
 

 
 
 
 

 
 

A1. Mechanical Bench 
 
 

I. INTRODUCTION AND OBJECTIVE OF THE EXPERIMENT 
 
An important part of mechanics relies on a certain amount of measurable quantities that were 
discovered phenomenologically, before being given a mathematical definition. For instance, the 
concepts of velocity and acceleration rely on the mathematical definitions of vectors and derivatives. 
Other concepts, such as forces, potential and kinetic energy, and more, are tied to the previous 
phenomenological concepts (e.g. friction) or fundamental equations (e.g. Newton's equation). 
This experiment will attempt to study a few different properties of motion, such as friction and 
gravitational force, and look at the elementary equations describing collisions. All of this will be 
achieved only by measuring speeds of a glider on an air-cushion bench. 
 

II. EXPERIMENTAL SETUP 
 
A glider represents the point mass, and moves on an air-cushion bench (fig. 1). In order to get decent 
quantitative results, it is necessary to reduce friction on the bench. This is made possible within 
comfortable limits, by using pressurized air to make the glider hover. The bench's angle is adjusted by 
turning a screw located at one extremity; one turn of the screw results in an angle variation   of 

0.001 radian. The glider's speeds can be measured using two optical gates: every time the glider goes 
through a gate, it blocks the laser's optical path, and a "Phywe" stopwatch measures the duration of 
this interruption (fig. 1). Knowing the time t of the interruption, and the glider's length a, we can 

determine the glider's speed. 

v 
a

t
 

After having launched the glider in position A, with an initial velocity v0 ,the optical gates 1 and 2 allow 

us to measure the following crossing times (the stopwatch's button '7' must be placed on position 3): 

- In the first direction (a), at position B, the time t2a  is measured, and thus v2a  at gate 2, 

- In the direction (a), at position C, the time t1a  is measured, and thus v1a  at gate 1, 

- In the second direction (b), after the impact in D, at position C, the time t1b  and speed v1b  at gate 1, 

- In the direction (b), after the impact D, at B, the time t2b  and speed v2b  at gate 2 are measured. 
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Figure 1: The mechanical air-cushion bench, and the “Phywe” stopwatch. 
 

 
III. THEORY 
 
III.1. PROPERTIES OF FRICTION 
 
Despite the presence of air-cushions, some friction will still be present. We shall phenomenologically 
determine the type of friction occurring, by choosing from the following three possibilities: 
 

- dry friction f fr
sec

, indépendante de la vitesse du mobile, mais en général proportionnelle à la force 

normale N  mgcos  exercée par le mobile sur son support  

 

f fr
sec  K N  K mgcos     où     K  = le coefficient de frottement sec dynamique    (1) 

 

- viscous friction in a laminar flow f fr
lam(v) , that varies linearly with the speed v  of the slider 

 

f fr
lam(v)  v        où        = le coefficient de frottement visqueux laminaire     (2) 

 

- viscous friction in a turbulent flow f fr
turb(v) , that varies quadratically with the speed v  of the slider 

 

f fr
turb(v)   v2      où        = le coefficient de frottement visqueux turbulent     (3) 

 
Note that the  coefficient depends on the penetration coefficient of the glider, the density of air ρ, 

and the apparent area of the glider S, according to the equation  / 2xC S  . 
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III.2. MEASURING FRICTION 
 
We can measure the glider's energy variation between the points B and C. In the first direction (a), the 
glider's kinetic energy at point C is equal to that in B minus the energy dissipated through friction 
between B and C plus the potential energy due to the height difference h between the two points. If 

the average friction in the first direction (a) on a distance 𝐿2 between B and C is given by fa
L2

, we can 

write: 
 

1

2
mv1a

2 
1

2
mv2a

2  fa
L2L2  mgh2 

1

2
mv2a

2  fa
L2L2  mgL2 sin        (4) 

 
Similarly, if  is the average friction acting on the distance 𝐿2 between C and B in the second direction 

(b) is fb
L2

, we have: 

 

1

2
mv2b

2 
1

2
mv1b

2  fb
L2L2  mgh2 

1

2
mv1b

2  fb
L2L2  mgL2 sin        (5) 

 
Adding (4) and (5) together yields an expression independent of the angle   

 

1

2
mv1a

2 
1

2
mv2b

2 
1

2
mv2a

2 
1

2
mv1b

2  ( fa
L2  fb

L2 )L2  

 

from which we can easily deduce an average friction force f for an for an average round-trip 

speed v  
 

f  ( fa
L2  fb

L2 ) / 2 
m

4L2
v2a

2  v1b
2  v1a

2  v2b
2 

v 
1

4
v2a  v1b  v1a  v2b 












        (6) 

 
III.3. RESTITUTION COEFFICIENT OF A COLLISION 
 
If the shock at point D is not perfectly elastic, part of the energy will be dissipated as heat in the 

springs. If we define the kinetic energy Ecin
a

of the slider right before the impact, and the kinetic energy  

Ecin
b

 right after the impact, we can define the restitution coefficient of the collision C as the ratio of 

Ecin
b

 and Ecin
a

 

Cr 
Ecin
b

Ecin
a

              (7) 

The kinetic energies before and after the impact can easily be extrapolated from the kinetic energies 
measured at the point C 

2 2

1 1 1 1 1 1

2 2

1 1 1 1 1 1

1 1
sin

2 2

1 1
sin

2 2

a C C

cin a a a a

b C C

cin b b b b

E mv f L mgh mv f L mgL

E mv f L mgh mv f L mgL






     


      


 

 

where 
C

af  and 
C

bf are the friction forces in the direction (a) and (b) at the point C . The restitution 

coefficient can be written: 
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2

1 1 1

2

1 1 1

1
sin

2
1

sin
2

C

b b

r
C

a a

mv f L mgL

C

mv f L mgL





 



 

             (8) 

 

We notice that measuring Cr  will be easier if the bench is horizontal since sin  0 . 

 

III.4. MEASURING EARTH'S GRAVITATIONAL PULL 

 
Subtracting (5) from (4) yields: 
 

1

2
mv1a

2 
1

2
mv2b

2 
1

2
mv2a

2 
1

2
mv1b

2  ( fb
L2  fa

L2 )L2  2mgL2 sin  

 
from which we can determine the gravitational acceleration g 
 

 2 2 2 2 2 2

1 2 1 2

2

1 1
( )

4 sin 2 sin

L L

b b a a b ag v v v v f f
L m 

             (9) 

 
We notice that this measurement depends only weakly on the friction, since only the difference 

( fb
L2  fa

L2 )  appears in the expression. However, in order to get an appreciable precision on the 

obtained result, we will need to determine the phenomenological law governing friction precisely, as 

well as the corresponding coefficient (K, ou  ) 

 

III.5. CONSERVATION OF MOMENTUM DURING A COLLISION 

 

When two objects collide, the total momentum is conserved. We can verify this law by using the air 
cushion bench in the horizontal position, and launching against one another two gliders A and B, of 

masses mA  and mB , and initial velocities vA0  and vB0  (fig. 2). According to the the law of collisions, 

the momentum  ( pa )before and ( pb )after the impact must be the same, independently of whether the 

shock is elastic or not. This leads to: 
 

a A Aa B Ba A Ab B Bb bp m v m v m v m v p              (10) 

 

The speeds of A and B before ( vAa,vBa )and after ( vAb,vBb )can be determined from the speeds 

v1b,v1a,v2a,v2b   measured in the optical gates 1 and 2, using the following set of equations before the 

impact 
 

2 2

1

1 1

2 2

A

A Aa A a A am v m v f   and 
2 2

2

1 1

2 2

B

B Ba B a B am v m v f   

 

where 
A

af  et 
B

af  are the friction forces acting on the gliders in the first direction (a) on the gliders A 

and B, at gate 1 and 2. 
 
and after the impact: 
 

2 2

1

1 1

2 2

A

A Ab A b A bm v m v f   and
2 2

2

1 1

2 2

B

B Bb B b B bm v m v f   
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where
A

bf  and 
B

bf  the friction forces acting on the gliders in the second direction (b) on the gliders A 

and B, at gate 1 and 2. 
 
 

 
 

Figure 2- La configuration pour le test de la conservation de la quantité de mouvement 
 
 
These equations can be approximated as: 
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
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in such a way that the law of collisions (10) can be well approximated by: 
 

1 2 1 2

1 2 1 2

A B A B

A a B a A b B b
a A a B a A b B b b

a a b b

f f f f
p m v m v m v m v p

v v v v

   
             (11) 
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IV. SUGGESTED EXPERIMENTS 
 
IV.1. Friction 
Turn on the air bench using the valve attached to the table leg. Set the bench in its horizontal position  

(  0 ). You can adjust and verify the horizontality using a slider. It’s very sensitive to any slight 

angle variation. 
Perform at least a dozen experiments with each one of the sliders, while making sure to change the 
initial velocity every time, in order to get a wide enough range of measures. Each experiment therefore 

yields the 4 speeds v1b,v1a,v2a,v2b . 

- For each on of theses measures, determine the average friction  and the average speed v  at 

which is was measured according to equation (6). 

- Plot all results on a graph of  versus v . Is the friction the same for all three sliders? 

Phenomenologically, is the observed friction dry ( f fr
sec  K N  K mgcos ), viscous (

f fr
lam(v)  v ), or turbulent ( f fr

turb(v)   v2 ) ? 

- Determine the equation f fr  f fr (v)  by calculating the associated K, ou  coefficient for each 

slider. 

 

IV.2. The restitution coefficient 
 

Using the results v1b,v1a,v2a,v2b  obtained previously, we can determine the restitution coefficient, 

knowing that  0 , using (8). Furthermore, having already determined the friction f fr  f fr (v)  in 

IV.1, we can replace the friction forces 
C

af  and 
C

bf with their expressions 
1( )C

a fr af f v  and 

1( )C

b fr bf f v , such that 

 

Cr 
mv1b

2  2L1 f fr (v1b )

mv1a
2  2L1 f fr (v1a )



v1b
2  2L1Kg

v1a
2  2L1Kg

si f fr (v)  Kmg

v1b
2  2L1v1b / m

v1a
2  2L1v1a / m

si f fr (v)  v

v1b
2 m  2L1 

v1a
2 m  2L1 

si f fr (v)   v
2
















 

 

- For each of the three gliders, plot Cr  as a function of the incident speed . What parameters 

does Cr  mainly depend on? 

 
IV.3. Gravitational acceleration 
 

The bench is placed in an slanted position (  0 , of the order of 5x10-3 radian). Perfmor at least 

twenty experiments with the steel spring slider. Once again, make sure to vary the initial speed every 
time, in order to get a wide range of measures. Each experiment yields 4 different speeds

v1b,v1a,v2a,v2b , from which we can determine the gravitational acceleration g using equation (9), by 

estimating the friction term ( fb
L2  fa

L2 )  using the relation f fr  f fr (v)  from paragraph IV.1, i.e. 

 

( fb
L2  fa

L2 ) 
f fr (v1b ) f fr (v2b )

2

f fr (v1a ) f fr (v2a )

2
 

such that 

f

f

v1a



EPFL-TRAVAUX PRATIQUES DE PHYSIQUE   A1-7 

 

   

 

2 2 2 2

1 2 1 2 1 2 1 2

2

2 2 2 2 2

1 2 1 2

0 ( ) cos

1
( )

4 sin 4 sin

( )
4 sin

fr

b b a a b b a a fr

b b a a fr

if f v Kmg

g v v v v v v v v if f v v
L m

v v v v if f v v
m






 







 




        


    

 
 

- calculate the value g  for each experiment, estimate the error made on this value, and indicate the 

ideal measuring conditions for g . 

 

IV.4. The law of impacts 
 
Using the setup of figure 2, we shall study the law of impacts (10) by verifying equation (11), in which 

the average friction 
A

af , 
B

af , 
A

bf  and 
B

bf  are to be estimated using the law f fr  f fr (v)  determined 

in paragraph IV.1. A good way to proceed is to determine the ratio 

      1 1 2 2/a b A a b B a bP p p m v v m v v      experimentally, i.e. 
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A a b

m v v m v v Kg m m
v v v v
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     
  

  
 

  

      
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2

2 2

( )fr

B a b

if f v v
m v v








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


 



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- measure the speeds v1b,v1a,v2a,v2b  for about 10 different experiments with the bench in a horizontal 

position. Calculate the ratio pa  pb / pa  pb  obtained in each one of these cases, supposing 

that A  B , and discuss the results. 

 

 

 

 

 

 

 

 

 

 

Fig. 3 : Image of the experimental setup 


