F10 Optique de Fourier

I. INTRODUCTION

Souvent la premiere approche de I'optique est celle de la reconstruction d’images a partir d’objets
illuminés par des rayons lumineux. Afin de reconstruire une telle image, on utilise des lentilles. Le
comportement d’une lentille est issu des lois de la réfraction (Fig. 1).
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Fig. 1 La refraction d’un dioptre est a I'origine du comportement d’une lentille.

Si la lentille est trés mince alors on pourra appliquer les principes de I'optique géométrique énoncés
par Descartes :

1) tout rayon lumineux provenant de l'infini sera dévié fers le foyer de la lentille

2) tout rayon lumineux passant par le centre optique ne subit aucune déviation.

Cette méthode trés pratique pour reconstruire la taille et la postions de I'image d’un objet illuminé ou
pour obtenir I'effet combiné de plusieurs lentilles est extrémement réductrice. On peut bien se
demander qu’est ce qu’il en est des autres rayons lumineux? Qu’en est il d’un objet complexe, ou d’'un
objet qui n’est pas plan? Toutes ces questions ne peuvent pas étre résolues par l'optique
géométrique. Pour une approche plus globale, mais évidemment plus complexe il faut faire appel a la
nature ondulatoire de la lumiere, qui est aussi a l'origine de la réfraction. L’approche ondulatoire, sans
faire appel ni a la nature électromagnétique de la lumiére ni € la mécanique quantique, fut développée
par Christian Huygens (1629-1695). En observant les ondes (planes) entrant dans un port, il émit
I'idée que chaque point d’un front d’'onde plan était la source ponctuelle d’'une onde circulaire (Fig. 2).
Aujourd’hui on appellerait cela une ondelette.
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Fig. 2 lllustration du principe d’Huygens

A partir du principe d’Huygens, on peut aisément expliquer les lois de la refraction et la diffraction (fig.
3).
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Fig. 3 a) Diffraction d’'un front d’onde plan
expliqué par la propagation d’ondes circulaires
dont la vitesse C2 est plus faible que C1.
b) L'interférence des ondelettes créé le
phénomeéne de diffraction par une fente.
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Fig. 4 lllustration du principe d’Huygens. Image des vagues entrant dans le port d’Alexandrie en Egypte. On peut
observer que les ondes planes entrant de la Méditerranée forment d’abord deux ondes circulaires. A longue
distance on observe un front d’onde circulaire mais on peut aussi detecter les interférences donnant lieu a la
diffraction.

La théorie ondulatoire de la lumiere est tres riche et elle permet d’expliquer un grand nombre de
phénomeénes liés a la propagation de la lumiére. En particulier, nous allons demander de maniére tres
simplifiée que I'analyse de Fourier qui permet de decomposer un signal quelconque dans ses
composantes périodiques, peut aussi étre appliqué a la lumiere issue d’un objet. On pourra ansi
decomposer les variations spatiales de l'intensité lumineuse issue d’un objet en signaux périodique.
Cette nouvelle approche permet d’expliquer de maniere rigoureuse la diffraction mais dans 2 voir 3
dimensions. Les applications sont immenses. Elle vont de I'analyse d'image a I’holographie ou encore
a la microscopie électronique.

Lorsque un rayon lumineux monochromatique passe a travers un trou circulaire de petit diametre on

peut observer que I'image projetée forme alternativement des franges lumineuses et sombres : on les
appelle franges d’Airy (Fig. 5).
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Fig. 5 Disque d’Airy

La forme mathématique de l'intensité de la lumiere diffractée peut étre calculée facilement en faisant
appel a la forme complexe décrivant une onde électromagnétique. On peur décrire le champ
électromagnétique (E ou H) en un point 1 et un instant ¢ selon la formule :

i(kF—o 2
E=Ee"“™" k:% (1)

On considére un fente & une dimension (fig.6). L'intensité du champ électrique émis en un point x &
travers la fente a une distance r du centre de la fente est donnée par:

E(.X) — Eoeik(r—xxine) (2)
0’~ 0~ sin®~ tand
--------- sz
e
— o ]/’"-’_ — ":- -
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0=dsin0
Fig. 6 Schéma de la
\ X diffraction a travers

La projection de 'image sur un écran a distance r est donnée par:
d d
+— +—
2 2
Ee — j Eoelk(r—xsme)dx — Eoelkr J Eoe—lkxsmedx —
_d d
2
1 o +g 1 —ikgsine ikgsine
— Eoeikr - . [e zkxsmG] 621 — Eoem - . [e 2 —e 2
—iksin@ - —iksin@

Et donc l'intensité qui est proportionnelle au carré de I'amplitude / =|E9|2 est donnée par:
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4 .o kd ) kd
I,= Eg Ry sin® (7 sin@) = Egdzsmc2 (7 sin@) (3)

:h"|"“"

Fig. 7 Représentation graphique de la fonction sinc? avec les minima en fonction de /l/d .

Dans le cas de la diffraction a travers deux fentes posées a distance a, le résultat est de forme

semblable (Fig. 8).

d=asin® Fig. 8 Diffraction &

travers deux fentes

0’~ 0~ sinO~ rand

identiques.

Le champ électrique émis sur un écran posé a une distance D des fentes est donné par:

E9 — Eo(eikr +eik(r7usin9)): Eoeikr(l_'_efikasirﬁ))
* 2
1,=E, E, :‘Ee‘
19 =|E9| — EOZ(1+e—zkasmﬂ).(l_i_elkasme) — E§(2+e—tkasm9 +ezkasm€) —

. kasin@
= E,(2+2cos(kasin®)) = E, 4cos’ ———
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Et finalement si on combine I'ouverture des fentes avec leur distance on aura la convolution de la

formule (3) avec (4) (Fig. 9).

drsin@ ansin
. 2 2
1, =1sinc”( 1 Yeos” ( 7 ) 5)
I
A0 s
sin():-;; sin()=+:z
bl -
sinf =-“a)L sin(}=+2—;"
. %
Sillf)=-& %in()=+%
sinfl = - sin@ =+2 Fig. 9 Intensité de
A g d 24 . 3A diff . | |
sing = -~ sm()=—7 sing =+~ sing =+~ dl raction selon la
‘e e formule (5).

Il. BASES THEORIQUES

Le but de ce chapitre est de montrer qu’une lentille est capable d’effectuer une transformée de Fourier
de I'objet illuminé et de la projeter dans son plan focal.
Pour montrer cela nous allons reprendre les reflexions effectuées avec la diffraction de Fraunhofer en

considérant que notre faisceau lumineux passe a travers un réseau périodique de fentes.
Considérons donc une série de fentes horizontales avec période AX . La diffraction d’une tel

arrangement périodique se comporte essentiellement comme la diffraction par deux fentes . Donc le

kAx sin@

. . e N , . 2 . . N
motif de I'interférence a un angle @ sera donné par la fonction cos qui a un maximum a:

kAx sin@ 3
> =

A
T = —*sinf=1.
A

Ainsi on peut considérer qu’une onde plane de longueur A est transformée dans une onde plane

faisant un angle 0, =arcsinA— avec la premiére. Un autre moyen de représenter une telle

X

deviation est de considérer que la propagation d’une onde dans l'espace est représentée par

J(kF—at)

I'exponentielle complexe E(x,f)= Ee . 7 représente un point dans I'espace et k la direction

de propagation . Donc la déviation est 6 = arcsinA—z arcsin;x .

X

Une onde plane passant par un réseau horizontal est transformée aux coordonnées (x,0,z) en
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U(x,0,z) = Aexp[+j27r(v x)]lexp(+ jk.z)

k 1 1
oy =—  k =27t1/—2—v2
2 Y AN 7 A *

X

avec

Ceci car on a considéré une seule période (ou fréquence) spatiale dans une direction x. Dans le cas
plus général la transformation de la lumiére par un milieu optique de transparence variable sera
donnée par :

U(x,y,z) = exp(+jk_z) [ F(v.v, exp[+j2m(v x+ vyy)]dvxdvy (6)

ou I'on reconnait la transformée de Fourier inverse (signe +) de F(vx,vy) qui représente la

transformée de Fourier du milieu optique.

1 1 6 6,
Les fréquences spatiales sont données par (v_,v )=| —,— |=| =%+,
V¥ A A A A

La transparence (transmittance en langage technique) du milieu optique est donnée par :

S =IF(v v )expl+j2r(v x+v p)ldv.dv, =U(x,y,0)  (7)
Ce qui pourrait étre décomposé en une série d'images modulées par des fonctions fo(x,y) avec

fréquence porteuse v__ . C’est I'équivalent d’'une modulation d’amplitude.
x0

g
— =1~
v g

flx,y fo(x.y)expl-j2ny,0x)

Fig. 10 Exemple d’un filtre défini dans une certaine zone spatiale avec une transparence périodique.
Une autre maniére de considérer la transparence du milieu optique est d’'imaginer que la fréquence de

modulation varie en fonction de la position (Fig. 11). On aura alors une sorte de modulation de
fréquence.

fx,y)=exp[—j2m- p(x,y)] 8).
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projection de la lumiére a travers un matériau polycristallin. Dans ce cas la “lumiére” ayant assez de
pouvoir de pénétration serait donnée par des rayons x ou des électrons.

Si la fonction ¢(x,y) ne varie que lentement:

¢(x,y)z¢(x0,y0)+(x—xo)g—i+(y—yo)g—z=¢(x0,y0)+(x—x0)vx+(y—y0)vy

et la transparence devient:
fen=ewp|-j27-9e.n)] = Agewp -2 (v,x+v,x)

ce qui défléchit la portion de I'onde passant par le point (X,)) vers I'angle 6. =arcsinAv,

Lentilles: un autre point de vue
Considérons un milieu optique transparent ou la fonction @(x,)) définie en (8) devient parabolique:

2
X

20f

¢(x,y)= (©)

Fig. 11 Transmission de la lumiére a
travers un réseau dont I'espacement

varie de maniére parabolique

La transmittance (Fig. 11) sera donnée par:
. 2
—Jjrx

f(xy)=exp[—j2m-¢(x,y) ] = exz{ il -

} = exp[—j2n’ : vxx:l

et 'angle de déviation (Fig. 12) sera donc:

., 0 : x X
0 = arcsm/l—¢ = arcsin A - — = arcsin—

ox Af
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Fig. 12 Angle de déviation
des rayons paralléles : tous
les rayons convergent vers
un point f.

— f —

Ce modéle mathématique reproduit le comportement optique d’une lentille. C’est également le
principe de construction d’une lentille de Fresnel (Fig.13).

Fig. 13 Une lentille (semi)sphérique est un dioptre capable de concentrer les rayons provenant de
I'infini vers un point appelé foyer. Une lentille de Fresnel est une lentille plate sculptée avec un profil
parabolique. On utilise des lentilles de Fresnel dans les phares.

Il.1. Fonction de transfert optique

Le but de ce chapitre est de démontrer que un dioptre ayant une transmittance parabolique, comme
celle d’une lentille produit au niveau du foyer la transformée de Fourier de la transmittance d’un objet
semi-transparent.

Le systeme optique le plus simple est composé d’un objet (supposé plat) qui émet de la lumiére avec
une certaine distribution d’intensité et d’'un écran. La transparence ou transmittance de I'objet est une
fonction f(x,y) . Lobjet émet un signal U(x,y,z) qui donne une image g(x,y) sur ’écran posé a une

distance z=d .
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xp I U(x,y,2) g(x.y)

Fig. 14 Modéle simple d’un systéme optique.

Donc on peut écrire que:

fx,y)=U(x,y,0)= Aoexp[jZTC : (vxx+ vyy)] et
g(x.y)=U(x.y.d)= Aexp| j(kx+ky) |exp(jk.d) = f(x.y)exp(jk.d)

’1
avec k =21 —z—vz—v2
z j« x y

On définit la fonction de transfert H(anvy) :

H(v,.v,)= 28;; = exp(jk.d) (10)

1 2 A’
Si ? >> vf + Vf, (approximation de Fresnel) alors k.d = Tﬂd{l - 7(v§ + vf )}

et la formule (10) devient:
H(vx,vy) = exp(jkd)exp[—jﬂ/ld(v_f + vi)} =H, exp[—jﬂld(vi +v, )J (11)

La fonction H(vx,vy) permet de determiner Iimage sur I’écran g(x,y) pour une certaine fréquence

spatiale (vx,vy) .

Pour reconstruire I'image compléte tenant compte de toutes les fréquences spatiales, on peut
envisager la procédure suivante.

1) Obtenir la transformée de Fourier de f(x,y)
Fv,v,)= ”f(x,y)exp[—jZﬂ(vxx + vyy)]dxdy
2) Transférer F(vx,vy) au niveau de l'écran © F(v,,v,)-H(V V)

3) Obtenir g(x,y) grace a la transformée de Fourier inverse:
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g(x,y)= ”H(vx,vy)F(vx,vy)exp[j2ﬂ(vxx+ vyy)]dvx dv,

Dans I'approximation de Fresnel (eq. 11) :

g(x,y)=H, ”F(vx ,vy)exp[—jﬂ/ld(vf +v; )}exp[j%r(vxx + vyy)}dvx dv, (12)

Reprenons donc les points 1,2,3 dans le cas particulier d’'une source ponctuelle:
f(0,0) =1, f(x,y) =0 ailleurs.

Dans ce cas, F(v,,V,)= _Uf(x,y)exp[—ﬂn(vxo + vyO)}dxdy =1 etdonc g devient:

g(x,y)= J.J.H(vx,vy)exp[j27t(vxx+ vyy)Jdvx dv,=h(x,y)

On appelle h(x,y) qui est la transformée de Fourier inverse de H(vx,vy) , la réponse impulsionnelle.

En reprenant la fonction de transfert obtenue dans I'approximation de Fresnel (11), on peut montrer
(en considérant la transformée de Fourier inverse d’une gaussienne) que:

. 2 2 . 2 2
h(x,y)= (j/ld)exp(j%d)exp{%} = hoexp{%;y)}

Ceci montre que tout point de l'objet sera transféré a I'écran situé a une distance d avec un
déphasage parabolique.

Par conséquent si I'on considére une fonction f{x.y) quelconque, on peut obtenir g(x,y) comme la
convolution f(x,y) . h(x,y) . Ainsi:

gy)=h ] £ (x'y)exp jk(x_x')zztz(y_y')2

Cette expression mathématique représente le principe de Huygens-Fresnel que nous avons vu
auparavant : toute onde lumineuse peut étre considérée comme le résultat de linterférence de
sources lumineuses ponctuelles qui émettent de ondes sphériques.

dx'dy' (13)

Aprés avoir établi les expressions qui nous permettent de définir et traiter une fonction de transfert
nous allons considérer un systéme composé d’un objet, d’'une lentille et de I'’écran de projection (Fig.
15). La lentille se situe a une distance d de I'objet et I'écran se situe au foyer de la lentille.

glx, y)

—3-
z

Focal plane

Fig. 15 Systéme optique dans lequel on place I'’écran au plan focal.
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On a déja pu établir gu’une lentille transforme une onde plane en une onde ayant un déphasage
parabolique:

f,(x,y)= exzﬂ[%;y)}

Donc, une onde U(x,y,d) ayant en d la forme donnée par I'équation (12) sera ultérieurement

changée par la lentille par le produit U(x,y,d)e f,(x,y) Anoter que f, (x,y) estindépendant des
fréquences spatiales.

—Jjr(x* +y%)

27 }F(vx ,v),)exp[—jﬂld(vf + vi)]exp[ﬂﬂ(vxx + vyyﬂ

U(x,y,d) = Hoexp{

On va introduire un changement de variable qui permettra de manipuler cette expression de maniére
plus avantageuse.
2

2vxx—;—f:(—x2+2vxﬂ.xf)/ﬂ,f:[—(x—x0)2+xd/ﬂ.f

avec x,=V Af

Donc U(x,y,d):A(VX’Vy)exp[_jﬂ[(x—Xo) +(y—=) ]}

Af
. 2 2
avec A(vx,vy) = HOF(vx,vy)exp[]ﬂﬂ.(f—d)(vx +v, )]
Finalement nous allons calculer lintensité lumineuse a une distance d+f de la source c.a-d. a une

distance f de la lentille. Pour réduire les expressions nous allons nous limiter & des variations sur I'axe
x. Nous allons utiliser le principe de Huygens-Fresnel (eq. 13) pour calculer g(x) en d+f .

gx)=U(x,d+f)= hOJ‘U(x,d)exp{M:ldx' =

2f
— ik l_Oz il (x— x> - ,_02 Y
hoJ‘A(Vx)exp{ / [(;f ) wexp{j [();fx) ]}dx&ho_[A(vx)expl:j [ S xz)f+(x ) ]}dx‘
k[ 1% = x2 +2x'(x, — (x> = x? e (. —
Zho.[A(Vx)exp[J I:x - ;fx(x x):l1dx':hoexl’|:%fx>}.[A(‘G)”P{W}df

En utilisant les propriétés de I'exponentielle complexe et de la fonction delta:
ko' (x — '
J.exp[%}dx‘ = jexp[jZn(x—xO);—f}dx' = /lf5(x—x0)

on obtient simplement

U(x,d+f)=hA(v,)Af8(x—x,) avec
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A(vx) = HOF(vx)exp[jﬂl(f— a’)vz] et
5(x—x0):S(x—ﬂ.fvx):ﬁ5(ﬁ—vx)
Ce qui est vrai pour toute fréquence spatiale, donc:
2
U(x,f+d):g(x):hOHOF(;}jexp{]ﬂﬂ,(f d)bf) }
ou en deux dimensions

Xy . x2+y2
g( ) hHF[/lf /lf)e p ]ﬂﬂ.(f d) (;Lf)z (14)

On peut ultérieurement simplifier sachant que

hy=(j ! Ad)exp( jkd)
H, =exp(jkd)
Hhy=(j/ Ad)exp(2,jkd)

Et finalement, I'intensité lumineuse au plan focal de la lentille c.a-d. f=d
Fl = L (15)
Af Af

Ce qui montre bien qu’au plan focal de la lentille on obtient la transformée de Fourier spatiale de
I'objet projeté (fig. 16).

I(x,y)=

1
(Af)

x A
e =6
ﬂx. y) \\\\\\\\\\\\\\ \&w %\k\ (x.y) N
/A F?cal
2 f ;J': f plane

Fig. 16 La projection d’une onde plane diffractée par I'objet en z=0, est transformée par la lentille en
un point qui est la transformée de Fourier d’'une seule fréquence spatiale.

On notera que si I'on considere la transformation de Fourier inverse
_ ! _ .
Fa=F'vv)=[[Fv.v)exp| 2m(vax+v,y) |dv.dv,

et la formule (14) on obtient que
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Yy

—x,— o< F! i,_
g(=x,—y) YT (16)

En pratique, ceci signifie qu’appliquer une deuxiéme lentille au signal transformé par une premiére
lentille, signal qui a donc subi une transformée de Fourier, crée une image réelle et inversée.

lll. Travail a faire

1) Montage 4f

Comme l'indique la figure ce montage implique I'utilisation de deux lentilles identiques de distance

focale f. Chaque élément est a une distance f de I'autre: la lentille, le plan de Fourier, la deuxieme
lentille et I'écran.

Lens
Fourier plane

glx,y)
Image plane

'./
[ETC e
UJ f

/f

Object plane

P/f
Fig. 17 Schéma du montage 4f

La premiere lentille transforme I'objet dans sa transformée de Fourier que I'on peut visualiser sur le
plan focal (que I'on appelle aussi pour cette raison plan de Fourier). La deuxiéme lentille crée une
image réelle sur I’écran. Cette image est inversée.

Attention danger ! Ne jamais regarder la lumiére laser directement. Travailler toujours debout
pour s’assurer que la tete ne se trouve jamais au méme niveau que le laser.

Poser le laser et I'aligner en déplagant le diaphragme (fermé) le long du rail. Le laser doit rester centre
sur le trou du diaphragme. pour aligner le laser utiliser une clef inbus et les vis qui permettent de
déplacer la fixation du laser vers le haut ou latéralement.

La lentille d’expansion (beam expander) permet d’obtenir une tache diffuse plutét qu’un point
lumineux. Placer cet élément trés proche du laser. Si nécessaire on pourra re-aligner le faisceau avec
le diaphragme comme écran.

Placer une lentille convergente +100 aprés le beam expander pour obtenir un faisceau paralléle . En
principe on doit obtenir une tache circulaire du méme diamétre que la lentille. Ce diametre ne doit pas
varier le long du rail. Utiliser de nouveau le diaphragme comme écran et le déplacer le long du rail.
Quelle est la distance de la lentille convergente depuis le beam expander? Pourquoi? Votre faisceau
est aligné vous pouvez placer la piece semi-cylindrique pour éviter d’étre ébloui par le laser dans la
suite du travail.
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2) Projection d’'une image réelle

Placer le montage 4f avec deux lentilles convergentes +125, le support sur le plan de Fourier et
’écran. On place la maison de Fourier dans le porte-objet. Prendre les distances de la position
effective des éléments. Pour les lentilles on pourra considérer que leur position est donnée par le
milieu de I'anneau noir. Observer et commenter I'image obtenue.

Créer une image agrandie sur I’écran.
Placer une troisieme lentille convergente +50 pour agrandir 'image .

Vérifier la loi bien connue

1 1 1 d'

—+—=—avec y=—

d d f d
avec d la distance entre 'objet et la lentille, d’ la distance entre la lentille et I'image et y
I'agrandissement pour diverses paires (d ,d’).

Avec I'image agrandie on pourra compter la densité des lignes (fentes) dans I'objet. Tenant compte de
'agrandissement mesurer I'espacement entre deux fentes.

3) Utilisation de la transformée de Fourier

Remplacer la deuxieme lentille +125 avec la lentille +50 et essayer de projeter la transformée de
Fourier sur I’écran.

'

Calculer en utilisant la position de la lentille, I'agrandissement y = E de l'image de la transformée de

Fourier.

Utiliser les positions des points du premier ordre de diffraction pour calculer 'espacement du réseau
de la maison de Fourier. Rappel: la fréquence spatiale est donnée par:

1

0, «x X

1
IR AT v

X

x est une distance mesurée sur limage non agrandie, x’ est une longueur mesurée aprés
agrandissement. La longueur d’onde du laser vert est 4 =532 nm .

4) Filtrage

L'utilisation pratique de I'optique de Fourier réside surtout dans le filtrage d’images. Si I'objet posséde
certaines caractéristiques périodiques, elles seront mise en évidence par des points dans le plan de
Fourier. On pourra alors soit 6ter ses caractéristiques dans I'image projetée soit les distinguer par
rapport aux zones homogenes.

Ci dessous quelques suggestions non exhaustives.

a) Mettre le filtre “barre horizontale” sur le support situé dans le plan de Fourier. On pourra s’aider
avec la projections agrandie de la transformée de Fourier. Ensuite, en bougeant la lentille +50 on
pourra obtenir 'image réelle sur I’écran. Décrire le résultat et le justifier.

b) Effectuer la méme opération avec la barre verticale

c) Utiliser un trou de petites dimensions pour sélectionner un point seulement de la transformée.
Décrire le résultat et l'interpréter.

d) Placer le trou hors de tout spot (dark field). La luminosité sur I'écran sera trés faible mais on
devrait pouvoir visualiser les défauts de I'objet.
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Annexe

Rappel sur la transformée de Fourier.

Serie de Fourier
Tout signal périodique de période T peut étre décomposé en une somme de sinus et de cosinus. Les

fréquences harmoniques multiples de la fréquence @

f(H)= i a cos(nmt)+ ibﬂ sin(nwt)

ou :
5 TP2
a,=—; J f(t)cos(nwt)dt sin est pair
T
-T/2
T/2
ot b,=— J f(t)sin(nwt)dt sin estimpair.
T

On peut aussi écrire la méme expression en forme complexe:

f(t)=Y Fe" =) F,cos(nwt)+iF, sin(not)

n=—oo n=—oo

= (F,+F_)cos(nwt)+i(F, - F_)sin(nwr)
n=0
avec la relation suivante entre les coefficients réels et complexes:

T/2
=F +F in
a, . n —n et - J- f([)e Wt dt
b =i(F—-F,) _T/2
Donc:
= ) T/2
f(t) z mwt — mwt J. f(t)e—ma)otdt
n=— n=—e Ty,
o m—t 27[ 1 s —inz—”t
2 f(tye T at

. [2m
avec lim (7) =dw

Ce qui permet de passer de la forme discrete (somme) a la version continue (intégrale):

oo

f)= J.e"“”da)é_]i f)ye ™ dr

—oco

= ff { wrd | f(t)e’"‘”dt}

e F(w)dw

1
~
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et

F(w)= % I f(tH)e™'dt estlatransformée de Fourier de f(?).
T .

Des exemples notables:

JJi=cos(ont)

(o) F(@):%-[S(a)—wo)‘f‘&w"'wo)]

A J

JJ=cos(oxy)

2n —ITE \ TIE /2:5
Flw)
F(w):g-[sinc[%(w—a)o)}+sinc[§(w+wo)D
AUV AV
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