
F10 Optique de Fourier

I. INTRODUCTION

Souvent la première approche de l’optique est celle de la reconstruction d’images à partir d’objets 
illuminés par des rayons lumineux. Afin de reconstruire une telle image, on utilise des lentilles. Le 
comportement d’une lentille est issu des lois de la réfraction (Fig. 1). 

Fig. 1 La refraction d’un dioptre est à l’origine du comportement d’une lentille.

Si la lentille est très mince alors on pourra appliquer les principes de l’optique géométrique énoncés 
par Descartes :
1) tout rayon lumineux provenant de l’infini sera dévié fers le foyer de la lentille
2) tout rayon lumineux passant par le centre optique ne subit aucune déviation. 
Cette méthode très pratique pour reconstruire la taille et la postions de l’image d’un objet illuminé ou 
pour obtenir l’effet combiné de plusieurs lentilles est extrêmement réductrice. On peut bien se 
demander qu’est ce qu’il en est des autres rayons lumineux? Qu’en est il d’un objet complexe, ou d’un 
objet qui n’est pas plan? Toutes ces questions ne peuvent pas être résolues par l’optique 
géométrique. Pour une approche plus globale, mais évidemment plus complexe il faut faire appel à la 
nature ondulatoire de la lumière, qui est aussi à l’origine de la réfraction. L’approche ondulatoire, sans 
faire appel ni à la nature électromagnétique de la lumière ni è la mécanique quantique, fut développée 
par Christian Huygens (1629-1695). En observant les ondes (planes) entrant dans un port, il émit 
l’idée que chaque point d’un front d’onde plan était la source ponctuelle d’une onde circulaire (Fig. 2). 
Aujourd’hui on appellerait cela une ondelette. 

�
Fig. 2 Illustration du principe d’Huygens

A partir du principe d’Huygens, on peut aisément expliquer les lois de la refraction et la diffraction (fig. 
3).
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�
Fig. 4 Illustration du principe d’Huygens. Image des vagues entrant dans le port d’Alexandrie en Egypte. On peut 
observer que les ondes planes entrant de la Méditerranée forment d’abord deux ondes circulaires. A longue 
distance on observe un front d’onde circulaire mais on peut aussi detecter les interférences donnant lieu à la 
diffraction. 

La théorie ondulatoire de la lumière est très riche et elle permet d’expliquer un grand nombre de 
phénomènes liés à la propagation de la lumière. En particulier, nous allons demander de manière très 
simplifiée que l’analyse de Fourier qui permet de decomposer un signal quelconque dans ses 
composantes périodiques, peut aussi être appliqué à la lumière issue d’un objet. On pourra ansi 
decomposer les variations spatiales de l’intensité lumineuse issue d’un objet en signaux périodique. 
Cette nouvelle approche permet d’expliquer de manière rigoureuse la diffraction mais dans 2 voir 3 
dimensions. Les applications sont immenses. Elle vont de l’analyse d’image à l’holographie ou encore 
à la microscopie électronique. 

Lorsque un rayon lumineux monochromatique passe à travers un trou circulaire de petit diamètre on 
peut observer que l’image projetée forme alternativement des franges lumineuses et sombres : on les 
appelle franges d’Airy (Fig. 5).
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Fig. 3 a) Diffraction d’un front d’onde plan 
expliqué par la propagation d’ondes circulaires 
dont la vitesse C2 est plus faible que C1. 
b) L’interférence des ondelettes créé le 
phénomène de diffraction par une fente.



�        Fig. 5 Disque d’Airy 

La forme mathématique de l’intensité de la lumière diffractée peut être calculée facilement en faisant 
appel à la forme complexe décrivant une onde électromagnétique. On peur décrire le champ 
électromagnétique (E ou H) en un point �  et un instant t selon la formule :

�            � (1)

On considère un fente à une dimension (fig.6). L’intensité du champ électrique émis en un point x à 
travers la fente à une distance r du centre de la fente est donnée par:

� (2)

La projection de l’image sur un écran à distance r est donnée par:

 �

Et donc l’intensité qui est proportionnelle au carré de l’amplitude�  est donnée par:
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� (3)

�
Fig. 7 Représentation graphique de la fonction sinc2 avec les minima en fonction de . 

Dans le cas de la diffraction à travers deux fentes posées à distance a, le résultat est de forme 

semblable (Fig. 8).

Le champ électrique émis sur un écran posé à une distance D des fentes est donné par: 
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(4)
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Et finalement si on combine l’ouverture des fentes avec leur distance on aura la convolution de la 

formule (3) avec (4) (Fig. 9).

    �                                (5)

II. BASES THEORIQUES

                
Le but de ce chapitre est de montrer qu’une lentille est capable d’effectuer une transformée de Fourier 

de l’objet illuminé et de la projeter dans son plan focal. 

Pour montrer cela nous allons reprendre les reflexions effectuées avec la diffraction de Fraunhofer en 

considérant que notre faisceau lumineux passe à travers un réseau périodique de fentes. 

Considérons donc une série de fentes horizontales avec période � . La diffraction d’une tel 

arrangement périodique se comporte essentiellement comme la diffraction par deux fentes . Donc le 

motif de l’interférence à un angle �  sera donné par la fonction  �  qui a un maximum à:

� .

Ainsi on peut considérer qu’une onde plane de longueur �  est transformée dans une onde plane 

faisant un angle �  avec la première. Un autre moyen de représenter une telle 

deviation est de considérer que la propagation d’une onde dans l’espace est représentée par 

l’exponentielle complexe � . � représente un point dans l’espace et �  la direction 

de propagation . Donc la déviation est � .

Une onde plane passant par un réseau horizontal est transformée aux coordonnées (x,0,z) en
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Fig. 9 Intensité de 

diffraction selon la 

formule (5). 
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�
avec 

�

Ceci car on a considéré une seule période (ou fréquence) spatiale dans une direction x. Dans le cas 
plus général la transformation de la lumière par un milieu optique de transparence variable sera 
donnée par :

� (6)

où l’on reconnaît la transformée de Fourier inverse (signe +) de � qui représente la 

transformée de Fourier du milieu optique. 

Les fréquences spatiales sont données par �

La transparence (transmittance en langage technique) du milieu optique est donnée par :

� (7)

Ce qui pourrait être décomposé en une série d’images modulées par des fonctions � avec 

fréquence porteuse � . C’est l’équivalent d’une modulation d’amplitude.

Fig. 10 Exemple d’un filtre défini dans une certaine zone spatiale avec une transparence périodique. 

Une autre manière de considérer la transparence du milieu optique est d’imaginer que la fréquence de 
modulation varie en fonction de la position (Fig. 11). On aura alors une sorte de modulation de 
fréquence. 

� (8).
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U (x, y, z) = exp(+ jkzz) ∫ ∫ F(ν x ,ν y )exp[+ j2π (ν xx +ν y y)]dν xdν y

F(ν x ,ν y )

(ν x ,ν y ) =
1
Λx

, 1
Λy

⎛

⎝⎜
⎞

⎠⎟
!

θ x

λ
,
θ y

λ
⎛
⎝⎜

⎞
⎠⎟
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� �
Fig. 11. Une modulation spatiale dont la fréquence varie en fonction de la position équivaut à la 
projection de la lumière à travers un matériau polycristallin. Dans ce cas la “lumière” ayant assez de 
pouvoir de pénétration serait donnée par des rayons x ou des électrons. 

Si la fonction �  ne varie que lentement:

�

et la transparence devient:

�

ce qui défléchit la portion de l’onde passant par le point �  vers l’angle �

Lentilles: un autre point de vue

Considérons un milieu optique transparent où la fonction �  définie en (8) devient parabolique:

� (9)

La transmittance (Fig. 11) sera donnée par:

�

et l’angle de déviation (Fig. 12) sera donc:

�

φ(x, y)

φ x, y( ) ≈φ x0 , y0( )+ x − x0( ) ∂φ∂x + y − y0( ) ∂φ∂y = φ x0 , y0( )+ x − x0( )ν x + y − y0( )ν y

f (x, y) = exp − j2π ⋅φ(x, y)[ ]= A0exp − j2π ⋅ ν xx +ν yx( )⎡⎣ ⎤⎦
(x, y) θ x = arcsinλν x

φ(x, y)

φ x, y( ) = x2

2λ f

Fig. 11 Transmission de la lumière à 

travers un réseau dont l’espacement 

varie de manière parabolique �
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∂φ
∂x

= arcsinλ ⋅ x
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�

Ce modèle mathématique reproduit le comportement optique d’une lentille. C’est également le 
principe de construction d’une lentille de Fresnel (Fig.13). 

�          �
Fig. 13 Une lentille (semi)sphérique est un dioptre capable de concentrer les rayons provenant de 
l’infini vers un point appelé foyer. Une lentille de Fresnel est une lentille plate sculptée avec un profil 
parabolique. On utilise des lentilles de Fresnel dans les phares. 

II.1. Fonction de transfert optique

Le but de ce chapitre est de démontrer que un dioptre ayant une transmittance parabolique, comme 
celle d’une lentille produit au niveau du foyer la transformée de Fourier de la transmittance d’un objet 
semi-transparent. 

Le système optique le plus simple est composé d’un objet (supposé plat) qui émet de la lumière avec 
une certaine distribution d’intensité et d’un écran. La transparence ou transmittance de l’objet est une 
fonction � . L’objet émet un signal U(x,y,z) qui donne une image g(x,y) sur l’écran posé à une 
distance z=d .

f (x, y)
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Fig. 12 Angle de déviation 
des rayons parallèles : tous 
les rayons convergent vers 
un point f. 



�
Fig. 14 Modèle simple d’un système optique. 

Donc on peut écrire que:

�     et 

�

avec �

On définit la fonction de transfert � : 

� (10)

Si �  (approximation de Fresnel) alors �  

et la formule (10) devient:

�  (11)

La fonction� permet de determiner l’image sur l’écran g(x,y)  pour une certaine fréquence 

spatiale � . 

Pour reconstruire l’image complète tenant compte de toutes les fréquences spatiales, on peut 
envisager la procédure suivante.

1) Obtenir la transformée de Fourier de f(x,y)

�

2) Transférer�  au niveau de l’écran :  �

3) Obtenir g(x,y) grace à la transformée de Fourier inverse: 

x

y

f(x,y)
U(x,y,z) g(x,y)

d

f (x, y) =U(x, y,0) = A0exp j2π ⋅ ν xx +ν yy( )⎡⎣ ⎤⎦
g(x, y) =U(x, y,d) = A0exp j kxx + kyy( )⎡⎣ ⎤⎦exp jkzd( ) = f (x, y)exp( jkzd)

kz = 2π
1
λ 2

−ν x
2 −ν y

2

H ν x ,ν y( )

H ν x ,ν y( ) = f x, y( )
g x, y( ) = exp jkzd( )

1
λ 2 >>ν x

2 +ν y
2 kzd !

2π
λ
d 1− λ 2

2
ν x
2 +ν y

2( )⎡

⎣
⎢

⎤

⎦
⎥

H ν x ,ν y( ) = exp jkd( )exp − jπλd ν x
2 +ν y

2( )⎡
⎣

⎤
⎦ = H0 exp − jπλd ν x

2 +ν y
2( )⎡

⎣
⎤
⎦

H ν x ,ν y( )
ν x ,ν y( )

F(ν x ,ν y ) = f x, y( )∫∫ exp − j2π ν xx +ν yy( )⎡⎣ ⎤⎦dxdy

F(ν x ,ν y ) F(ν x ,ν y ) ⋅H (ν x ,ν y )
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�

Dans l’approximation de Fresnel (eq. 11) :

                                                                                                                            (12)

Reprenons donc les points 1,2,3 dans le cas particulier d’une source ponctuelle:
 � ailleurs.

Dans ce cas, �  et donc g devient:

�

On appelle h(x,y) qui est la transformée de Fourier inverse de � , la réponse impulsionnelle. 

En reprenant la fonction de transfert obtenue dans l’approximation de Fresnel (11), on peut montrer 
(en considérant la transformée de Fourier inverse d’une gaussienne) que: 

�

Ceci montre que tout point de l’objet sera transféré à l’écran situé à une distance d  avec un 
déphasage parabolique. 

Par conséquent si l’on considère une fonction f(x.y)  quelconque, on peut obtenir g(x,y) comme la 

convolution � . Ainsi:

� (13)

Cette expression mathématique représente le principe de Huygens-Fresnel que nous avons vu 
auparavant : toute onde lumineuse peut être considérée comme le résultat de l’interférence de 
sources lumineuses ponctuelles qui émettent de ondes sphériques. 

Après avoir établi les expressions qui nous permettent de définir et traiter une fonction de transfert 
nous allons considérer un système composé d’un objet, d’une lentille et de l’écran de projection (Fig. 
15). La lentille se situe à une distance d de l’objet  et l’écran se situe au foyer de la lentille.
 

�
Fig. 15 Système optique dans lequel on place l’écran au plan focal.

g x, y( ) = H ν x ,ν y( )F ν x ,ν y( )exp j2π ν xx +ν yy( )⎡⎣ ⎤⎦dν x dν y∫∫

f 0,0( ) = 1, f x, y( ) = 0

F(ν x ,ν y ) = f x, y( )∫∫ exp − j2π ν x0 +ν y0( )⎡⎣ ⎤⎦dxdy = 1

g x, y( ) = H ν x ,ν y( )exp j2π ν xx +ν yy( )⎡⎣ ⎤⎦dν x dν y∫∫ = h x, y( )

H (ν x ,ν y )

h(x, y) = j / λd( )exp j 2π
λ
d⎛

⎝⎜
⎞
⎠⎟ exp

jπ (x2 + y2 )
λd

⎡

⎣
⎢

⎤

⎦
⎥ = h0exp

jk(x2 + y2 )
2d

⎡

⎣
⎢

⎤

⎦
⎥

f x, y( ) i h x, y( )

g x, y( ) = h0 f x ', y '( )exp jk
x − x '( )2 + y − y '( )2

2d
⎡

⎣
⎢

⎤

⎦
⎥dx 'dy '∫∫
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g x, y( ) = H0 F ν x ,ν y( )exp − jπλd ν x
2 +ν y

2( )⎡⎣ ⎤⎦exp j2π ν xx +ν yy( )⎡⎣ ⎤⎦dν x dν y∫∫



On a déjà pu établir qu’une lentille transforme une onde plane en une onde ayant un déphasage 
parabolique:

�

Donc, une onde � ayant en d  la forme donnée par l’équation (12) sera ultérieurement 

changée par la lentille par le produit �  A noter que �  est indépendant des 
fréquences spatiales. 

�

On va introduire un changement de variable qui permettra de manipuler cette expression de manière 
plus avantageuse.

�

Donc �

avec �

Finalement nous allons calculer l’intensité lumineuse à une distance d+f  de la source c.à-d. à une 
distance f de la lentille. Pour réduire les expressions nous allons nous limiter à des variations sur l’axe 
x. Nous allons utiliser le principe de Huygens-Fresnel (eq. 13) pour calculer g(x) en d+f .

�

En utilisant les propriétés de l’exponentielle complexe et de la fonction delta:

�

on obtient simplement 

�  avec

fL(x, y) = exp
− jπ (x2 + y2 )

λ f
⎡

⎣
⎢

⎤

⎦
⎥

U (x, y,d)
U (x, y,d) i fL(x, y) fL(x, y)

U x, y,d( ) = H0exp
− jπ (x2 + y2 )

λ f
⎡

⎣
⎢

⎤

⎦
⎥F ν x ,ν y( )exp − jπλd ν x

2 +ν y
2( )⎡⎣ ⎤⎦exp j2π ν xx +ν yy( )⎡⎣ ⎤⎦

2ν xx −
x2

λ f
= −x2 + 2ν xλxf( ) / λ f = − x − x0( )2 + x02⎡

⎣⎢
⎤
⎦⎥ / λ f

avec x0 = ν xλ f

U x, y,d( ) = A ν x ,ν y( )exp − jπ (x − x0 )
2 + (y − y0 )

2⎡⎣ ⎤⎦
λ f

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

A ν x ,ν y( ) = H0F ν x ,ν y( )exp jπλ f − d( ) ν x
2 +ν y

2( )⎡⎣ ⎤⎦

g(x) =U x,d + f( ) = h0 U x,d( )exp jk (x − x ')2⎡⎣ ⎤⎦
2 f

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫ dx ' =

h0 A ν x( )exp − jk (x '− x0 )
2⎡⎣ ⎤⎦

2 f
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
exp

jk (x − x ')2⎡⎣ ⎤⎦
2 f

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫ dx ' = h0 A ν x( )exp jk −(x '− x0 )
2 + (x − x ')2⎡⎣ ⎤⎦
2 f

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dx '∫

= h0 A ν x( )exp jk x2 − x0
2 + 2x '(x0 − x)⎡⎣ ⎤⎦
2 f

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dx '∫ =h0exp

jk x2 − x0
2( )

2 f
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
A ν x( )exp jkx '(x0 − x)

f
⎡
⎣⎢

⎤
⎦⎥
dx '∫

exp jkx '(x − x0 )
f

⎡
⎣⎢

⎤
⎦⎥∫ dx ' = exp j2π (x − x0 )

x '
λ f

⎡
⎣⎢

⎤
⎦⎥∫ dx ' = λ fδ x − x0( )

U x,d + f( ) = h0A ν x( )λ fδ (x − x0 )
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�

Ce qui est vrai pour toute fréquence spatiale, donc:
 

�

ou en deux dimensions 

�          (14)

On peut ultérieurement simplifier sachant que 

�

Et finalement, l’intensité lumineuse au plan focal de la lentille c.à-d. f=d    

�          (15)

Ce qui montre bien qu’au plan focal de la lentille on obtient la transformée de Fourier spatiale de 
l’objet projeté (fig. 16).  

�
Fig. 16 La projection d’une onde plane diffractée par l’objet en z=0, est transformée par la lentille en 
un point qui est la transformée de Fourier d’une seule fréquence spatiale.

On notera que si l’on considère la transformation de Fourier inverse

�
et la formule (14) on obtient que 

A ν x( ) = H0F ν x( )exp jπλ f − d( )ν x2⎡⎣ ⎤⎦ et

δ x − x0( ) = δ x − λ fν x( ) = 1
λ f

δ x
λ f

−ν x
⎛
⎝⎜

⎞
⎠⎟

U (x, f + d) = g x( ) = h0H0F
x
λ f

⎛
⎝⎜

⎞
⎠⎟
exp jπλ f − d( ) x

λ f
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

g x, y( ) = h0H0F
x
λ f
,
y
λ f

⎛
⎝⎜

⎞
⎠⎟
exp jπλ f − d( ) x

2 + y2

λ f( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

h0 = j / λd( )exp jkd( )
H0 = exp( jkd)

H0h0 = j / λd( )exp 2 jkd( )

I x, y( ) = 1
λ f( )2

F x
λ f
, y
λ f

⎛
⎝⎜

⎞
⎠⎟

f (x, y) = F−1(ν x ,ν y ) = F(ν x ,ν y )∫∫ exp j2π ν xx +ν yy( )⎡⎣ ⎤⎦dν xdν y
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�              (16)

En pratique, ceci signifie qu’appliquer une deuxième lentille au signal transformé par une première 
lentille, signal qui a donc subi une transformée de Fourier, crée une image réelle et inversée.

III. Travail à faire

1) Montage 4f

Comme l’indique la figure ce montage implique l’utilisation de deux lentilles identiques de distance 
focale f. Chaque élément est à une distance f  de l’autre: la lentille, le plan de Fourier, la deuxième 
lentille et l’écran.

�

Fig. 17 Schéma du montage 4f

La premiere lentille transforme l’objet dans sa transformée de Fourier que l’on peut visualiser sur le 
plan focal (que l’on appelle aussi pour cette raison plan de Fourier). La deuxième lentille crée une 
image réelle sur l’écran. Cette image est inversée. 

Attention danger ! Ne jamais regarder la lumière laser directement. Travailler toujours debout 
pour s’assurer que la tete ne se trouve jamais au même niveau que le laser.

Poser le laser et l’aligner en déplaçant le diaphragme (fermé) le long du rail. Le laser doit rester centre 
sur le trou du diaphragme. pour aligner le laser utiliser une clef inbus et les vis qui permettent de 
déplacer la fixation du laser vers le haut ou latéralement. 

La lentille d’expansion (beam expander) permet d’obtenir une tache diffuse plutôt qu’un point 
lumineux. Placer cet élément très proche du laser. Si nécessaire on pourra re-aligner le faisceau avec 
le diaphragme comme écran.

Placer une lentille convergente +100 après le beam expander pour obtenir un faisceau parallèle . En 
principe on doit obtenir une tache circulaire du même diamètre que la lentille. Ce diamètre ne doit pas 
varier le long du rail. Utiliser de nouveau le diaphragme comme écran et le déplacer le long du rail. 
Quelle est la distance de la lentille convergente depuis le beam expander? Pourquoi? Votre faisceau 
est aligné vous pouvez placer la piece semi-cylindrique pour éviter d’être ébloui par le laser dans la 
suite du travail.  

g −x,−y( )∝F−1 x
λ f
, y
λ f

⎛
⎝⎜

⎞
⎠⎟
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2) Projection d’une image réelle 

Placer le montage 4f avec deux lentilles convergentes +125, le support sur le plan de Fourier et 
l’écran. On place la maison de Fourier dans le porte-objet. Prendre les distances de la position 
effective des éléments. Pour les lentilles on pourra considérer que leur position est donnée par le 
milieu de l’anneau noir. Observer et commenter l’image obtenue. 

Créer une image agrandie sur l’écran. 

Placer une troisième lentille convergente +50 pour agrandir l’image . 

Vérifier la loi bien connue 

�

avec d  la distance entre l’objet et la lentille, d’ la distance entre la lentille et l’image et 
l’agrandissement pour diverses paires (d ,d’).

Avec l’image agrandie on pourra compter la densité des lignes (fentes) dans l’objet. Tenant compte de 
l’agrandissement mesurer l’espacement entre deux fentes. 

3) Utilisation de la transformée de Fourier

Remplacer la deuxième lentille +125 avec la lentille +50 et essayer de projeter la transformée de 
Fourier sur l’écran. 

Calculer en utilisant la position de la lentille, l’agrandissement � de l’image de la transformée de 

Fourier. 

Utiliser les positions des points du premier ordre de diffraction pour calculer l’espacement du réseau 
de la maison de Fourier. Rappel: la fréquence spatiale est donnée par:

�

x est une distance mesurée sur l’image non agrandie, x’ est une longueur mesurée après 
agrandissement. La longueur d’onde du laser vert est � .

4) Filtrage 

L’utilisation pratique de l’optique de Fourier réside surtout dans le filtrage d’images. Si l’objet possède 
certaines caractéristiques périodiques, elles seront mise en évidence par des points dans le plan de 
Fourier. On pourra alors soit ôter ses caractéristiques dans l’image projetée soit les distinguer par 
rapport aux zones homogènes. 

Ci dessous quelques suggestions non exhaustives. 

a) Mettre le filtre “barre horizontale” sur le support situé dans le plan de Fourier. On pourra s’aider 
avec la projections agrandie de la transformée de Fourier. Ensuite, en bougeant la lentille +50 on 
pourra obtenir l’image réelle sur l’écran. Décrire le résultat et le justifier. 

b) Effectuer la même opération avec la barre verticale
c) Utiliser un trou de petites dimensions pour sélectionner un point seulement de la transformée. 

Décrire le résultat et l’interpréter. 
d) Placer le trou hors de tout spot (dark field). La luminosité sur l’écran sera très faible mais on 

devrait pouvoir visualiser les défauts de l’objet.  

1
d
+ 1
d '

= 1
f
avec γ = d '

d

γ = d '
d

ν x =
1
Λx

!
θ x

λ
= x
fλ

= x '
γ fλ

λ = 532 nm
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Annexe

Rappel sur la transformée de Fourier. 

Serie de Fourier 
Tout signal périodique de période T peut être décomposé en une somme de sinus et de cosinus. Les 
fréquences harmoniques multiples de la fréquence�

�  

où :

  si n est pair 

et   si n est impair. 

On peut aussi écrire la même expression en forme complexe:

�

avec la relation suivante entre les coefficients réels et complexes:

      
et         

Donc:

�

avec    

Ce qui permet de passer de la forme discrete (somme) à la version continue (intégrale): 

�

ω

f (t) = an
n=0

∞

∑ cos(nωt)+ bn
n=0

∞

∑ sin(nωt)

an =
2
T

f (t)cos(nωt)dt
−T 2

T 2

∫

bn =
2
T

f (t)sin(nωt)dt
−T

2

T 2

∫

f (t) = Fne
inωt

n=−∞

∞

∑ = Fn
n=−∞

∞

∑ cos(nωt)+ iFn sin(nωt)

= (Fn
n=0

∞

∑ + F−n )cos(nωt)+ i(Fn − F−n )sin(nωt)

an = Fn + F−n
bn = i(Fn − F−n )

Fn =
1
T

f (t)e− inωt
−T 2

T 2

∫ dt

f (t) = Fne
inωt

n=−∞

∞

∑ = einωt
n=−∞

∞

∑ 1
T

f (t)
T /2

T /2

∫ e− inω0tdt

= e
in2π
T
t

n=−∞

∞

∑ 2π
T

1
2π

f (t)
T /2

T /2

∫ e
− in2π

T
t
dt

lim
T→∞

2π
T

⎛
⎝⎜

⎞
⎠⎟ = dω

f (t) = eiω t
−∞

∞

∫ dω 1
2π

f (t)
−∞

∞

∫ e− iω tdt

= 1
2π

eiω t 1
2π

f (t)
−∞

∞

∫ e− iω tdt
⎡

⎣
⎢

⎤

⎦
⎥

−∞

∞

∫ dω

= 1
2π

eiω tF(ω )
−∞

∞

∫ dω
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et

 �     est la transformée de Fourier de f(t). 

Des exemples notables:

F(ω ) = 1
2π

f (t)
−∞

∞

∫ e− iω tdt
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F(ω)

−ω 0 ω 0 ω

f(t)=cos(ω0t)

F ω( ) = 1
2
⋅ δ (ω −ω 0 )+δ (ω +ω 0 )[ ]

f(t)=cos(ω0t)

−ω0 ω0

F(ω)

F ω( ) = T
2
⋅ sinc T

2
ω −ω 0( )⎡

⎣⎢
⎤
⎦⎥
+ sinc T

2
ω +ω 0( )⎡

⎣⎢
⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
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