Propositions de projet de master: LMS
Pour toutes questions sur des sujets proposés, veuillez contacter le(s) superviseur(s) du projet ou le professeur [email protected]
Tous les projets peuvent ĂȘtre transformĂ©s en projets de semestre. Pour cela, veuillez contacter le responsable du projet avec le Prof.
Lyesse Laloui and
Ziad Sahlab in copy.

Comportement Sismique
ConsidĂ©ration de lâinteraction sol-structure pour lâanalyse Ă©laborĂ©e du comportement sismique des bĂątiments existants
Ce projet de Master porte sur lâanalyse sismique avancĂ©e des bĂątiments existants, avec une attention particuliĂšre portĂ©e Ă lâinteraction sol-structure (ISS). Bien que souvent nĂ©gligĂ©e dans les mĂ©thodes dâĂ©valuation classiques, lâISS peut avoir un impact dĂ©cisif dans certaines applications spĂ©cifiques â notamment en prĂ©sence de sols meubles ou pour des structures flexibles. Le projet vise Ă identifier ces cas critiques et Ă dĂ©velopper des approches de modĂ©lisation plus prĂ©cises intĂ©grant les effets de lâISS. En combinant revue bibliographique, modĂ©lisation numĂ©rique et Ă©tude de cas ciblĂ©e, ce travail cherche Ă clarifier quand et comment lâISS doit ĂȘtre prise en compte afin dâamĂ©liorer la fiabilitĂ© des Ă©valuations de vulnĂ©rabilitĂ© sismique et de guider les stratĂ©gies de renforcement appropriĂ©es.

DépÎts géologiques
Deep geological repositories are the internationally preferred solution for the long-term disposal of high-level radioactive waste. Ensuring the integrity and safety of these systems over thousands of years requires robust monitoring of repository-induced effectsâparticularly temperature, pore water pressure, displacement, and stressâwithin the engineered and geological barriers.
This MSc thesis focuses on developing advanced, data-driven forecasting models using graph neural networks (GNNs) to predict the evolution of key parametersâtemperature, pore water pressure, displacement, and stressâbased on long-term, spatially distributed sensor data.
The available data is sourced from heterogeneous sensor modalities, including:
- Fibre optical cables (distributed temperature or strain sensing)
- Thermometers and humidity sensors
- Thermal conductivity probes
- Pressure cells
- Extensometers
- Gas sampling ports and gas sensors
- Corrosion coupons
- Seismic sources and receivers
- Geophysical monitoring pipes (GPx)
Key objectives include:
- Construct a graph-based representation of the repository nearfield, encoding spatial topology, sensor locations, and interdependencies.
- Integrate multi-modal time-series data into a unified framework for learning spatiotemporal correlations.
- Develop and benchmark GNN-based predictive models (e.g., spatiotemporal GCNs, graph attention networks, temporal GNNs) for forecasting THM evolution.
- Compare performance to classical time-series methods
- Apply uncertainty quantification techniques using ensemble learning or Bayesian GNNs to assess reliability.
This work bridges the gap between experimental monitoring and operational forecasting, providing a critical tool for ensuring the long-term safety and reliability of nuclear waste disposal systems.
Supervision: Prof. Lyesse Laloui [email protected] (LMS lab) & Prof. Olga Fink [email protected] (IMOS Lab)

Projets dans l’industrie
- Design and analysis of thermal piles in building foundations
- Assessment of energy potential in tunnels
More information is available at:Â https://geoeg.net/
Contact: Dr. Elena Ravera (Â [email protected]Â )
Tasks
- Novel methodology development: Formulate a new theoretical approach for applying loads on retaining walls considering soil elasto-plasticity.
- Script development for loading scenarios: Develop scripts tailored for each loading scenario, enhancing the versatility of the analysis.
- Elasto-plastic methodology design: Devise a unique elasto-plastic methodology to supplement the theoretical approach.
- Calculation tool creation: Build a comprehensive tool that integrates the novel methodology for efficient and accurate analysis of retaining walls under external loads.
Contact: Angelica Tuttolomondo ([email protected]), John Eichenberger ([email protected])
Proposez votre propre projet
- Les étudiants sont également encouragés à proposer leurs propres projets dans le cadre des activités du laboratoire.
Plus d’informations sont disponibles sur: https://www.epfl.ch/labs/lms/
Contact: Prof. Lyesse Laloui ( [email protected] )
Ongoing master projects:
-
Sven Frederik Portner: Modelling the dynamic behavior of biocemented soils for liquefaction mitigation.
-
Mateo Morales: Modelling the dynamic behavior of biocemented soils for liquefaction mitigation.
-
Giovanettina Sebastiano: La reprise en sous-Ćuvre comme outil d’extension urbaine dans le projet de la gare de Lausanne.
-
Blazy Caroline Louise Marie: DĂ©veloppement et mise en marchĂ© d’un outil de monitoring des sondes gĂ©othermiques.
-
Luc Teuscher: Numerical modelling of expansive clays in the context of nuclear waste repositories.