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We present an efficient implementation of the adaptive finite element method with continuous

linear functions in arbitrary dimensions. Its strength lies in the applicability to any dimension

without the necessity for any adjustments in the code. The routine includes all components of

an adaptive FEM as the assembly of the stiffness matrix, calculation of the load vector, error

estimation, and adaptive mesh refinement. The whole program is structured in six functions

which have on average a length of no more than fifty lines. Due to singularities in a domain,

adaptive methods are highly important to keep the computational cost low. This effect is even

increased in higher dimensions. We refine a given mesh according to an error estimator by the

Newest Vertex Bisection, i.e. any simplex that is marked for refinement is divided into two

simplices by bisection of an edge. The achievement of a routine of almost linear complexity with

respect to the number of elements is reinforced by numerical calculations. Our implementation

is realized in Matlab and Julia and focuses on an efficient realization that can be easily adapted

to other vectorized languages. Furthermore, the derived implementations allow for an analysis

of the performance and data structures in high dimensions. For example, we investigate the

sparsity of the stiffness matrix according to the dimensions.
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The talk presents our recent work [1]: For a bounded Lipschitz domain ⌦ ⇢ Rd and given
f, g 2 L

2(⌦), we aim to approximate the linear goal quantity

G(u) :=

Z

⌦
gu dx, (1)

where u 2 H
1
0 (⌦) is the weak solution of the semilinear elliptic PDE

�div(Aru) + b(u) = f in ⌦ subject to u = 0 on � := @⌦. (2)

Here, the diffusion matrix A 2 Rd⇥d
sym is uniformly positive definite, and the smooth nonlinearity

b(·) is monotone and satisfies certain growth conditions. The weak formulation of the so-called
primal problem (2) reads as follows: Find u 2 H

1
0 (⌦) such that

hAru,rvi+ hb(u), vi = hf, vi for all v 2 H
1
0 (⌦), (3)

where hv, wi :=
R
⌦ vw dx denotes the L

2(⌦)-scalar product. Existence and uniqueness of the
solution u 2 H

1
0 (⌦) of (3) follow from the Browder–Minty theorem on monotone operators.

Based on a conforming triangulation TH of ⌦ and a fixed polynomial degree m 2 N, let
XH := {vH 2 H

1
0 (⌦) : 8T 2 TH : vH |T is a polynomial of degree  m}. The FEM discretization

of the primal problem (3) reads: Find uH 2 XH such that

hAruH ,rvHi+ hb(uH), vHi = hf, vHi for all vH 2 XH . (4)

We approximate the sought goal quantity G(u) by means of the computable quantity G(uH).
The optimal error control of the goal error G(u)�G(uH) involves the so-called (practical) dual
problem: Find z[uH ] 2 H

1
0 (⌦) such that

hArz[uH ],rvi+ hb0(uH)z[uH ], vi = G(v) for all v 2 H
1
0 (⌦). (5)

Existence and uniqueness of z[uH ] follow from the Lax–Milgram lemma. The FEM discretization
of the dual problem (5) reads: Find zH [uH ] 2 XH such that

hArzH [uH ],rvHi+ hb0(uH)zH [uH ], vHi = G(vH) for all vH 2 XH . (6)

We prove the goal error estimate

C
�1 |G(u)�G(uH)|  ku� uHkH1(⌦)kz[uH ]� zH [uH ]kH1(⌦) + ku� uHk2

H1(⌦). (7)

Based on residual error estimators, we formulate a goal-oriented adaptive algorithm (GOAFEM),
which guarantees convergence and, as the main contribution, optimal algebraic convergence rates.
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Numerical approximation of orthogonal maps with adaptive
finite elements. Application to paper folding
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Orthogonal maps are the solutions of a first order fully nonlinear equation involving the gradient
of the solution. It originated in the so-called origami problem [1], but has also several applications
nowadays in material sciences. A Dirichlet problem is considered here, which consists of finding
u : ⌦ ⇢ R2

! R2 verifying

ru 2 O(2) in ⌦, u = g on @⌦.

where O(2) denotes the set of orthogonal matrix-valued functions, and g is a given, sufficiently
smooth, function. The solution to this problem is piecewise linear, with line singularities along
the folding edges.
The numerical solution is obtained via a variational principle, which enforces a uniqueness of
the solution. It relies on the minimization of a regularized objective function. We present a
strategy based on a splitting algorithm for the flow problem derived from the first-order optimality
conditions. It leads to solving a sequence of local nonlinear problems and a global variational
problem at each time iteration. The local nonlinear problems are solved with mathematical
programming techniques, while the variational problems are solved with a low order finite element
method.
Within the splitting algorithm, anisotropic adaptive techniques are introduced for the solution
of the variational problems. They rely on error estimate based techniques developed for the
solution of linear Poisson problems [2], and show good convergence properties despite being sub-
optimal. Anisotropic adaptive techniques allow to obtain refined triangulations near the folding
edges while keeping the number of vertices as low as possible [4].
Numerical experiments validate the accuracy and efficiency of the adaptive method in various
situations. Appropriate convergence properties are exhibited, and solutions with sharp edges are
recovered. In particular, experiments with a fractal behaviour of the solution are exhibited.

This is a joint work with Prof. Marco Picasso (EPFL) and Dr Dimitrios Gourzoulidis (EPFL
and HES-SO).
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We extend classical a posteriori error estimates for Galerkin numerical solutions of parabolic
problems by allowing the discrete spaces between time-steps to be completely unrelated from
one another (non-hierarchical discrete spaces) [1]. As such, they can be used in conjunction with
very general mesh modification for the first time. The a posteriori error estimates are derived for
the error measured in the L2(H1) and L

1(L2) norms using the elliptic reconstruction technique in
an abstract framework requiring no particular compatibility between the computational meshes
used on consecutive time-steps, thereby significantly relaxing this basic assumption underlying
previous estimates.
The practical interest of this setting is demonstrated by applying our results to finite element
methods on moving meshes and using the estimators to drive an adaptive algorithm based on a
virtual element method (VEM) on very general polygonal meshes.
Our results are particularly relevant to the new velocity based moving mesh virtual element
method, to be presented in [2], which combines moving meshes with the virtual element frame-
work to solve porous medium equation free boundary problems. Here, polygonal meshes can be
exploited to represent moving boundaries and interfaces with a minimal number of degrees of
freedom and to produce efficient local mesh refinement when a change in mesh connectivity is
required such as in contact problems.
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Removing features from a complex geometry is a classical operation in computer aided design
for manufacturing. It simplifies the meshing process, and it enables faster simulations with less
memory requirements. However, given a partial differential equation defined on the geometri-
cal model of interest, removing the wrong features may greatly impact the solution accuracy.
For instance, in solid mechanics simulations, such features can be holes or fillets around stress
concentration regions. This is why understanding well the effects of geometrical model simplifi-
cation, also called defeaturing, is an important step to be able to adaptively integrate geometric
design and analysis.

In this talk, we will present an adaptive strategy for analysis-aware defeaturing that is twofold.
On the one hand, the algorithm performs standard mesh refinement steps in a (partially) defea-
tured geometry. On the other hand, the strategy also allows for geometrical refinement. That
is, at each iteration, it is able to choose which missing geometrical feature should be added to
the simplified geometrical model, in order to obtain a more accurate solution.

To drive this adaptive strategy, we will introduce an a posteriori estimator of the energy norm
of the error between the exact solution defined in the exact fully-featured geometry, and the
numerical approximation of the solution defined in the defeatured geometry. Using isogeometric
analysis with hierarchical B-splines as numerical method to solve the problem at hand, this
estimator is proven to be reliable for very general geometrical configurations. The dependence of
the estimator upon the size of the features and upon the mesh size is explicit, and the effectivity
index is independent from the number of considered features. The proposed estimator can be
computed very efficiently, and it is also naturally parallelizable with respect to the number of
features. During the talk, we will also show the results of some numerical experiments that
illustrate the capabilities of the proposed adaptive strategy.
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Optimal adaptivity for inf-sup stable problems

Michael Feischl
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We prove new optimality results for adaptive mesh refinement algorithms for non-symmetric,

indefinite, and time-dependent problems by proposing a generalization of quasi-orthogonality

which follows directly from the inf-sup stability of the underlying problem. This completely

removes a central technical difficulty in modern proofs of optimal convergence of adaptive mesh

refinement algorithms and leads to simple optimality proofs for the Taylor-Hood discretization of

the stationary Stokes problem, a finite-element/boundary-element discretization of an unbounded

transmission problem, and an adaptive time-stepping scheme for parabolic equations. The main

technical tool are new stability bounds for the LU -factorization of matrices together with a

recently established connection between quasi-orthogonality and matrix factorization.
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Currently, there is a growing interest in simultaneous space-time methods for solving parabolic

evolution equations. Main reasons are that, compared to classical time-marching methods, space-

time methods are much better suited for a massively parallel implementation, are guaranteed

to give quasi-optimal approximations from the employed trial space, have the potential to drive

optimally converging simultaneously space-time adaptive refinement routines, and they provide

enhanced possibilities for reduced order modelling of parameter-dependent problems. On the

other hand, one important drawback of space-time methods is that they require more storage.

This drawback however vanishes for problems of optimal control, for which the solution is needed

simultaneously over the whole time interval anyway.

While the common space-time variational formulation of a parabolic equation results in a bilinear

form that is non-coercive, [1] recently proved well-posedness of a space-time first-order system

least-squares formulation of the heat equation. Least-squares formulations always correspond

to a symmetric and coercive bilinear form. In particular, the Galerkin approximation from any

conforming trial space exists and is a quasi-best approximation. Additionally, the least-squares

functional automatically provides a reliable and efficient error estimator.

In [2], we have generalized the least-squares method of [1] to general second-order parabolic PDEs

with possibly inhomogenoeus Dirichlet or Neumann boundary conditions. For homogeneous

Dirichlet conditions, we present in this talk convergence of a standard adaptive finite element

method driven by the least-squares estimator, which has also been demonstrated in [2]. The

convergence analysis is applicable to a wide range of least-squares formulations for other PDEs,

answering a long-standing open question in the literature. Moreover, we employ the space-time

least-squares method for parameter-dependent problems as well as optimal control problems. In

both cases, coercivity of the corresponding bilinear form plays a crucial role.
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Qualitative properties of the discrete solutions of partial differential equations (PDEs) are of
considerable interest. Namely, besides the convergence of a given method, it is also impor-
tant that the numerical solution shall preserve the characteristic properties of the modeled phe-
nomenon, thus guaranteeing the qualitative reliability of the method. For diffusion type PDEs,
the most relevant properties are maximum/minimum principles and, in particular, nonnegativ-
ity/nonpositivity preservation, further, for time-dependent problems, also the maximum norm
contractivity. For instance, for various models, violation of nonnegativity would mean that
the obtained numerical solution contradicts basic physical laws. Consequently, a huge body of
research has been carried out in this field.
In this talk we focus on our results on finite element discretizations of nonlinear parabolic prob-
lems. The elliptic case [1] serves as a motivation to show the importance of angle conditions of
the space mesh, see also [5]. For parabolic problems, the preservation of the qualitative proper-
ties can be generally guaranteed with additional relations of the spatial discretization and the
time-step. Discrete nonnegativity preservation and maximum principles will be summarized for
a class of parabolic problems. Furthermore, it is also important to reveal the relations of the
involved qualitative properties in an organized network. The results are based on [3, 4], which
extend the properties of the linear case in [2]. Further research is intended to involve advection
terms and boundary nonlinearities in this study.
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The focus of this presentation is the development and analysis of a time filtering process for a

linear hyperbolic equation motivated by the modeling of the transcription of ribosomal RNA in

bacteria [1]. Recently the time filter has been combined with fully implicit schemes for nonlinear

problems in order to increase accuracy with minimal modifications to existing code [2]. In this

talk, we demonstrate that adding a time filter to explicit schemes for hyperbolic problems yields

similar results. A new explicit implementation is presented, and increased accuracy of the filtered

upwind scheme is observed for test problems. The typical treatments for explicit schemes for

hyperbolic problems require calculations for CFL conditions in order for the filtered schemes to

remain stable. A stability condition for the new algorithm is derived. Numerical computations

illustrate stability and convergence as well as dissipation and dispersion of the filtered schemes.
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Anisotropic adaptive finite elements for linear and nonlinear
elliptic problem with strongly varying diffusion coefficients
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Anisotropic adaptive methods have shown to be very efficient, in particular for problems with

boundary layers.

Two different problems will be considered, the linear elliptic equation �r · (µru) = f , where

µ > 0 is smooth but strongly varying and the nonlinear elliptic equation �r · (µ+ |ru|)ru = f
where µ is a non negative constant.

Using the anisotropic setting of [2, 3] an extension of [5] is proposed here for the linear elliptic

equation, the error estimator being equivalent to the true error (up to some higher order terms).

A posteriori error estimates for the nonlinear problem in the isotropic framework have been

presented in [4, 1]. An upper bound will be presented in the anisotropic framework.

Finally a numerical study of the effectivity index will be presented for both the problems, on

non-adapted and adapted anisotropic meshes.
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A Posteriori Error Estimates for Boundary Value
Problems in Measures Stronger than the Energy Norm
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We discuss a posteriori estimates of the functional type which are derived by
purely functional methods without using special properties of approximations
and exact solutions to boundary value problems. Usually a posteriori estimates
of this class are derived in terms of the natural energy norms. In this talk, an
approach is proposed to obtain guaranteed and computable bounds for a wide
spectrum of error measures, which are stronger than the energy norm. It is ap-
plicable provided that the exact solution and its approximation satisfy certain
additional conditions (e.g., regularity). These measures include the standard
energy norm as a simple special case. A general approach is proposed to con-
struct various measures based on using an auxiliary variational problem. Two
classes of measures whose properties are close to the Lq and L1 norms are stud-
ied in more detail. Their properties are established, and explicitly computable
two-sided error bounds are derived.
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In this presentation, the framework of the dual-weighted residual method is applied to a space-
time formulation of nonstationary Stokes flow. Tensor-product space-time finite elements[1] are
being used to discretize the variational formulation with discontinuous Galerkin finite elements
in time and inf-sup stable Taylor-Hood finite element pairs in space. To estimate the error in a
quantity of interest and drive adaptive refinement in time and space, we demonstrate how the
dual-weighted residual method for incompressible flow[2] can be extended to a partition of unity
based error localization[3, 4]. The presentation concludes with current developments and some
preliminary findings of the extension of our methodology to the nonstationary Navier-Stokes
equations.
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A posteriori error estimation for a projector-splitting scheme for
dynamical low rank approximation of a random heat equation

Fabio Nobile, Eva Vidličková (EPFL, Switzerland)

Abstract: Dynamical Low Rank (DLR) approximation for time-dependent
problems with random parameters can be seen as a reduced basis method, in
which the solution is expanded as a linear combination of few well chosen deter-
ministic functions with random coe�cients. The distinctive feature of the DLR
method is that the spatial basis is computed on the fly and is free to evolve in
time, thus adjusting at each time to the current structure of the random solu-
tion. In this talk, we consider the DLR approximation for a random parabolic
equation and propose a class of fully discrete numerical schemes. The problem
is discretized by a stochastic collocation finite element method and advanced in
time by a projector-splitting scheme. Similarly to the continuous DLR approxi-
mation, our schemes are shown to satisfy a discrete variational formulation. By
exploiting this property, we derive a residual based a posteriori error estima-
tion for a heat equation with a random forcing term and a random di↵usion
coe�cient which is assumed to depend a�nely on a finite number of indepen-
dent random variables. The a posteriori error estimate consists of four parts
controlling the finite element error, the time discretization error, the stochastic
collocation error and the rank truncation error. These estimators can be used
to drive an adaptive choice of finite element mesh, collocation points, time steps
and rank.
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Numerical techniques for solving Singularly Perturbed Differential Equations (SPDE) suffer low

accuracy and high numerical instability in presence of interior and boundary layers. Stabilization

techniques are often employed to reduce the spurious oscillations in the numerical solution. Such

techniques are highly dependent on user chosen stabilization parameter. Streamline Upwind

Petrov Galerkin (SUPG) technique is one such residual based stabilization technique. Here we

propose SPDE-Net (as shown in Fig. 1), a novel neural network based technique to predict the

value of optimal stabilization parameter for SUPG technique. The prediction task is modeled

as a regression problem and is solved using Artificial Neural Network(ANN). Three training

strategies for the ANN have been proposed i.e supervised, L2
error minimization (global) and

L2
error minimization (local). It has been observed that the proposed method yields accurate

results, and even outperforms some of the existing state-of-the-art ANN-based partial differential

equation (PDE) solvers such as Physics Informed Neural Network (PINN). The training is based

on error between the Finite Element Method(FEM) solution and the analytical solution of SPDE.

Global and local variants of stabilization parameter ⌧ are demonstrated. Experiments on a

benchmark case of 1-dimensional convection diffusion equation show a reasonable performance of

L2
error minimization (global) as compared to the conventional supervised training. This makes

the proposed technique eligible for extension to higher dimensions and other cases where the

analytical formula for stabilization parameter is unknown, therefore making supervised learning

impossible.

Figure 1: Schematic diagram of SPDE-Net : An end-to-end deep learning+FEM framework for

solving SPDE
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The multi-layer shallow water system with friction (1) are widely used to model tides, dam break,
storms, tsunamis and in general, the various free surface geophysical flows in shallow water [1].
This system of PDEs was introduced in [2], it has been widely used in several works see e.g.
[3, 4, 5] when supplemented with appropriate terms. The numerical solution of such models is a
challenge due to their non-linear structure, additional source terms which are usually non-regular,
the complicity of the exchange terms between layers without forgetting the complication of com-
putational domain. In this study, we focus on the numerical solutions of the two-dimensional
version of this system of equations with a topography source term using a new finite volume
approach on unstructured meshes. We first present a simple and accurate homogeneous solver
based on a finite volume predictor-corrector scheme with a characteristics method for the predic-
tor. This scheme is called "Finite Volume Characteristics" (FVC) and was introduced in [6] to
solve the one-dimensional version of this equation system. Then, we introduce a generalization
of this scheme by preserving the properties of the homogeneous solver as a result, we end up
with a well-balanced scheme satisfying the equilibrium of the lake at rest and taking in to into
account the exchange terms between each layer of this system as well as the effect of the wind
on the free surface and subsequently on all layers of the water mass. Finally, the proposed finite
volume approach is verified on several benchmark tests and shows good agreement with solutions
presented by other approaches as will as experimental observations.

(
@th↵ +r · (h↵u) = 0

@th↵u↵ +r · (hu↵ ⌦ u↵) + gh↵r(h) = �gh↵rZ � ↵�1↵u↵ + F↵,
(1)

such that ↵ is the number of layer and the unknowns are the height of water in each layer
h↵(t, x, y), such as h =

PN
↵=1 h↵ and the velocity vector u↵(t, x, y) = (u↵, v↵)T (t, x, y) 2 R2.

F↵ = Fu + Fb + Fw + Fµ, ↵ = 1, 2, . . . , N

where the first term Fu is related to the momentum exchanges between the layers that are defined
through the vertical discretization of the flow. The three last terms Fb, Fw and Fµ are related
to friction effects. Note that the bed friction forcing term Fb is acting only on the lower layer,
whereas the wind-driven forcing term Fw is acting only on the upper layer. The internal friction
term Fµ models the friction between neighboring layers, see [2] for further details. Thus, Fu

represents the advection term. �1↵ represents the Kronecker symbol.
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