. DOI : 10.1002/adfm.201701433.Spectroelectrochemical analysis of the mechanism of (photo)electrochemical hydrogen evolution at a catalytic interface
Nature Communications. 2017. Vol. 8, p. 14280. DOI : 10.1038/ncomms14280.Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells
Energy & Environmental Science. 2017. Vol. 10, num. 5, p. 1207 – 1212. DOI : 10.1039/c7ee00421d.Intrinsic and interfacial kinetics of perovskite solar cells under photo and bias-induced degradation and recovery
Journal of Materials Chemistry C. 2017. Vol. 5, num. 31, p. 7799 – 7805. DOI : 10.1039/c7tc02652h.Ultrathin Buffer Layers of SnO2 by Atomic Layer Deposition: Perfect Blocking Function and Thermal Stability
Journal Of Physical Chemistry C. 2017. Vol. 121, num. 1, p. 342 – 350. DOI : 10.1021/acs.jpcc.6b09965.Dopant-free star-shaped hole-transport materials for efficient and stable perovskite solar cells
Dyes And Pigments. 2017. Vol. 136, p. 273 – 277. DOI : 10.1016/j.dyepig.2016.08.002.New Insight into the Formation of Hybrid Perovskite Nanowires via Structure Directing Adducts
Chemistry Of Materials. 2017. Vol. 29, num. 2, p. 587 – 594. DOI : 10.1021/acs.chemmater.6b03965.High performance carbon-based printed perovskite solar cells with humidity assisted thermal treatment
Journal of Materials Chemistry A. 2017. Vol. 5, num. 24, p. 12060 – 12067. DOI : 10.1039/c7ta04132b.An Unsymmetrical, Push-Pull Porphyrazine for Dye-Sensitized Solar Cells
Chemphotochem. 2017. Vol. 1, num. 5, p. 164 – 166. DOI : 10.1002/cptc.201600004.Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials
Nano Energy. 2017. Vol. 41, p. 469 – 475. DOI : 10.1016/j.nanoen.2017.09.035.A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules
Nature. 2017. Vol. 550, num. 7674, p. 92 – 95. DOI : 10.1038/nature23877.Template enhanced organic inorganic perovskite heterojunction photovoltaic device
JP2017520931; US2017162811; CN106716664; EP3167496; KR20170030625; AU2015287324; AU2015287324; WO2016005868; EP2966703.
2017.Globularity-Selected Large Molecules for a New Generation of Multication Perovskites
Advanced Materials. 2017. Vol. 29, num. 38, p. 1702005. DOI : 10.1002/adma.201702005.Nondestructive Probing of Perovskite Silicon Tandem Solar Cells Using Multiwavelength Photoluminescence Mapping
Ieee Journal Of Photovoltaics. 2017. Vol. 7, num. 4, p. 1081 – 1086. DOI : 10.1109/Jphotov.2017.2688022.Pyridyl- and Picolinic Acid Substituted Zinc(II) Phthalocyanines for Dye-Sensitized Solar Cells
Chempluschem. 2017. Vol. 82, num. 7, p. 1057 – 1061. DOI : 10.1002/cplu.201700048.Redox Catalysis for Improved Counter-Electrode Kinetics in Dye-Sensitized Solar Cells
Chemelectrochem. 2017. Vol. 4, num. 6, p. 1356 – 1361. DOI : 10.1002/celc.201700103.Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%
Science. 2017. Vol. 358, num. 6364, p. 768 – 771. DOI : 10.1126/science.aam5655.Influence of Ionic Liquid Electrolytes on the Photovoltaic Performance of Dye-Sensitized Solar Cells
Energy Technology. 2017. Vol. 5, num. 2, p. 321 – 326. DOI : 10.1002/ente.201600308.Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals
Nature Communications. 2017. Vol. 8, p. 14350. DOI : 10.1038/ncomms14350.Isomer-Pure Bis-PCBM-Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability
Advanced Materials. 2017. Vol. 29, num. 17, p. 1606806. DOI : 10.1002/adma.201606806.Perovskite solar cell – electrochemical double layer capacitor interplay
Electrochimica Acta. 2017. Vol. 258, p. 825 – 833. DOI : 10.1016/j.electacta.2017.11.132.Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water-Splitting Devices
Chemsuschem. 2017. Vol. 10, num. 11, p. 2449 – 2456. DOI : 10.1002/cssc.201700159.The Rise of Highly Efficient and Stable Perovskite Solar Cells
Accounts Of Chemical Research. 2017. Vol. 50, num. 3, p. 487 – 491. DOI : 10.1021/acs.accounts.6b00492.Spontaneous crystal coalescence enables highly efficient perovskite solar cells
Nano Energy. 2017. Vol. 39, p. 24 – 29. DOI : 10.1016/j.nanoen.2017.06.037.Morphology Engineering: A Route to Highly Reproducible and High Efficiency Perovskite Solar Cells
Chemsuschem. 2017. Vol. 10, num. 7, p. 1624 – 1630. DOI : 10.1002/cssc.201601387.Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells
Energy & Environmental Science. 2017. Vol. 10, num. 2, p. 604 – 613. DOI : 10.1039/C6EE03352K.Cation Dynamics in Mixed-Cation (MA)(x)(FA)(1-x)PbI3 Hybrid Perovskites from Solid-State NMR
Journal Of The American Chemical Society. 2017. Vol. 139, num. 29, p. 10055 – 10061. DOI : 10.1021/jacs.7b04930.Room-Temperature Formation of Highly Crystalline Multication Perovskites for Efficient, Low-Cost Solar Cells
Advanced Materials. 2017. Vol. 29, num. 15, p. 1606258. DOI : 10.1002/adma.201606258.High efficiency large area perovskite solar cells and process for producing the same
CN109155366; JP7166613; KR102464556; US11355720; JP2019508902; US2019044080; EP3430655; CN109155366; KR20180122706; WO2017158551; EP3223323; WO2017158551.
2017.A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts
Materials Horizons. 2017. Vol. 4, num. 4, p. 625 – 632. DOI : 10.1039/c7mh00201g.Metal complex used as dopant and other usage
JP6568142; KR101957534; EP2678346; US10038150; EP2678346; US9779879; JP2017168450; CN103492402; JP6092787; CN103492401; US9559321; US2016233439; JP2014517807; JP2014513057; US2014060641; KR20140016298; KR20140015398; EP2678346; CN103492401; CN103492402; EP2678345; US2013330632; EP2551949; EP2511924; WO2012114316; WO2012114315; EP2492277.
2017.The Role of Rubidium in Multiple-Cation-Based High-Efficiency Perovskite Solar Cells
Advanced Materials. 2017. Vol. 29, num. 40, p. 1701077. DOI : 10.1002/adma.201701077.Novel highly active Pt/graphene catalyst for cathodes of Cu(II/I)-mediated dye-sensitized solar cells
2017. 11th International Symposium on Electrochemical Micro and Nanosystem Technologies (EMNT), Royal Belgian Inst Nat Sci, Brussels, BELGIUM, AUG 17-19, 2016. p. 167 – 175. DOI : 10.1016/j.electacta.2017.08.080.Air Processed Inkjet Infiltrated Carbon Based Printed Perovskite Solar Cells with High Stability and Reproducibility
Advanced Materials Technologies. 2017. Vol. 2, num. 1, p. 1600183. DOI : 10.1002/admt.201600183.Unraveling the Impact of Rubidium Incorporation on the Transport-Recombination Mechanisms in Highly Efficient Perovskite Solar Cells by Small-Perturbation Techniques
Journal Of Physical Chemistry C. 2017. Vol. 121, num. 45, p. 24903 – 24908. DOI : 10.1021/acs.jpcc.7b04766.Toward All Room-Temperature, Solution- Processed, High-Performance Planar Perovskite Solar Cells: A New Scheme of Pyridine-Promoted Perovskite Formation
Advanced Materials. 2017. Vol. 29, num. 13, p. 1604695. DOI : 10.1002/adma.201604695.One-Year stable perovskite solar cells by 2D/3D interface engineering
Nature Communications. 2017. Vol. 8, p. 15684. DOI : 10.1038/ncomms15684.Chemical Distribution of Multiple Cation (Rb+, Cs+, MA(+), and FA(+)) Perovskite Materials by Photoelectron Spectroscopy
Chemistry Of Materials. 2017. Vol. 29, num. 8, p. 3589 – 3596. DOI : 10.1021/acs.chemmater.7b00126.2016
Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells
Nature Communications. 2016. Vol. 7, p. 10379. DOI : 10.1038/ncomms10379.A New 1,3,4-Oxadiazole-Based Hole-Transport Material for Efficient CH3NH3PbBr3 Perovskite Solar Cells
Chemsuschem. 2016. Vol. 9, num. 7, p. 657 – 661. DOI : 10.1002/cssc.201501665.Hole transporting and light absorbing material for solid state solar cells
EP3094688; EP3094688; JP2017506621; EP3094688; US2016329162; CN106062086; KR20160111431; WO2015107454; EP2896660.
2016.Small molecule hole transporting material for optoelectronic and photoelectrochemical devices
CN107438597; JP6737798; US10680180; JP2018510149; US2018033973; EP3266050; CN107438597; KR20170130445; WO2016139570; EP3065190.
2016.A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells
Science. 2016. Vol. 353, num. 6294, p. 58 – 62. DOI : 10.1126/science.aaf8060.Tin oxide as stable protective layer for composite cuprous oxide water-splitting photocathodes
Nano Energy. 2016. Vol. 24, p. 10 – 16. DOI : 10.1016/j.nanoen.2016.03.022.Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells
Energy & Environmental Science. 2016. Vol. 9, num. 2, p. 461 – 466. DOI : 10.1039/c5ee03394b.Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells
Energy & Environmental Science. 2016. Vol. 9, num. 2, p. 656 – 662. DOI : 10.1039/C5EE03255E.Low-temperature Fabrication of Highly-Efficient, Optically-Transparent (FTO-free) Graphene Cathode for Co-Mediated Dye-Sensitized Solar Cells with Acetonitrile-free Electrolyte Solution
Electrochimica Acta. 2016. Vol. 195, p. 34 – 42. DOI : 10.1016/j.electacta.2016.02.097.New Insights Into the Role of Imidazolium-Based Promoters for the Electroreduction of CO2 on a Silver Electrode
Journal Of The American Chemical Society. 2016. Vol. 138, num. 25, p. 7820 – 7823. DOI : 10.1021/jacs.6b03366.Novel Blue Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-Based Electrolytes and by Co-Sensitization
ACS Applied Materials & Interfaces. 2016. Vol. 8, num. 48, p. 32797 – 32804. DOI : 10.1021/acsami.6b09671.Unveiling iodine-based electrolytes chemistry in aqueous dye-sensitized solar cells
Chemical Science. 2016. Vol. 7, num. 8, p. 4880 – 4890. DOI : 10.1039/c6sc01145d.Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature
Energy & Environmental Science. 2016. Vol. 9, num. 1, p. 81 – 88. DOI : 10.1039/c5ee02965a.Unbroken Perovskite: Interplay of Morphology, Electro-optical Properties, and Ionic Movement
Advanced Materials. 2016. Vol. 28, num. 25, p. 5031 – 5037. DOI : 10.1002/adma.201600624.Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%
Nano Energy. 2016. Vol. 23, p. 138 – 144. DOI : 10.1016/j.nanoen.2016.03.020.Polymer-based photocathodes with a solution-processable cuprous iodide anode layer and a polyethyleneimine protective coating
Energy & Environmental Science. 2016. Vol. 9, num. 12, p. 3710 – 3723. DOI : 10.1039/c6ee01655c.Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells
Nano Energy. 2016. Vol. 30, p. 517 – 522. DOI : 10.1016/j.nanoen.2016.10.055.Bipolar Membrane-Assisted Solar Water Splitting in Optimal pH
Advanced Energy Materials. 2016. Vol. 6, num. 13, p. 1600100. DOI : 10.1002/aenm.201600100.Enhancing Efficiency of Perovskite Solar Cells via N-doped Graphene: Crystal Modification and Surface Passivation
Advanced Materials. 2016. Vol. 28, num. 39, p. 8681 – 8686. DOI : 10.1002/adma.201602785.Molecular Origin and Electrochemical Influence of Capacitive Surface States on Iron Oxide Photoanodes
Journal Of Physical Chemistry C. 2016. Vol. 120, num. 6, p. 3250 – 3258. DOI : 10.1021/acs.jpcc.5b08013.Molecular Design Principles for Near-Infrared Absorbing and Emitting Indolizine Dyes
Chemistry-A European Journal. 2016. Vol. 22, num. 43, p. 15536 – 15542. DOI : 10.1002/chem.201603165.Molecular Engineering of Potent Sensitizers for Very Efficient Light Harvesting in Thin-Film Solid-State Dye-Sensitized Solar Cells
Journal Of The American Chemical Society. 2016. Vol. 138, num. 34, p. 10742 – 10745. DOI : 10.1021/jacs.6b05281.Thieno[3,4-b]pyrazine as an Electron Deficient pi-Bridge in D-A-pi-A DSCs
ACS Applied Materials & Interfaces. 2016. Vol. 8, num. 8, p. 5376 – 5384. DOI : 10.1021/acsami.5b12503.A Novel Dopant-Free Triphenylamine Based Molecular “Butterfly” Hole-Transport Material for Highly Efficient and Stable Perovskite Solar Cells
Advanced Energy Materials. 2016. Vol. 6, num. 14, p. 1600401. DOI : 10.1002/aenm.201600401.Inverted solar cell and process for producing the same
PL3044817; ES2907076; EP3044817; DK3044817; EP3044817; US10665800; JP6526013; CN105900255; JP2016532314; CN105900255; US2016226011; EP3044817; WO2015036905; EP2846371.
2016.Vector Control in Developing Countries: Challenges and Solutions
Chimia. 2016. Vol. 70, num. 10, p. 709 – 714. DOI : 10.2533/chimia.2016.709.Lead-Free MA(2)CuCl(x)Br(4-x), Hybrid Perovskites
Inorganic Chemistry. 2016. Vol. 55, num. 3, p. 1044 – 1052. DOI : 10.1021/acs.inorgchem.5b01896.Introducing rigid pi-conjugated peripheral substituents in phthalocyanines for DSSCs
Journal Of Porphyrins And Phthalocyanines. 2016. Vol. 20, num. 8-11, p. 1361 – 1367. DOI : 10.1142/S1088424616501121.High Absorption Coefficient Cyclopentadithiophene Donor-Free Dyes for Liquid and Solid-State Dye-Sensitized Solar Cells
Journal of Physical Chemistry C. 2016. Vol. 120, num. 28, p. 15027 – 15034. DOI : 10.1021/acs.jpcc.6b03610.Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells
Energy & Environmental Science. 2016. Vol. 9, num. 5, p. 1706 – 1724. DOI : 10.1039/c6ee00030d.Solar cell and process for producing the same
KR102258500; JP6616291; AU2014285760; CN105493213; US10332689; EP3017456; EP3017456; AU2014285760; JP2016530703; US2016141112; EP3017456; CN105493213; KR20160029790; WO2015001459; EP2822009.
2016.Inverted Current-Voltage Hysteresis in Mixed Perovskite Solar Cells: Polarization, Energy Barriers, and Defect Recombination
Advanced Energy Materials. 2016. Vol. 6, num. 19, p. 1600396. DOI : 10.1002/aenm.201600396.Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells
Journal Of The American Chemical Society. 2016. Vol. 138, num. 49, p. 15821 – 15824. DOI : 10.1021/jacs.6b10049.Influence of the Adsorption of Phycocyanin on the Performance in DSS Cells: and Electrochemical and QCM Evaluation
International Journal Of Electrochemical Science. 2016. Vol. 11, num. 5, p. 3604 – 3614. DOI : 10.20964/110443.Copper Phenanthroline as a Fast and High-Performance Redox Mediator for Dye-Sensitized Solar Cells
Journal Of Physical Chemistry C. 2016. Vol. 120, num. 18, p. 9595 – 9603. DOI : 10.1021/acs.jpcc.6b01658.A New Design Paradigm for Smart Windows: Photocurable Polymers for Quasi-Solid Photoelectrochromic Devices with Excellent Long-Term Stability under Real Outdoor Operating Conditions
Advanced Functional Materials. 2016. Vol. 26, num. 7, p. 1127 – 1137. DOI : 10.1002/adfm.201503762.Beyond Vibrationally Mediated Electron Transfer: Coherent Phenomena Induced by Ultrafast Charge Separation
Journal of Physical Chemistry C. 2016. Vol. 120, p. 8534 – 8539. DOI : 10.1021/acs.jpcc.6b02012.Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency
Energy & Environmental Science. 2016. Vol. 9, num. 6, p. 1989 – 1997. DOI : 10.1039/c5ee03874j.Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells
Journal Of Optics. 2016. Vol. 18, num. 6, p. 064012. DOI : 10.1088/2040-8978/18/6/064012.A novel one-step synthesized and dopant-free hole transport material for efficient and stable perovskite solar cells
Journal of Materials Chemistry A. 2016. Vol. 4, num. 42, p. 16330 – 16334. DOI : 10.1039/c6ta05254a.Impact of a Mesoporous Titania-Perovskite Interface on the Performance of Hybrid Organic-Inorganic Perovskite Solar Cells
The Journal of Physical Chemistry Letters. 2016. Vol. 7, num. 16, p. 3264 – 3269. DOI : 10.1021/acs.jpclett.6b01617.Growth Engineering of CH3NH3PbI3 Structures for High-Efficiency Solar Cells
Advanced Energy Materials. 2016. Vol. 6, num. 2, p. 1501358. DOI : 10.1002/aenm.201501358.Ultrafast charge separation dynamics in opaque, operational dye-sensitized solar cells revealed by femtosecond diffuse reflectance spectroscopy
Scientific Reports. 2016. Vol. 6, p. 24465. DOI : 10.1038/srep24465.Enhanced Efficiency and Stability of Perovskite Solar Cells Through Nd-Doping of Mesostructured TiO2
Advanced Energy Materials. 2016. Vol. 6, num. 2, p. 1501868. DOI : 10.1002/aenm.201501868.A Computational and Experimental Study of Thieno[3,4-b]thiophene as a Proaromatic pi-Bridge in Dye-Sensitized Solar Cells
Chemistry-A European Journal. 2016. Vol. 22, num. 2, p. 694 – 703. DOI : 10.1002/chem.201503187.Optical analysis of CH3NH3SnxPb1-I-x(3) absorbers: a roadmap for perovskite-on-perovskite tandem solar cells
Journal of Materials Chemistry A. 2016. Vol. 4, num. 29, p. 11214 – 11221. DOI : 10.1039/c6ta04840d.Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells
Frontiers Of Optoelectronics. 2016. Vol. 9, num. 1, p. 3 – 37. DOI : 10.1007/s12200-016-0563-x.Synthesis and optoelectronic properties of chemically modified bi-fluorenylidenes
Journal of Materials Chemistry C. 2016. Vol. 4, p. 3798 – 3808. DOI : 10.1039/C5TC03501E.Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide
Energy & Environmental Science. 2016. Vol. 9, num. 10, p. 3128 – 3134. DOI : 10.1039/c6ee02390h.Preface to the special issue on Mesoscopic Solar Cells
Frontiers Of Optoelectronics. 2016. Vol. 9, num. 1, p. 1 – 2. DOI : 10.1007/s12200-016-0605-4.Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers
Science. 2016. Vol. 354, num. 6309, p. 203 – 206. DOI : 10.1126/science.aah4046.High Solar Flux Concentration Water Splitting with Hematite ( alpha-Fe2O3) Photoanodes
Advanced Energy Materials. 2016. Vol. 6, num. 1, p. 1500817. DOI : 10.1002/aenm.201500817.Hole-Transport Materials for Perovskite Solar Cells
Angewandte Chemie International Edition. 2016. Vol. 55, num. 47, p. 14522 – 14545. DOI : 10.1002/anie.201601757.Solution-Processed Tin-Based Perovskite for Near-Infrared Lasing
Advanced Materials. 2016. Vol. 28, num. 37, p. 8191 – 8196. DOI : 10.1002/adma.201601418.Functional hole transport materials for optoelectronic and/or electrochemical devices
US10727414; US2018190911; WO2016207775; EP3109912.
2016.Band Alignment Engineering at Cu2O/ZnO Heterointerfaces
ACS Applied Materials & Interfaces. 2016. Vol. 8, num. 33, p. 21824 – 21831. DOI : 10.1021/acsami.6b07325.Synthesis, characterization and ab initio investigation of a panchromatic ullazine–porphyrin photosensitizer for dye-sensitized solar cells
Journal of Materials Chemistry A. 2016. Vol. 4, num. 6, p. 2332 – 2339. DOI : 10.1039/C5TA08728G.Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells
Nature Communications. 2016. Vol. 7, p. 10334. DOI : 10.1038/ncomms10334.Identifying Fundamental Limitations in Halide Perovskite Solar Cells
Advanced Materials. 2016. Vol. 28, num. 12, p. 2439 – 2445. DOI : 10.1002/adma.201505480.Mesoscopic framework for organic-inorganic perovskite based photoelectric conversion device and method for manufacturing the same
EP3172776; EP3172776; US10515767; US2017213651; EP3172776; CN104124291; WO2016012987; CN104124291.
2016.The electronic, chemical and electrocatalytic processes and intermediates on iron oxide surfaces during photoelectrochemical water splitting
Catalysis Today. 2016. Vol. 260, p. 72 – 81. DOI : 10.1016/j.cattod.2015.07.024.Hole transporting and light absorbing material for solid state solar cells
JP2017505995; EP3100313; US2016351342; CN106062984; KR20160114611; WO2015114521; EP2903047.
2016.Hybrid organic-inorganic H-2-evolving photocathodes: understanding the route towards high performance organic photoelectrochemical water splitting
Journal of Materials Chemistry A. 2016. Vol. 4, num. 6, p. 2178 – 2187. DOI : 10.1039/c5ta09330a.Dye-sensitized solar cells with inkjet-printed dyes
Energy & Environmental Science. 2016. Vol. 9, num. 7, p. 2453 – 2462. DOI : 10.1039/c6ee00826g.Porphyrin based sensitizer for dye-sensitized solar cell
EP3080206; EP3080206; JP6510527; CN105980484; US9812658; JP2017502004; US2016308150; EP3080206; CN105980484; KR20160098409; WO2015087210; EP2883915.
2016.