
¹³C NMR

Setup ¹³C 1d NMR experiment : (See as well manual experiment setup)

- Load your sample
- * Start by acquiring a ¹H spectrum (useful 1) to check your samples 2) to cross reference the spectrum)
- Command : newnmr (create a ¹H dataset)
- Command : atma (tuning) ; rsh (read standard shim file); lock (solvent); topshim (shim)
- Command : zg (start the experiment)
- * Setup ¹³C experiment
- Command : edc (create a new dataset); rpar refe* (read pre-set experiment) → choose refe_13Ccpd in user
- Command : atma (13C tuning as it was not done before)
- Command : **zg** (start the experiment)

You can eventually change some parameters:

- **ns** : change number of scans.
 - Rem : The signal to noise (SNR) accumulate proportionally to the square root of the number of scans (ns) Ex: if 1024 scans are needed to have a SNR of 5, 4096 scans will be needed to have a SNR of 10
 - ightarrow Consider using cryoprobes if your SNR is still too small within a decent acquisition time

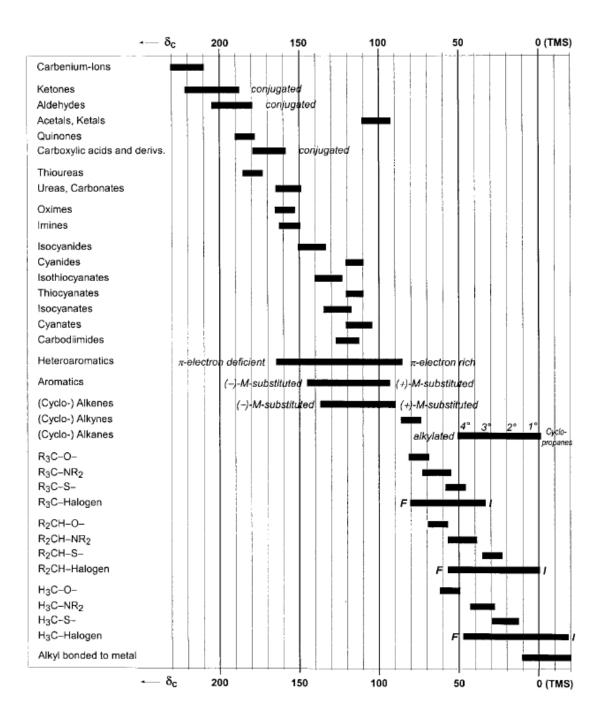
Quantitative ¹³C :

The **default** ¹³C experiment is **NOT quantitative** (fast repetition time, NOE transfer)

It is possible to make ¹³C quantitative for protonated carbons :

ightarrow change pulse sequence to zgig, change d1 for 60 s (ask us if this sequence is needed)

If quantitative integration on quaternary carbons is needed


- \rightarrow One can eventually add relaxing agents such as Cr(acac)₃ 0.1M or MgCl₂ 3M
- → change pulse sequence to zgig, change d1 for 10 s (ask us if this sequence is needed)

13Cchemical shifts :

- See next table for general chemical shift
- See next tables for ¹³C chemical shifts estimations
 - sources: Balci, M. (2005). 13C Chemical Shifts of Organic Compounds. Basic 1H- and 13C-NMR Spectroscopy, 293–324. doi: http://dx.doi.org/10.1016/B978-044451811-8.50013-9
 - Dr. Hans J. Reich. University of Wisconsin, Madison: page

¹³C general chemical shifts table :

(source: ...)

Estimating ¹³C chemical shifts :

source: Balci, M. (2005). 13C Chemical Shifts of Organic Compounds. Basic 1H- and 13C-NMR Spectroscopy, 293–324. doi: <u>http://dx.doi.org/10.1016/B978-044451811-8.50013-9</u>

A. Substituted Alkanes

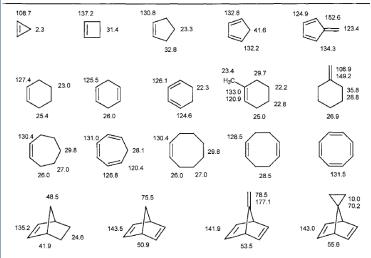
Compound	Chemical shifts of the carbon atoms						
	C ₁	C2	C3	C4	C5		
Methane	- 2.3						
Ethane	5.7						
Propane	15.8	16.3					
n-Butane	13.4	25.2					
n-Pentane	13.9	22.8	34.7				
n-Hexane	14.1	23.1	32.2				
n-Heptane	14.1	23.2	32.6	29.7			
n-Octane	14.2	23.2	32.6	29.9			
n-Nonane	14.2	23.3	32.6	30.0	30.3		
n-Decane	14.2	23.2	32.6	31.1	30.5		
i-Butane	24.5	25.4					
2-Methylbutane	22.2	31.1	32.0	11.7			
2,2-Dimethylbutane	29.1	30.6	36.9	8.9			
2,3-Dimethylbutane	19.5	34.3					
2,2,3-Trimethylbutane	27.4	33.1	38.3	16.1			
2-Methylpentane	22.7	28.0	42.0	20.9	14.3		
3-Methylpentane	11.5	29.5	36.9	18.8 (C ₆)			
3,3-Dimethylpentane	7.7	33.4	32.2	25.6 (C ₆)			

Shift parameters of the substituents [87]						
Substituent		Position of th	ne substituent			
	α	β	γ	δ		
-F	70.0	7.8	- 6.8	0.0		
-Cl	31.0	10.0	-5.1	-0.5		
-Br	18.9	11.0	-3.8	-0.7		
-I	-7.2	10.9	-1.5	0.9		
-OH	49.0	10.1	-6.2	0.0		
-OR	58.0	7.2	- 5.8	0.0		
-OCOR	54.0	6.5	- 6.0	0.0		
-COOH	20.1	2.0	-2.8	0.0		
-COOR	22.6	2.0	-2.8	0.0		
-COCl	33.1	2.3	-3.6	0.0		
-CN	3.1	2.4	-3.3	-0.5		
-CHO	29.9	-0.6	-2.7	0.0		
-COR	22.5	3.0	-3.0	0.0		
-CH=CHR	20.0	6.9	-2.1	0.4		
-C≡C-	4.4	5.6	-3.4	-0.6		
-Ph	22.1	9.3	-2.6	0.3		
$-NH_2$	28.3	11.2	- 5.1	0.1		
$-NO_2$	61.6	3.1	-4.6	- 1.0		
-SH	10.6	11.4	-3.6	-0.4		
-SCH ₃	20.4	6.2	-2.7	0.0		

Example:

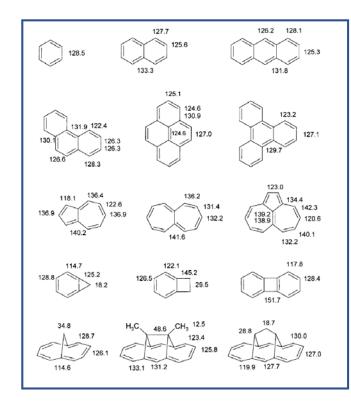
	CH3-	-CH2-		-CH ₂ -	-CH ₂ -		-CH2-	-CH ₂ -OH
	8	7	-	5		3	_	
Octane	13.9	22.9	32.2	29.5	29.5	32.2	22.9	13.9
Subst. Effect	-	-	-	-	0.0	-6.2	10.1	49.0
Calculated	13.9	22.9	32.2	29.5	29.5	26.0	33.0	62.9
Experimental	13.9	22.8	32.1	29.6	29.7	26.1	32.9	61.9

B. Substituted Cycloalkanes


Number of the ring carbon atoms <i>n</i>	δ
3	- 3.8
4	22.10
5	26.30
6	27.60
7	28.20
8	26.60
9	25.80
10	25.00
11	25.40
12	23.20
13	25.20
14	24.60
15	26.60
16	26.50
17	26.70
18	27.50

Shift parameters of the substituents attached to cyclohexane ring						
Substituent	Shift parameters (cyclohexane $\delta_{\rm C} = 27.6$ ppm)					
—x	\mathbf{C}_1	C _{2,6}	C _{3,5}	C ₄		
-F	62.9	5.5	-4.1	- 1.6		
-Cl	32.2	9.6	-2.4	-2.0		
-Br	25.0	10.3	- 1.5	- 2.0		
-I	4.2	12.2	-0.2	- 2.1		
-OH	42.4	8.4	-2.6	-1.2		
-OCH ₃	51.0	4.7	-3.3	-0.9		
-OCOCH ₃	44.7	4.6	- 3.2	- 1.5		
-COOH	16.1	2.0	- 1.4	-1.0		
-CHO	19.6	-1.0	-2.4	- 1.4		
-COCH ₃	15.8	2.0	- 1.6	-1.2		
-COCI	27.8	2.1	-2.1	- 1.7		
CN	0.7	2.5	- 3.0	- 1.8		
$-NH_2$	23.5	10.1	-1.8	-1.1		
$-NH_3^+$	23.9	5.8	-2.0	-1.6		
$-NO_2$	57.0	3.8	-2.9	-2.1		
-SH	10.9	10.9	-0.8	-1.7		
–Ph	17.5	7.3	-0.2	-0.9		
$-CH_3$	5.8	8.4	-0.5	-0.6		
$-C_2H_5$	12.6	6.1	-0.5	-0.2		
$-C_4H_9$	10.8	6.5	-0.5	-0.3		
-C(CH ₃) ₃	21.2	0.5	0.1	-0.5		

C. Substituted Alkenes


Compounds		(Chemical shi	ifts (ppm)		
	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆
Ethene	123.5					
Propene	115.9	133.4	19.4			
1-Butene	113.5	140.5	27.4	13.4		
1-Pentene	114.5	139.0	36.2	22.4	13.6	
1-Hexene	114.2	139.2	33.8	31.5	22.5	14.0
cis-2-Butene	11.4	124.2				
trans-2-Butene	16.8	125.4				
trans-2-Pentene	17.3	123.5	133.2	25.8	13.6	
cis-3-Hexene	14.1	25.9	131.2			
1,3-Butadiene	116.6	137.2				
2,4-Hexadiene	12.9	124.9	125.3			
2,3-Dimethyl-1,3-butadiene	113.0	143.8				

¹³C-NMR chemical shift in some selected cyclic alkenes

X CH == CH ₂ H CH ₃	C ₁	C ₂
	0.0	
-CH ₃		0.0
	10.6	-8.0
$-C_2H_5$	15.5	- 9.7
$-CH_2-CH_2-CH_3$	14.0	-8.2
$-CH(CH_3)_2$	20.3	- 11.5
-C(CH ₃) ₃	25.3	-13.3
-CH=CH ₂	13.6	-7.0
-Ph	12.5	-11.0
-CH ₂ OR	13.0	-8.6
-CHO	13.1	12.7
-COCH ₃	15.0	5.9
-COOH	4.2	8.9
-COOR	6.0	7.0
-CN	-15.1	14.2
–OR	28.8	- 39.5
-OCOR	18.0	-27.0
-NR ₂	16.0	-29.0
$-NO_2$	22.3	-0.9
-F	24.9	- 34.3
-Cl	2.6	-6.1
-Br	-7.9	- 1.4

D. Substituted Aromatics

Shift parameters in substituted benzenes [87]						
~ -x	Shift parameters (ppm)					
$\mathbf{X} =$	ipso	ortho	meta	para		
-H	0.0	0.0	0.0	0.0		
-CH ₃	9.3	-0.1	0.7	- 3.0		
$-CH(CH_3)_2$	20.3	-0.2	-0.1	- 2.6		
-CH=CH ₂	9.1	-2.4	-0.2	- 0.9		
-C≡CH	-5.8	3.9	0.1	0.4		
-Ph	13.0	-1.1	0.5	-1.0		
-F	35.0	-14.4	0.9	-4.4		
-Cl	6.4	0.2	1.0	-2.0		
-Br	-5.9	3.0	1.5	-1.5		
-I	- 32.3	9.9	2.6	-0.4		
-OH	26.6	-12.8	1.6	-7.1		
-OCH ₃	31.4	-14.4	1.0	-7.8		
-OCOCH ₃	23.0	- 6.4	1.3	-2.3		
-SH	2.0	0.6	0.2	-3.3		
$-NH_2$	20.0	-14.1	0.6	-9.6		
$-N(CH_3)_2$	22.2	-15.8	0.5	- 11.8		
$-NO_2$	20.6	- 4.3	1.3	6.2		
-COCl	4.8	2.9	0.6	6.9		
-COOH	2.9	1.3	0.4	4.6		
-COOCH ₃	2.1	1.2	0.0	4.4		
-CHO	8.2	0.5	0.5	5.8		
-COCH ₃	8.9	-0.1	-0.1	4.5		
-CN	- 15.5	1.4	1.4	5.0		