Type of technique and correlation spotted: 2D NMR detects couplings between different nuclei (either through bond or through space). Using 2D NMR allows to simplify overlapped spectra and to and to get valuable information for spectrum assignment or molecular structure determination. The detected (direct) dimension is usually (but not always) ¹H. The second (indirect) dimension can be either 1H or another heteroatoms, typically (but not only) ¹³C or ¹⁵N. Different 2D techniques allow to probe different bonding or geometric information. #### 2D experiment setup: - * Start by acquiring a ¹H spectrum (useful 1) to check your samples 2) to have a high resolution spectrum) - Command: newnmr (create a ¹H dataset) - Command: atma (tuning); rsh (read standard shim file); lock (solvent); topshim (shim) - Command: **zg** (start the experiment) - * Setup 2D experiment(s) - Command : edc (create a new dataset); rpar refe* (read pre-set experiment) → choose refe_#2D-exp-name in user - Command: atma (for heteronuclear experiment: tuning as it was not done before) - Command: **zg** (start the experiment) You can eventually repeat these steps to add more 2D experiments or add an heteronuclear 1D experiment Then use the command multizg (from the 1st experiment to start multiple experiments in a row) You can eventually change some parameters: - **ns**: change number of scans. - Rem: The signal to noise (SNR) accumulate proportionally to the square root of the number of scans (ns) Ex: if 1024 scans are needed to have a SNR of 5, 4096 scans will be needed to have a SNR of 10 - → Consider using cryoprobes if your SNR is still too small within a decent acquisition time - O1P and SW: the centre and the width (in ppm) of the spectral window (In F2 direct dimension and F1 indirect dimension) ## **COSY: 1H-1H Correlation Spectroscopy** ¹H-¹H Correlation Spectroscopy (COSY) shows the correlation between ¹H's which are coupled to each other. Mainly 2-bond and 3-bond ¹H-¹H coupling are visible by COSY. The ¹H spectrum is plotted on both 2D axes. The cross-peaks (not on the diagonal) are symmetric to the diagonal and show the COSY correlations # **Example**: Saccharose Starting from the anomeric proton (1) at 5.3 ppm one can assign one by one using COSY cross peaks almost all the ¹H of the 6 members ring except ¹H 6 (because of overlap). In a same way, starting form proton 9 one can assign the remaining ¹H on the 5 members ring. ## 1H-13C HSQC: Heteronuclear Single Quantum Coherence Spectroscopy ¹H-¹³C Heteronuclear Single Quantum Coherence Spectroscopy (HSQC) permits ¹³C assignment as it shows which hydrogens are directly attached to which carbon atoms. The ¹H spectrum is shown on the horizontal axis and the ¹³C spectrum is shown on the vertical axis. Edited HSQC cross-peaks appear with positive intensity for CH and CH3 and negative for CH2 allowing a better spectral interpretation. ## **Example**: Saccharose Once or while the ¹H are assigned, using HSQC cross peaks the corresponding bonded ¹³C resonances can be easily assigned. #### 1H-13C HMBC: Heteronuclear Multiple Bond Correlation Spectroscopy ¹H-¹³C Heteronuclear Multiple Bond Correlation Spectroscopy (HMBC) show correlation between ¹H and ¹³C at multiple bonds away from each other, usually 3 but as well 2 or 4. It permits the assignment of quaternary ¹³C that have no hydrogens directly attached. The ¹H spectrum is shown on the horizontal axis and the ¹³C spectrum is shown on the vertical axis. HMBC is designed to see ¹H-¹³C at 3 bond away, but depending on the angle between ¹H and ¹³C (depending on their scalar coupling constant, see Karplus relation), especially when the angle is blocked, 3 bonds ¹H-¹³C cross peak may disappear and 2 or 4 bonds ¹H-¹³C cross peaks may appears. H2BC technique (2 bonds correlation only) may help to distinguish between 2 and 3 bonds correlations. HMBC is as well possible between other pairs of nuclei, especially ¹H and ¹⁵N. ## **Example**: Saccharose It is possible to assign the quaternary carbon using the correlation between proton (1) with carbon (8) through glycosidic bond. The doubt on the assignment of carbons 12 and 6 (1H overlap) can be lifted using the correlation between proton (4) and carbon (6) and between proton (10) and carbon (12)