SCCER BIOSWEET – BIOmass for SWiss EnErgy Future

Source: : Innosuisse,  Swiss Innovation Agency

Partner: EPFL, BFH, FHNW, ZHAW, ETH, PSI, HES-SO, WSL, HSLU

Duration: 2017 – 2020 (48 months)

External website: http://www.sccer-biosweet.ch/

Abstract:

Following the anticipated successful completion of Phase I, the SCCER BIOSWEET is committed to its vision that sustainable biomass can contribute to achieving the objectives of the Swiss Energy Strategy 2050 with an estimated “100 PJ” consumption of final energy from biomass, which would represent more than twice as much as today. The SCCER BIOSWEET develops and implements biomass valorization technologies to make the Swiss energy turnaround happen. While Phase I had a strong focus on research and development, the work structure of the SCCER BIOSWEET for Phase II is re-organised to focus on Knowledge and Technology Transfer (KTT) of the most promising technologies for biomass conversion, considering the potential impact to the energy transition. The objective to achieve concrete utilisation of biomass by the private sector and benefit Swiss SMEs, larger industries and utilities in the short to medium term.

On the one hand, the technological goal is to exploit biomass resources to the highest sustainable extent. This is pursued by pushing the conversion and efficiency limits of existing bioenergy technologies, by improving the feedstock utilization, by creating new and innovative biomass value chains, and by designing better integrated energy systems. On the other hand, the SCCER BIOSWEET reaches out to promote alternative energy carriers for e.g. mobility or heat and power applications and it offers knowledge to support the energy policy and market development.

 

© M. Kermani, SETAC Europe 2015

Contact person: Theodoros Damartzis ([email protected])

Publication List:

Optimal design of biomass supply chains with integrated process design

T. Damartzis; F. Maréchal 

2019-06-28. 29th European Symposium on Computer Aided Process Engineering, Eindhoven, The Netherlands, 16-6, 2019. p. 1729-1734. DOI : 10.1016/B978-0-128-18634-3.50289-7.

A combined hydrothermal gasification - solid oxide fuel cell system for sustainable production of algal biomass and energy

E. Damergi; H. Madi; S. Sharma; N. Boukis; F. Marechal et al. 

Algal Research. 2019. Vol. 41, p. 101552. DOI : 10.1016/j.algal.2019.101552.

Fate and reuse of nitrogen-containing organics from the hydrothermal conversion of algal biomass

M. Bagnoud-Velásquez; E. Damergi; G. Peng; F. Vogel; C. Ludwig 

Algal Research. 2018-04-21. Vol. 32, p. 241-249. DOI : 10.1016/j.algal.2018.04.005.

On the Assessment of the CO2 Mitigation Potential of Woody Biomass

V. Codina Gironès; E. Peduzzi; F. Vuille; F. Maréchal 

Frontiers in Energy Research | Bioenergy and Biofuels. 2018-01-24. Vol. 5. DOI : 10.3389/fenrg.2017.00037.

Thermoeconomic design of biomass biochemical conversion technologies for advanced fuel, heat and power production

M. A. Vigot; T. Damartzis; F. Maréchal 

Computer Aided Chemical Engineering. 2018. Vol. 44, p. 1801-1806. DOI : 10.1016/B978-0-444-64241-7.50295-0.

Optimal design of biogas supply chains

G. A. Chomette; T. Damartzis; F. Maréchal 

ESCAPE 28; Elsevier B.V., 2018-01. p. 669-674.

Thermo-economic analysis and multi-objective optimisation of lignocellulosic biomass conversion to Fischer-Tropsch fuels

E. Peduzzi; G. Boissonnet; G. Haarlemmer; F. Marechal 

Sustainable Energy & Fuels. 2018. Vol. 2, num. 5, p. 1069-1084. DOI : 10.1039/C7SE00468K.

Extraction of carotenoids from Chlorella vulgaris using green solvents and syngas production from residual biomass

E. Damergi; J-P. Schwitzguébel; D. Refardt; S. Sharma; C. Holliger et al. 

Algal Research. 2017. Vol. 25, p. 488-495. DOI : 10.1016/j.algal.2017.05.003.

Optimal use of biomass in large-scale energy systems: insights for energy policy

V. Codina Gironès; S. Moret; E. Peduzzi; M. Nasato; F. Maréchal 

Energy. 2017. DOI : 10.1016/j.energy.2017.05.027.

Integration of deep geothermal energy and woody biomass conversion pathways in urban systems

S. Moret; E. Peduzzi; L. Gerber; F. Maréchal 

Energy Conversion and Management. 2016. Vol. 129, p. 305-318. DOI : 10.1016/j.enconman.2016.09.079.

Optimal use of biomass in large-scale energy systems: insights for energy policy

V. Codina Gironès; S. Moret; E. Peduzzi; M. Nasato; F. Maréchal 

2016. The 29th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Portoroz, Slovenia, June 19-23, 2016. DOI : 10.1016/j.energy.2017.05.027.

Biomass Modelling: estimating thermodynamic properties from the elemental composition

E. Peduzzi; G. Boissonnet; F. Maréchal 

Fuel. 2016. Vol. 181, p. 207-217. DOI : 10.1016/j.fuel.2016.04.111.

Multi-objective, multi-period optimization of biomass conversion technologies using evolutionary algorithms and mixed integer linear programming (MILP)

S. Fazlollahi; F. Maréchal 

Applied Thermal Engineering. 2013. Vol. 50, num. 2, p. 1504-1513. DOI : 10.1016/j.applthermaleng.2011.11.035.