Propositions de projet de master: LMS

Pour toutes questions sur des sujets proposĂ©s, veuillez contacter le(s) superviseur(s) du projet ou le professeur [email protected]

Tous les projets peuvent ĂȘtre transformĂ©s en projets de semestre. Pour cela, veuillez contacter le responsable du projet avec le Prof.
Lyesse Laloui and
Ziad Sahlab in copy.


Comportement Sismique

ConsidĂ©ration de l’interaction sol-structure pour l’analyse Ă©laborĂ©e du comportement sismique des bĂątiments existants

Ce projet de Master porte sur l’analyse sismique avancĂ©e des bĂątiments existants, avec une attention particuliĂšre portĂ©e Ă  l’interaction sol-structure (ISS). Bien que souvent nĂ©gligĂ©e dans les mĂ©thodes d’évaluation classiques, l’ISS peut avoir un impact dĂ©cisif dans certaines applications spĂ©cifiques — notamment en prĂ©sence de sols meubles ou pour des structures flexibles. Le projet vise Ă  identifier ces cas critiques et Ă  dĂ©velopper des approches de modĂ©lisation plus prĂ©cises intĂ©grant les effets de l’ISS. En combinant revue bibliographique, modĂ©lisation numĂ©rique et Ă©tude de cas ciblĂ©e, ce travail cherche Ă  clarifier quand et comment l’ISS doit ĂȘtre prise en compte afin d’amĂ©liorer la fiabilitĂ© des Ă©valuations de vulnĂ©rabilitĂ© sismique et de guider les stratĂ©gies de renforcement appropriĂ©es.

DépÎts géologiques

Deep geological repositories are the internationally preferred solution for the long-term disposal of high-level radioactive waste. Ensuring the integrity and safety of these systems over thousands of years requires robust monitoring of repository-induced effects—particularly temperature, pore water pressure, displacement, and stress—within the engineered and geological barriers.

This MSc thesis focuses on developing advanced, data-driven forecasting models using graph neural networks (GNNs) to predict the evolution of key parameters—temperature, pore water pressure, displacement, and stress—based on long-term, spatially distributed sensor data.

The available data is sourced from heterogeneous sensor modalities, including:

  • Fibre optical cables (distributed temperature or strain sensing)
  • Thermometers and humidity sensors
  • Thermal conductivity probes
  • Pressure cells
  • Extensometers
  • Gas sampling ports and gas sensors
  • Corrosion coupons
  • Seismic sources and receivers
  • Geophysical monitoring pipes (GPx)

Key objectives include:

  • Construct a graph-based representation of the repository nearfield, encoding spatial topology, sensor locations, and interdependencies.
  • Integrate multi-modal time-series data into a unified framework for learning spatiotemporal correlations.
  • Develop and benchmark GNN-based predictive models (e.g., spatiotemporal GCNs, graph attention networks, temporal GNNs) for forecasting THM evolution.
  • Compare performance to classical time-series methods
  • Apply uncertainty quantification techniques using ensemble learning or Bayesian GNNs to assess reliability.

This work bridges the gap between experimental monitoring and operational forecasting, providing a critical tool for ensuring the long-term safety and reliability of nuclear waste disposal systems.

Supervision: Prof. Lyesse Laloui [email protected] (LMS lab) & Prof. Olga Fink [email protected] (IMOS Lab)

Projets dans l’industrie

  • Design and analysis of thermal piles in building foundations
  • Assessment of energy potential in tunnels

More information is available at: https://geoeg.net/
Contact: Dr. Elena Ravera ( [email protected] )

Tasks

  • Novel methodology development: Formulate a new theoretical approach for applying loads on retaining walls considering soil elasto-plasticity.
  • Script development for loading scenarios: Develop scripts tailored for each loading scenario, enhancing the versatility of the analysis.
  • Elasto-plastic methodology design: Devise a unique elasto-plastic methodology to supplement the theoretical approach.
  • Calculation tool creation: Build a comprehensive tool that integrates the novel methodology for efficient and accurate analysis of retaining walls under external loads.

Documentation

Contact: Angelica Tuttolomondo ([email protected]), John Eichenberger ([email protected])

Proposez votre propre projet

  • Les Ă©tudiants sont Ă©galement encouragĂ©s Ă  proposer leurs propres projets dans le cadre des activitĂ©s du laboratoire.

Plus d’informations sont disponibles sur: https://www.epfl.ch/labs/lms/
Contact: Prof. Lyesse Laloui ( [email protected] )

Ongoing master projects:

  • Sven Frederik Portner: Modelling the dynamic behavior of biocemented soils for liquefaction mitigation.

  • Mateo Morales: Modelling the dynamic behavior of biocemented soils for liquefaction mitigation.

  • Giovanettina Sebastiano: La reprise en sous-Ɠuvre comme outil d’extension urbaine dans le projet de la gare de Lausanne.

  • Blazy Caroline Louise Marie: DĂ©veloppement et mise en marchĂ© d’un outil de monitoring des sondes gĂ©othermiques.

  • Luc Teuscher: Numerical modelling of expansive clays in the context of nuclear waste repositories.