2025
Non-regular Inference: Universal Inference and Discrete Profiling
Lausanne, EPFL, 2025.Structural equation models for multivariate extremes
Lausanne, EPFL, 2025.2024
Anthony C. Davison and Raphael de Fondeville’s contribution to the Discussion of ‘Inference for extreme spatial temperature events in a changing climate with application to Ireland’ by Healy et al.
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS. 2024. Vol. 74, num. 2. DOI : 10.1093/jrsssc/qlae081.BAYESIAN MODELING OF INSURANCE CLAIMS FOR HAIL DAMAGE
Annals of Applied Statistics. 2024. Vol. 18, num. 4, p. 3091 – 3108. DOI : 10.1214/24-AOAS1925.Correlation of powers of Hüsler-Reiss vectors and Brown-Resnick fields, and application to insured wind losses
Extremes. 2024. DOI : 10.1007/s10687-023-00474-w.Anthony C Davison and Igor Rodionov’s contribution to the Discussion of ‘Estimating means of bounded random variables by betting’ by Waudby-Smith and Ramdas
Journal Of The Royal Statistical Society Series B-Statistical Methodology. 2024. Vol. 86, num. 1. DOI : 10.1093/jrsssb/qkad118.Flexible Statistical Inference for Multivariate Extremes
Lausanne, EPFL, 2024.Space-Time Extremes of Severe U.S. Thunderstorm Environments
Journal of the American Statistical Association. 2024. DOI : 10.1080/01621459.2024.2421582.2023
Valerie Chavez-Demoulin, Anthony C Davison and Erwan Koch’s contribution to the Discussion of ‘The First Discussion Meeting on Statistical aspects of climate change’
Journal Of The Royal Statistical Society Series C-Applied Statistics. 2023. Vol. 72, num. 4, p. 856 – 857. DOI : 10.1093/jrsssc/qlad051.Improved inference for a boundary parameter
Canadian Journal Of Statistics-Revue Canadienne De Statistique. 2023. DOI : 10.1002/cjs.11791.Timing and spatial selection bias in rapid extreme event attribution
Weather And Climate Extremes. 2023. Vol. 41, p. 100584. DOI : 10.1016/j.wace.2023.100584.Plant sterols and cholesterol metabolism are associated with five-year cognitive decline in the elderly population
Iscience. 2023. Vol. 26, num. 6, p. 106740. DOI : 10.1016/j.isci.2023.106740.Some Reminiscences of David Cox
HARVARD DATA SCIENCE REVIEW. 2023. num. 2. DOI : 10.1162/99608f92.85038493.Gradient boosting with extreme-value theory for wildfire prediction
Extremes. 2023. DOI : 10.1007/s10687-022-00454-6.Spatiotemporal wildfire modeling through point processes with moderate and extreme marks
The Annals of Applied Statistics. 2023. Vol. 17, num. 1, p. 560 – 582. DOI : 10.1214/22-AOAS1642.Wind, Hail, and Climate Extremes: Modelling and Attribution Studies for Environmental Data
Lausanne, EPFL, 2023.Higher Order Asymptotics: Applications to Satellite Conjunction and Boundary Problems
Lausanne, EPFL, 2023.2022
Causal modelling of heavy-tailed variables and confounders with application to river flow
Extremes. 2022. DOI : 10.1007/s10687-022-00456-4.A note on universal inference
Stat. 2022. Vol. 11, num. 1, p. e501. DOI : 10.1002/sta4.501.Downscaling of Historical Wind Fields over Switzerland Using Generative Adversarial Networks
Artificial Intelligence for the Earth Systems. 2022. Vol. 1, num. 4, p. e220018. DOI : 10.1175/AIES-D-22-0018.1.Space Oddity? A Statistical Formulation of Conjunction Assessment
Journal Of Guidance Control And Dynamics. 2022. DOI : 10.2514/1.G006282.Stochastic derivative estimation for max-stable random fields
European Journal Of Operational Research. 2022. Vol. 302, num. 2, p. 575 – 588. DOI : 10.1016/j.ejor.2021.12.026.Improved Inference On Risk Measures For Univariate Extremes
Annals Of Applied Statistics. 2022. Vol. 16, num. 3, p. 1524 – 1549. DOI : 10.1214/21-AOAS1555.Tail Risk Inference via Expectiles in Heavy-Tailed Time Series
Journal Of Business & Economic Statistics. 2022. DOI : 10.1080/07350015.2022.2078332.Functional peaks-over-threshold analysis
Journal Of The Royal Statistical Society Series B-Statistical Methodology. 2022. DOI : 10.1111/rssb.12498.Influence of advanced footwear technology on sub-2 hour marathon and other top running performances
Journal Of Quantitative Analysis In Sports. 2022. Vol. 18, num. 1, p. 73 – 86. DOI : 10.1515/jqas-2021-0043.Is There a Cap on Longevity? A Statistical Review
Annual Review Of Statistics And Its Application. 2022. Vol. 9, p. 21 – 45. DOI : 10.1146/annurev-statistics-040120-025426.Ecological momentary assessment of emotional processing: An exploratory analysis comparing daily life and a psychotherapy analogue session
Counselling & Psychotherapy Research. 2022. Vol. 22, num. 2, p. 345 – 356. DOI : 10.1002/capr.12455.Spatiotemporal modelling of extreme wildfires and severe thunderstorm environments
Lausanne, EPFL, 2022.2021
Wildlife trafficking via social media in Brazil
Biological Conservation. 2021. Vol. 265, p. 109420. DOI : 10.1016/j.biocon.2021.109420.Study protocol for the ETMED-L project: longitudinal study of mental health and interpersonal competence of medical students in a Swiss university using a comprehensive framework of empathy
Bmj Open. 2021. Vol. 11, num. 12, p. e053070. DOI : 10.1136/bmjopen-2021-053070.Human mortality at extreme age
Royal Society Open Science. 2021. Vol. 8, num. 9, p. 202097. DOI : 10.1098/rsos.202097.Sub‐asymptotic motivation for new conditional multivariate extreme models
Stat. 2021. Vol. 10, num. 1, p. e401. DOI : 10.1002/sta4.401.Predicting involuntary hospitalization in psychiatry: A machine learning investigation
European Psychiatry. 2021. Vol. 64, num. 1, p. e48. DOI : 10.1192/j.eurpsy.2021.2220.Trends in the Extremes of Environments Associated with Severe US Thunderstorms
Journal Of Climate. 2021. Vol. 34, num. 4, p. 1259 – 1272. DOI : 10.1175/JCLI-D-19-0826.1.Practical issues with modeling extreme Brazilian rainfall
Brazilian Journal Of Probability And Statistics. 2021. Vol. 35, num. 1, p. 21 – 36. DOI : 10.1214/20-BJPS495.Multivariate extremes over a random number of observations
Scandinavian Journal Of Statistics. 2021. Vol. 48, num. 3, p. 845 – 880. DOI : 10.1111/sjos.12463.Estimating an extreme Bayesian network via scalings
Journal Of Multivariate Analysis. 2021. Vol. 181, p. 104672. DOI : 10.1016/j.jmva.2020.104672.Parameter estimation for discretely observed linear birth-and-death processes
Biometrics. 2021. Vol. 77, p. 186 – 196. DOI : 10.1111/biom.13282.Max-infinitely divisible models and inference for spatial extremes
Scandinavian Journal Of Statistics. 2021. Vol. 48, num. 1, p. 321 – 348. DOI : 10.1111/sjos.12491.2020
Special Issue: “Data Science versus Classical Inference: Prediction, Estimation, and Attribution”, honouring Prof. Brad Efron’s International Prize in Statistics in 2019 Discussion
International Statistical Review. 2020. Vol. 88, p. S70 – S72. DOI : 10.1111/insr.12410.The challenges of impact evaluation: Attempting to measure the effectiveness of community-based disaster risk management
International Journal of Disaster Risk Reduction. 2020. Vol. 49, p. 101732. DOI : 10.1016/j.ijdrr.2020.101732.Simultaneous autoregressive models for spatial extremes
Environmetrics. 2020. p. e2656. DOI : 10.1002/env.2656.An unethical optimization principle
Royal Society Open Science. 2020. Vol. 7, num. 7, p. 200462. DOI : 10.1098/rsos.200462.A fully joint Bayesian quantitative trait locus mapping of human protein abundance in plasma
Plos Computational Biology. 2020. Vol. 16, num. 6, p. e1007882. DOI : 10.1371/journal.pcbi.1007882.A Global-Local Approach For Detecting Hotspots In Multiple-Response Regression
Annals Of Applied Statistics. 2020. Vol. 14, num. 2, p. 905 – 928. DOI : 10.1214/20-AOAS1332.Discussion
Journal Of The American Statistical Association. 2020. Vol. 115, num. 530, p. 663 – 664. DOI : 10.1080/01621459.2020.1762616.Strong convergence of multivariate maxima
Journal Of Applied Probability. 2020. Vol. 57, num. 1, p. 314 – 331. DOI : 10.1017/jpr.2019.100.Linking micro and macroevolution in the presence of migration
Journal Of Theoretical Biology. 2020. Vol. 486, p. 110087. DOI : 10.1016/j.jtbi.2019.110087.Inference on the Angular Distribution of Extremes
Lausanne, EPFL, 2020.2019
Exploration and Inference in Spatial Extremes Using Empirical Basis Functions
Journal Of Agricultural Biological And Environmental Statistics. 2019. Vol. 24, num. 4, p. 555 – 572. DOI : 10.1007/s13253-019-00359-1.Comment: Models Are Approximations!
Statistical Science. 2019. Vol. 34, num. 4, p. 584 – 590. DOI : 10.1214/19-STS746.Extinction In Lower Hessenberg Branching Processes With Countably Many Types
Annals Of Applied Probability. 2019. Vol. 29, num. 5, p. 2782 – 2818. DOI : 10.1214/19-AAP1464.Decompositions of dependence for high-dimensional extremes
Biometrika. 2019. Vol. 106, num. 3, p. 587 – 604. DOI : 10.1093/biomet/asz028.A central limit theorem for functions of stationary max-stable random fields on R-d
Stochastic Processes And Their Applications. 2019. Vol. 129, num. 9, p. 3406 – 3430. DOI : 10.1016/j.spa.2018.09.014.A nonparametric method for producing isolines of bivariate exceedance probabilities
Extremes. 2019. Vol. 22, num. 3, p. 373 – 390. DOI : 10.1007/s10687-019-00348-0.Fitting Markovian binary trees using global and individual demographic data
Theoretical Population Biology. 2019. Vol. 128, p. 39 – 50. DOI : 10.1016/j.tpb.2019.04.007.The time-dependent expected reward and deviation matrix of a finite QBD process
Linear Algebra And Its Applications. 2019. Vol. 570, p. 61 – 92. DOI : 10.1016/j.laa.2019.02.002.Spatial Risk Measures and Rate of Spatial Diversification
Risks. 2019. Vol. 7, num. 2, p. 52. DOI : 10.3390/risks7020052.Extremal behaviour of aggregated data with an application to downscaling
Biometrika. 2019. Vol. 106, num. 1, p. 127 – 144. DOI : 10.1093/biomet/asy052.A pathwise approach to the extinction of branching processes with countably many types
Stochastic Processes And Their Applications. 2019. Vol. 129, num. 3, p. 713 – 739. DOI : 10.1016/j.spa.2018.03.013.Genome-wide gene-based analyses of weight loss interventions identify a potential role for NKX6.3 in metabolism
Nature Communications. 2019. Vol. 10, p. 540. DOI : 10.1038/s41467-019-08492-8.Geometric ergodicity for some space-time max-stable Markov chains
Statistics & Probability Letters. 2019. Vol. 145, p. 43 – 49. DOI : 10.1016/j.spl.2018.06.014.Large-scale variational inference for Bayesian joint regression modelling of high-dimensional genetic data
Lausanne, EPFL, 2019.Fast Automatic Smoothing for Generalized Additive Models
Journal of Machine Learning Research. 2019. Vol. 20, p. 173.Contributions to Likelihood-Based Modelling of Extreme Values
Lausanne, EPFL, 2019.Automatic L2 Regularization for Multiple Generalized Additive Models
Lausanne, EPFL, 2019.2018
Dependence properties of spatial rainfall extremes and areal reduction factors
Journal of Hydrology. 2018. Vol. 565, p. 711 – 719. DOI : 10.1016/j.jhydrol.2018.08.061.High-dimensional peaks-over-threshold inference
Biometrika. 2018. Vol. 105, num. 3, p. 575 – 592. DOI : 10.1093/biomet/asy026.‘The life of man, solitary, poore, nasty, brutish, and short’: Discussion of the paper by Rootzen and Zholud
Extremes. 2018. Vol. 21, num. 3, p. 365 – 372. DOI : 10.1007/s10687-018-0329-5.Optimal regionalization of extreme value distributions for flood estimation
JOURNAL OF HYDROLOGY. 2018. Vol. 556, p. 182 – 193. DOI : 10.1016/j.jhydrol.2017.10.051.Functional Peaks-Over-Threshold Analysis for Complex Extreme Events
Lausanne, EPFL, 2018.Semiparametric Bayesian Risk Estimation for Complex Extremes
Lausanne, EPFL, 2018.Automatic module selection from several microarray gene expression studies
BIOSTATISTICS. 2018. Vol. 19, num. 2, p. 153 – 168. DOI : 10.1093/biostatistics/kxx032.2017
A Functional Framework for Enhanced Ultrasound Imaging
2017.Quasi-random numbers for copula models
Statistics And Computing. 2017. Vol. 27, num. 5, p. 1307 – 1329. DOI : 10.1007/s11222-016-9688-4.Modelling across extremal dependence classes
Journal Of The Royal Statistical Society Series B-Statistical Methodology. 2017. Vol. 79, num. 1, p. 149 – 175. DOI : 10.1111/rssb.12157.Extremal attractors of Liouville copulas
Journal of Multivariate Analysis. 2017. Vol. 160, p. 68 – 92. DOI : 10.1016/j.jmva.2017.05.008.Bridging asymptotic independence and dependence in spatial extremes using Gaussian scale mixtures
Spatial Statistics. 2017. Vol. 21, p. 166 – 186. DOI : 10.1016/j.spasta.2017.06.004.Robust Bounds In Multivariate Extremes
Annals Of Applied Probability. 2017. Vol. 27, num. 6, p. 3706 – 3734. DOI : 10.1214/17-Aap1294.Efficient inference for genetic association studies with multiple outcomes
Biostatistics. 2017. Vol. 18, num. 4, p. 618 – 636. DOI : 10.1093/biostatistics/kxx007.Generalized Pickands constants and stationary max-stable processes
Extremes. 2017. Vol. 20, num. 3, p. 493 – 517. DOI : 10.1007/s10687-017-0289-1.Contributions to Modelling Extremes of Spatial Data
Lausanne, EPFL, 2017.2016
A Bayesian view of doubly robust causal inference
Biometrika. 2016. Vol. 103, num. 3, p. 667 – 681. DOI : 10.1093/biomet/asw025.A characterization of the normal distribution using stationary max-stable processes
Extremes. 2016. Vol. 19, num. 1, p. 1 – 6. DOI : 10.1007/s10687-015-0235-z.A Levy-derived process seen from its supremum and max-stable processes
Electronic Journal Of Probability. 2016. Vol. 21, p. 14. DOI : 10.1214/16-Ejp1112.The roles of coupling and the deviation matrix in determining the value of capacity in M/M/1/C queues
Queueing Systems. 2016. Vol. 83, num. 1-2, p. 157 – 179. DOI : 10.1007/s11134-016-9480-3.Likelihood estimators for multivariate extremes
Extremes. 2016. Vol. 19, num. 1, p. 79 – 103. DOI : 10.1007/s10687-015-0230-4.Bayesian uncertainty management in temporal dependence of extremes
Extremes. 2016. Vol. 19, num. 3, p. 491 – 515. DOI : 10.1007/s10687-016-0258-0.Lyapunov Exponents for Branching Processes in a Random Environment: The Effect of Information
Journal Of Statistical Physics. 2016. Vol. 163, num. 2, p. 393 – 410. DOI : 10.1007/s10955-016-1474-3.Exact simulation of max-stable processes
Biometrika. 2016. Vol. 103, num. 2, p. 303 – 317. DOI : 10.1093/biomet/asw008.ODE parameter estimation through a runner’s model application
2016.Bayesian Inference For The Brown-Resnick Process, With An Application To Extreme Low Temperatures
Annals of Applied Statistics. 2016. Vol. 10, num. 4, p. 2303 – 2324. DOI : 10.1214/16-Aoas980.2015
Likelihood Estimation for the INAR(p) Model by Saddlepoint Approximation
Journal Of The American Statistical Association. 2015. Vol. 110, num. 511, p. 1229 – 1238. DOI : 10.1080/01621459.2014.983230.Max-stable processes and stationary systems of Levy particles
Stochastic Processes And Their Applications. 2015. Vol. 125, num. 11, p. 4272 – 4299. DOI : 10.1016/j.spa.2015.07.001.Extremal behavior of squared Bessel processes attracted by the Brown-Resnick process
Stochastic Processes And Their Applications. 2015. Vol. 125, num. 2, p. 780 – 796. DOI : 10.1016/j.spa.2014.09.006.Objective Bayesian Model Selection
2015
A simple model-based approach to variable selection in classification and clustering
Canadian Journal Of Statistics-Revue Canadienne De Statistique. 2015. Vol. 43, num. 2, p. 157 – 175. DOI : 10.1002/cjs.11241.Meta-analysis of incomplete microarray studies
Biostatistics. 2015. Vol. 16, num. 4, p. 686 – 700. DOI : 10.1093/biostatistics/kxv014.Statistics of Extremes
Annual Review Of Statistics And Its Application; Palo Alto: Annual Reviews, 2015. p. 203 – 235.2014
Meta-analysis of Incomplete Microarray Studies
Lausanne, EPFL, 2014.Space-time modelling of extreme events
Journal Of The Royal Statistical Society Series B-Statistical Methodology. 2014. Vol. 76, num. 2, p. 439 – 461. DOI : 10.1111/rssb.12035.Additive Smooth Modelling with Splines
2014
Accurate Directional Inference for Vector Parameters in Linear Exponential Families
Journal Of The American Statistical Association. 2014. Vol. 109, num. 505, p. 302 – 314. DOI : 10.1080/01621459.2013.839451.Spectral Density Ratio Models for Multivariate Extremes
Journal Of The American Statistical Association. 2014. Vol. 109, num. 506, p. 764 – 776. DOI : 10.1080/01621459.2013.872651.Measuring the relative effect of factors affecting species distribution model predictions
Methods In Ecology And Evolution. 2014. Vol. 5, num. 9, p. 947 – 955. DOI : 10.1111/2041-210X.12203.Efficient inference for spatial extreme value processes associated to log-Gaussian random functions
Biometrika. 2014. Vol. 101, num. 1, p. 1 – 15. DOI : 10.1093/biomet/ast042.Heavy-tail Phenomena: Spatio-temporal Extremal Dependence
2014
Contributions to Spatial Statistics : Species Distributions and Rare Events
Lausanne, EPFL, 2014.2013
Bayesian Semiparametrics for Modelling the Clustering of Extreme Values
2013.Composite likelihood estimation for the Brown–Resnick process
Biometrika. 2013. Vol. 100, num. 2, p. 511 – 518. DOI : 10.1093/biomet/ass089.A new representation for multivariate tail probabilities
Bernoulli. 2013. Vol. 19, num. 5B, p. 2689 – 2714. DOI : 10.3150/12-Bej471.Statistical Modeling and Inference for Spatio-Temporal Extremes
Lausanne, EPFL, 2013.Nonstationary Positive Definite Tapering On The Plane
Journal Of Computational And Graphical Statistics. 2013. Vol. 22, num. 4, p. 848 – 865. DOI : 10.1080/10618600.2012.729982.Spectral modeling of time series with missing data
Applied Mathematical Modelling. 2013. Vol. 37, num. 7, p. 4676 – 4684. DOI : 10.1016/j.apm.2012.09.040.Geostatistics of Dependent and Asymptotically Independent Extremes
Mathematical Geosciences. 2013. Vol. 45, num. 5, p. 511 – 529. DOI : 10.1007/s11004-013-9469-y.Threshold modeling of extreme spatial rainfall
Water Resources Research. 2013. Vol. 49, num. 8, p. 4633 – 4644. DOI : 10.1002/wrcr.20329.From pointwise testing to a regional vision: An integrated statistical approach to detect nonstationarity in extreme daily rainfall. Application to the Sahelian region
Journal of Geophysical Research: Atmospheres. 2013. Vol. 118, num. 15, p. 8222 – 8237. DOI : 10.1002/jgrd.50340.A Euclidean Likelihood Estimator for Bivariate Tail Dependence
Communications in Statistics – Theory and Methods. 2013. Vol. 42, num. 7, p. 1176 – 1192. DOI : 10.1080/03610926.2012.709905.On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 2: The effects of the El Nino/Southern Oscillation, volcanic eruptions and contributions of atmospheric dynamics and chemistry to long-term total ozone changes
Atmospheric Chemistry And Physics. 2013. Vol. 13, num. 1, p. 165 – 179. DOI : 10.5194/acp-13-165-2013.On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 1: Statistical models and spatial fingerprints of atmospheric dynamics and chemistry
Atmospheric Chemistry And Physics. 2013. Vol. 13, num. 1, p. 147 – 164. DOI : 10.5194/acp-13-147-2013.2012
Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics
Climatic Change. 2012. Vol. 111, p. 705 – 721. DOI : 10.1007/s10584-011-0159-9.From sensor networks to connected analysis tools
2012. European Geosciences Union General Assembly 2012, Vienna, Austria, April 22-27, 2012.Modelling Time Series Extremes
Revstat-Statistical Journal. 2012. Vol. 10, p. 109 – 133.Geostatistics of extremes
Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences. 2012. Vol. 468, p. 581 – 608. DOI : 10.1098/rspa.2011.0412.Anti-glycan antibodies in epithelial ovarian cancer
2012. p. S29 – S29.A generalization of the Solis-Wets method
Journal Of Statistical Planning And Inference. 2012. Vol. 142, p. 633 – 644. DOI : 10.1016/j.jspi.2011.08.016.Tracking the US business cycle with a singular spectrum analysis
Economics Letters. 2012. Vol. 114, p. 32 – 35. DOI : 10.1016/j.econlet.2011.09.007.High-Dimensional Bayesian Clustering with Variable Selection: The R Package bclust
Journal Of Statistical Software. 2012. Vol. 47, p. 1 – 22. DOI : 10.18637/jss.v047.i05.Bayesian inference from composite likelihoods, with an application to spatial extremes
Statistica Sinica. 2012. Vol. 22, num. 2, p. 813 – 845. DOI : 10.5705/ss.2009.248.A case study of a “Dragon-King”: The 1999 Venezuelan catastrophe
European Physical Journal-Special Topics. 2012. Vol. 205, p. 131 – 146. DOI : 10.1140/epjst/e2012-01566-6.Digging out the PPP hypothesis: an integrated empirical coverage
Empirical Economics. 2012. Vol. 42, p. 713 – 744. DOI : 10.1007/s00181-010-0441-0.Diabetes imaging — quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy
Biomedical Optics Express. 2012. Vol. 3, num. 6, p. 1365 – . DOI : 10.1364/BOE.3.001365.Bivariate Extreme Statistics, Ii
Revstat-Statistical Journal. 2012. Vol. 10, p. 83 – 107.A dimension reduction technique for estimation in linear mixed models
2012. Conference of the LinStat, Tomar, PORTUGAL, Jul 27-31, 2010. p. 219 – 226. DOI : 10.1080/00949655.2011.604032.Statistical Modeling of Spatial Extremes
Statistical Science. 2012. Vol. 27, p. 161 – 186. DOI : 10.1214/11-STS376.Statistical Analysis of Mountain Permafrost Temperatures
Lausanne, EPFL, 2012.Open Support Platform for Environmental Research (OSPER)-tools for the discovery and exploitation of environmental data
2012. AGU Fall Meeting.Serum antiglycan antibody detection of nonmucinous ovarian cancers by using a printed glycan array
International Journal Of Cancer. 2012. Vol. 130, p. 138 – 146. DOI : 10.1002/ijc.26002.Extreme rainfall in West Africa: A regional modeling
Water Resources Research. 2012. Vol. 48, num. 8, p. W08501. DOI : 10.1029/2012Wr012052.Extremes: spatial parametric modeling
Encyclopedia of Environmetrics Second Edition; Chichester, UK: John Wiley, 2012. p. 984 – 990.Statistical modelling of ground temperature in mountain permafrost
Proceedings Of The Royal Society A-Mathematical Physical And Engineering Sciences. 2012. Vol. 468, p. 1472 – 1495. DOI : 10.1098/rspa.2011.0615.2011
Discussion of `Threshold modelling of spatially dependent non-stationary extremes with application to hurricane-induced wave heights’ by P. J. Northrop and P. Jonathan
Environmetrics. 2011. Vol. 22, p. 810 – 812. DOI : 10.1002/env.1125.Spatial modelling of extreme snow depth
Annals of Applied Statistics. 2011. Vol. 5, p. 1699 – 1725. DOI : 10.1214/11-AOAS464.Discussion of the papers by Dankers and Feyen, Cooley, and Keef
2011. International Statistical Institute, Dublin, Ireland, August 21-26, 2011.Extreme temperature analysis under forest cover compared to an open field
Agricultural And Forest Meteorology. 2011. Vol. 151, p. 992 – 1001. DOI : 10.1016/j.agrformet.2011.03.005.Hierarchical wavelet modelling of environmental sensor data
Brazilian Journal of Probability and Statistics. 2011. Vol. 25, p. 406 – 420. DOI : 10.1214/11-BJPS154.Statistics of extremes
International Encyclopedia of Statistical Science; new York: Springer, 2011. p. 1484 – .Comparison of Models for Olfactometer Data
Journal of Agricultural, Biological, and Environmental Statistics. 2011. Vol. 16, num. 2, p. 157 – 169. DOI : 10.1007/s13253-010-0042-6.No benefit from combining HE4 and CA125 as ovarian tumor markers in a clinical setting
Gynecologic Oncology. 2011. Vol. 121, p. 487 – 491. DOI : 10.1016/j.ygyno.2011.02.022.Comparison of printed glycan array, suspension array and ELISA in the detection of human anti-glycan antibodies
Glycoconjugate Journal. 2011. Vol. 28, p. 507 – 517. DOI : 10.1007/s10719-011-9349-y.SpaCEM(3): a software for biological module detection when data is incomplete, high dimensional and dependent
Bioinformatics. 2011. Vol. 27, p. 881 – 882. DOI : 10.1093/bioinformatics/btr034.2010
Revisiting the Edge, Ten Years On
Communications In Statistics-Theory And Methods. 2010. Vol. 39, p. 1674 – 1688. DOI : 10.1080/03610920902822670.Bayesian modelling for matching and alignment of biomolecules
The Oxford Handbook of Applied Bayesian Analysis; Oxford: Oxford University Press, 2010. p. 27 – 50.Geostatistics of Extremes : A Composite Likelihood Approach
Lausanne, EPFL, 2010.Extreme events in total ozone over Arosa—Part 1: Application of extreme value theory
Atmospheric Chemistry And Physics. 2010. Vol. 10, p. 10021 – 10031. DOI : 10.5194/acp-10-10021-2010.Extreme events in total ozone over Arosa—Part 2: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes
Atmospheric Chemistry And Physics. 2010. Vol. 10, p. 10033 – 10045. DOI : 10.5194/acp-10-10033-2010.Comparison of Meta-analysis to Combined Analysis of a Replicated Microarray Study
Meta-analysis and Combining Information in Genetics; Chapman&Hall/CRC, 2010. p. 135 – 156.Three Examples of Accurate Likelihood Inference
American Statistician. 2010. Vol. 64, p. 131 – 139. DOI : 10.1198/tast.2010.09004.Curvature and Strength of Ni-YSZ Solid Oxide Half-cells after RedOx Treatments
Journal of Fuel Cells Science and Technology. 2010. Vol. 7, num. 5, p. 051011. DOI : 10.1115/1.4001019.Mapping snow depth return levels: smooth spatial modeling versus station interpolation
Hydrology and Earth System Sciences. 2010. Vol. 14, num. 12, p. 2527 – 2544. DOI : 10.5194/hess-14-2527-2010.Model misspecification in peaks over threshold analysis
The Annals of Applied Statistics. 2010. Vol. 4, num. 1, p. 203 – 221. DOI : 10.1214/09-AOAS292.Likelihood-Based Inference for Max-Stable Processes
Journal of the American Statistical Association. 2010. Vol. 105, num. 489, p. 263 – 277. DOI : 10.1198/jasa.2009.tm08577.Relationship between high daily erythemal UV doses, total ozone, surface albedo and cloudiness: An analysis of 30 years of data from Switzerland and Austria
Atmospheric Research. 2010. Vol. 98, p. 9 – 20. DOI : 10.1016/j.atmosres.2010.03.006.The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models
Nature Biotechnology. 2010. Vol. 28, p. 827 – U109. DOI : 10.1038/nbt.1665.Effects of Rewarding and Unrewarding Experiences on the Response to Host-induced Plant Odors of the Generalist Parasitoid Cotesia marginiventris (Hymenoptera: Braconidae)
Journal of Insect Behavior. 2010. Vol. 23, num. 4, p. 303 – 318. DOI : 10.1007/s10905-010-9215-y.2009
Alignment of Multiple Configurations Using Hierarchical Models
Journal of Computational and Graphical Statistics. 2009. Vol. 18, num. 3, p. 756 – 773. DOI : 10.1198/jcgs.2009.07048.Stochastic modelling of prey depletion processes
Journal of Theoretical Biology. 2009. Vol. 259, p. 523 – 532. DOI : 10.1016/j.jtbi.2009.04.017.Fast high-dimensional Bayesian classification and clustering
Lausanne, EPFL, 2009.The radial plot in meta-analysis: approximations and applications
Journal Of The Royal Statistical Society Series C-Applied Statistics. 2009. Vol. 58, p. 329 – 344. DOI : 10.1111/j.1467-9876.2008.00650.x.Global sensitivity analysis of computer models with functional inputs
2009. 5th International Conference on Sensitivity Analysis of Model Output (SAMO 2007), Budapest, HUNGARY, Jun 18-22, 2007. p. 1194 – 1204. DOI : 10.1016/j.ress.2008.09.010.Proteogenomic studies in epithelial ovarian cancer: established knowledge and future needs
Biomarkers In Medicine. 2009. Vol. 3, p. 743 – 756. DOI : 10.2217/BMM.09.48.Saddlepoint approximation for mixture models
Biometrika. 2009. Vol. 96, p. 479 – 486. DOI : 10.1093/biomet/asp022.A note on the representation of parametric models for multivariate extremes
Extremes. 2009. Vol. 12, p. 211 – 218. DOI : 10.1007/s10687-008-0076-0.Statistical analysis of clusters of extreme events
Lausanne, EPFL, 2009.2008
The Banff challenge: Statistical detection of a noisy signal
Statistical Science. 2008. Vol. 23, num. 3, p. 354 – 364. DOI : 10.1214/08-STS260.Statistical methods for insect choice experiments
Lausanne, EPFL, 2008.Some challenges for statistics
Statistical Methods and Applications. 2008. Vol. 17, p. 167 – 181. DOI : 10.1007/s10260-007-0079-z.Quality Assessment for Short Oligonucleotide Microarray Data: Comment
Technometrics. 2008. Vol. 50, p. 276 – 279. DOI : 10.1198/004017008000000370.A tutorial on adaptive MCMC
Statistics And Computing. 2008. Vol. 18, p. 343 – 373. DOI : 10.1007/s11222-008-9110-y.Entrainment and motion of coarse particles in a shallow water stream down a steep slope
Journal of Fluid Mechanics. 2008. Vol. 595, p. 83 – 114. DOI : 10.1017/S0022112007008774.Accurate parametric inference for small samples
Statistical Science. 2008. Vol. 23, num. 4, p. 465 – 484. DOI : 10.1214/08-STS273.A Consistent Confidence Interval for Fuzzy Capability Index
Applied and Computational Mathematics. 2008. Vol. 7, num. 1, p. 119 – 125.2007
Likelihood estimation of the extremal index
Statistics of Extremes and Environmental Risk, Lisbon, Portugal, 14-18 February 2007.Reliable confidence intervals in quantitative genetics: Narrow-sense heritability
Theoretical and Applied Genetics. 2007. Vol. 115, p. 933 – 944. DOI : 10.1007/s00122-007-0619-9.A mixture model for multivariate extremes
Journal of the Royal Statistical Society, series B. 2007. Vol. 69, p. 217 – 229. DOI : 10.1111/j.1467-9868.2007.00585.x.An Intorduction to the Interface Between C and R
2007
Some Basic Functions for Tree Representations of Bayesian Markov Chain Monte Carlo Clustering
2007
Hierarchical wavelet modelling of environmental sensor data
2007
Likelihood estimation of the extremal index
Extreme-Value Analysis, Bern, Switzerland, 23-27 July 2007.Likelihood estimation of the extremal index
Extremes. 2007. Vol. 10, num. 1-2, p. 41 – 55. DOI : 10.1007/s10687-007-0034-2.Applied Asymptotics: Case Studies in Small-Sample Statistics
Cambridge: Cambridge University Press, 2007.Statistical inference for olfactometer data
Applied Statistics. 2007. Vol. 56, p. 479 – 492. DOI : 10.1111/j.1467-9876.2007.00588.x.Resamping variance estimation in surveys with missing data
Journal of Offical Statistics. 2007. Vol. 23, p. 371 – 386.Conserved oviposition preferences in alpine leaf beetle populations despite host shifts and isolation
Ecological Entomology. 2007. Vol. 32, p. 62 – 69. DOI : 10.1111/j.1365-2311.2006.00842.x.Rapid Classification of Phenotypic Mutants of Arabidopsis via Metabolite Fingerprinting
Plant Physiology. 2007. Vol. 143, p. 1484 – 1492. DOI : 10.1104/pp.106.090795.2006
Partition resampling and extrapolation averaging: approximation methods for quantifying gene expression in large numbers of short oligonucleotide arrays
Bioinformatics. 2006. Vol. 22, num. 19, p. 2364 – 2372. DOI : 10.1093/bioinformatics/btl402.Clustering of extreme temperatures from 1772 to 2004
Global Change Day 2006, Bern, Switzerland, 2006-04-20.Assessment and analysis of mechanical allodynia-like behaviour induced by spared nerve injury (SNI) in the mouse
Pain. 2006. Vol. 122, num. 1-2, p. 14e1 – 14.e14. DOI : 10.1016/j.pain.2005.10.036.Survival and Censored Data
2006
Improved likelihood inference for discrete data
Journal of the Royal Statistical Society series B. 2006. Vol. 68, p. 495 – 508. DOI : 10.1111/j.1467-9868.2006.00548.x.Méthodes de rééchantillonnage pour l’estimation de variance
Journal de la Société Française de Statistique. 2006. Vol. 147, num. 3, p. 3 – 32.Bayesian forecasting of grape moth emergence
Ecological Modelling. 2006. Vol. 197, p. 478 – 489. DOI : 10.1016/j.ecolmodel.2006.03.030.A Laplace mixture model for the identification of differential expression in microarrays
Biostatistics. 2006. Vol. 7, num. 4, p. 630 – 641. DOI : 10.1093/biostatistics/kxj032.Bayesian risk analysis of financial time series
Lausanne, EPFL, 2006.Bootstrap diagnostics and remedies
Canadian Journal of Statistics. 2006. Vol. 34, p. 5 – 27. DOI : 10.1002/cjs.5550340103.A comparison of naive and conditioned responses of three generalist endoparasitoids of lepidopteran larvae to host-induced plant odours
Animal Biology. 2006. Vol. 56, p. 205 – 220. DOI : 10.1163/157075606777304177.2005
Bootstrap Inference
Encyclopedia of Statistics in Behavioral Science; wiley, 2005. p. 1 – 8.A point process approach to value-at-risk estimation
Quantitative Finance. 2005. Vol. 5, num. 2, p. 227 – 234. DOI : 10.1080/14697680500039613.Saddlepoint approximations to studentized bootstrap distributions based on M-estimates
Computational Statistics. 2005. Vol. 20, num. 2, p. 231 – 244. DOI : 10.1007/BF02789701.Bootstrap methods
Encyclopedia of Statistics in the Behavioural Sciences; Wiley, 2005. p. 169 – 176.Identification of molecular apocrine breast tumours by microarray analysis
Oncogene. 2005. Vol. 24, num. 29, p. 4660 – 71. DOI : 10.1038/sj.onc.1208561.The evaluation of evidence in the forensic investigation of fire incidents (Part I): An approach using Bayesian networks
Forensic Science International. 2005. Vol. 147, p. 49 – 57. DOI : 10.1016/j.forsciint.2004.04.014.Generalized monotone additive latent variable models
2005