¹³C NMR with ¹H and ¹⁹F double decoupling Note: This method is only available on the spectrometer BCH1504R ¹³C spectra of fluorinated compounds appears with spited peaks as ¹⁹F has a spin ½ and is 100% naturally abundant. This splitting is intense at 1 bond (${}^{1}J^{19}F^{13}C = 250Hz$) and is still visible 2 to 3 bonds away (${}^{2}J^{19}F^{13}C = 50Hz$). It is therefore necessary to decouple ¹⁹F to simplify ¹³C spectra and to increase the signal to noise of ¹³C peaks in the vicinity of ¹⁹F sites. Nevertheless, as ¹H need to be decoupled as well, a special triple channel probe capable to pulse at the same time on ¹H, ¹⁹F and ¹³C is needed. The NMR spectrometer located in BCH1504 (right) is equipped with such a probe. ## Setup ¹³C {¹H, ¹⁹F} 1d NMR experiment : (See as well manual experiment setup) - Load your sample - * Start by acquiring a ¹H spectrum (useful 1) to check your samples 2) to cross reference the spectrum) - Command: newnmr (create a ¹H dataset) - Command: atma (tuning); rsh (read standard shim file); lock (solvent); topshim (shim) - Command: **zg** (start the experiment) - * Setup ¹⁹F experiment - Command: edc (create a new dataset); rpar refe* (read pre-set experiment) → choose refe_1d_19F_zg_{1H} in user - Command: atma (19F tuning as it was not done before) - Command: zg (start the experiment) - * Setup ¹³C {¹H, ¹⁹F} experiment - Command: edc (create a new dataset); rpar refe* (read pre-set experiment) → choose refe_1d_13C_zg_{1H,19F} - Command: **atma** (¹³C tuning as it was not done before) - Command: **o3p** set the carrier of ¹⁹F as centred as possible on your ¹⁹F peaks (default is -100ppm) (see notes) - Command : **zg** (start the experiment) You can eventually change some parameters: - **ns**: change number of scans. - Rem: The signal to noise (SNR) accumulate proportionally to the square root of the number of scans (ns) Ex: if 1024 scans are needed to have a SNR of 5, 4096 scans will be needed to have a SNR of 10 - O1P and SW: the centre and the width (in ppm) of the spectral window ## Note on ¹⁹F decoupling bandwidth: ¹⁹F decoupling bandwidth do not cover the entire ¹⁹F spectral width (as ¹⁹F spectral width is large in ppm and thus in Hz). It cover only about 80 ppm in the current setup. Setting o3p, the ¹⁹F carrier frequency, centred on the ¹⁹F peaks will improve its decoupling efficiency ## ¹H ¹⁹F decoupled: It is as well possible simplify ¹H 1d spectra of fluorinated compounds decoupling ¹⁹F. This experiment can be done on any standard NMR probe. - * Setup ¹H {¹⁹F} experiment - Command : edc (create a new dataset); rpar refe* (read pre-set experiment) → choose refe_1d_1H_zg_{19F} - Command: **o2p** set the carrier of ¹⁹F as centred as possible on your ¹⁹F peaks (default is -100ppm) (see notes) - Command: zg (start the experiment) 19F 13C HSQC: (see dedicated SOP)