Quantum field theory

 Exercises 8. Solutions

 Exercises 8. Solutions}

2005-12-19

- Exercise 8.1.

Let us first obtain the zero momentum solution given in the problem. First, let us notice, that any solution of Dirac equation also satisfies the Klein-Gordon equation, and thus should have the form of plane waves with dispersion relation $p^{2}=m^{2}$. Really, if we act on the Dirac equation by the conjugate operator, we get

$$
0=(-i \not \partial-m)(i \not \partial-m) \psi=\left(\gamma^{\mu} \gamma^{v} \partial_{\mu} \partial_{v}-m^{2}\right) \psi=\left(\eta^{\mu v} \partial_{\mu} \partial_{v}-m^{2}\right) \psi=0
$$

where we used the equation $\gamma^{\mu} \gamma^{\nu}=\eta^{\mu \nu}+i \sigma^{\mu \nu}$, and the fact that $\partial_{\mu} \partial_{\nu}$ is symmetric.
So, generic solution of the Dirac equation should be the sum of the plane waves with all possible $p^{2}=m^{2}$. For each momentum it is

$$
\begin{equation*}
\psi(x)=u(p) \mathrm{e}^{-i p_{\mu} x^{\mu}} \tag{1}
\end{equation*}
$$

for so called positive energy part or

$$
\psi(x)=v(p) \mathrm{e}^{i p_{\mu} x^{\mu}}
$$

for negative energy part. The Dirac equation givus us further constraints on the spinors $u(p)$ and $v(p)$.

Let us focus on the positive frequency part. Substituting (1) into the Dirac equation one gets

$$
(\not p-m) u(p)=0 .
$$

In Weyl parametrisation of the gamma matrices, for $p^{\mu}=(m, \overrightarrow{0})$ this just leads to the requirement that upper two components of $u(p)$ are equal to the lower ones, $u_{L}=u_{R}$. The choice of normalisation $\sqrt{m} \xi$, given in the problem, is arbitrary (for linear equation with zero right part we can get a solution only up to the overall normalisation) and is a usual convention.

Let us now perform the boost with repidity η (along the z axis, for definiteness)

$$
\begin{aligned}
u(p) & =\exp \left\{-\frac{1}{2} \eta\left(\begin{array}{cc}
\sigma^{3} & 0 \\
0 & -\sigma^{3}
\end{array}\right)\right\} \sqrt{m}\binom{\xi}{\xi} \\
& =\left\{\cosh \frac{\eta}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\sinh \frac{\eta}{2}\left(\begin{array}{cc}
\sigma^{3} & 0 \\
0 & -\sigma^{3}
\end{array}\right)\right\} \sqrt{m}\binom{\xi}{\xi} \\
& =\left(\begin{array}{cc}
\mathrm{e}^{\eta / 2}\left(\frac{1-\sigma^{3}}{2}\right)+\mathrm{e}^{-\eta / 2}\left(\frac{1+\sigma^{3}}{2}\right) & 0 \\
0 & \mathrm{e}^{\eta / 2}\left(\frac{1+\sigma^{3}}{2}\right)+\mathrm{e}^{-\eta / 2}\left(\frac{1-\sigma^{3}}{2}\right)
\end{array}\right) \sqrt{m}\binom{\xi}{\xi} .
\end{aligned}
$$

For rapidity one has the relations, following from Lorentz transformations,

$$
\mathrm{e}^{\eta / 2}=\sqrt{E+p^{3}} / \sqrt{m}, \quad \mathrm{e}^{-\eta / 2}=\sqrt{E-p^{3}} / \sqrt{m} .
$$

This leads to the following result for a particle with positive energy moving along the z axis

$$
u(p)=\left(\begin{array}{cc}
\sqrt{E-p^{3}} & 0 \\
0 & \sqrt{E+p^{3}} \\
\left(\begin{array}{cc}
E+p^{3} & 0 \\
0 & \sqrt{E-p^{3}}
\end{array}\right) \xi
\end{array}\right)
$$

One can verify, that for general case it can be written in the form

$$
u(p)=\binom{\sqrt{p^{\mu} \sigma_{\mu}} \xi}{\sqrt{p^{\mu} \bar{\sigma}_{\mu}} \xi},
$$

where square root of the matrix is understood as rotating the matrix to the diagonal form, taking square root of each of the eigenvalues, and then rotating it back.

A similar calculation for the negative energy solution leads to

$$
v(p)=\binom{\sqrt{p^{\mu} \sigma_{\mu}} \xi}{-\sqrt{p^{\mu} \bar{\sigma}_{\mu}} \xi},
$$

- Exercise 8.2.

Let us proove that trace of an odd number of gamma matrices γ^{μ} is zero.

$$
\operatorname{tr} \gamma^{\mu}=\operatorname{tr}\left(\gamma^{\mu} \gamma^{5} \gamma^{5}\right)=-\operatorname{tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{5}\right)=-\operatorname{tr}\left(\gamma^{\mu} \gamma^{5} \gamma^{5}\right)=-\operatorname{tr} \gamma^{\mu}
$$

where we used the fact $\gamma^{5} \gamma^{5}=1$, then anticommuted γ^{μ} with γ^{5}, then used cyclic permutation under the trace. So, the only possibility is $\operatorname{tr} \gamma^{\mu}=0$.

Absolutely analogous arguments works for any odd number of gamm matrices, because after odd number of commutations with γ^{5} wi get minus sign. That is $\operatorname{tr} \gamma^{\mu} \gamma^{v} \gamma^{\lambda}=0$.

To calculate trace of two gamma matrices we do

$$
\operatorname{tr} \gamma^{\mu} \gamma^{v}=\operatorname{tr}\left(2 \eta^{\mu v} 1-\gamma^{v} \gamma^{\mu}\right)=2 \eta^{\mu v} \operatorname{tr}(\mathbf{1})-\operatorname{tr}\left(\gamma^{\mu} \gamma^{v}\right)
$$

so, as far as in 4 dimensions $\operatorname{tr} \mathbf{1}=1$,

$$
\operatorname{tr} \gamma^{\mu} \gamma^{\nu}=4 \eta^{\mu \nu}
$$

For four gamma matrices

$$
\begin{gathered}
\operatorname{tr} \gamma^{\mu} \gamma^{v} \gamma^{\lambda} \gamma^{\rho}=2 \eta^{\mu v} \operatorname{tr} \gamma^{\lambda} \gamma^{\rho}-\operatorname{tr} \gamma^{v} \gamma^{\mu} \gamma^{\lambda} \gamma^{\rho}=2 \eta^{\mu v} \operatorname{tr} \gamma^{\lambda} \gamma^{\rho}-2 \eta^{\mu \lambda} \operatorname{tr} \gamma^{v} \gamma^{\rho}+\operatorname{tr} \gamma^{v} \gamma^{\lambda} \gamma^{\mu} \gamma^{\rho} \\
=2 \eta^{\mu v} \operatorname{tr} \gamma^{\lambda} \gamma^{\rho}-2 \eta^{\mu \lambda} \operatorname{tr} \gamma^{v} \gamma^{\rho}+2 \eta^{\mu \rho} \operatorname{tr} \gamma^{v} \gamma^{\lambda}+\operatorname{tr} \gamma^{v} \gamma^{\lambda} \gamma^{\rho} \gamma^{\mu} \\
=8 \eta^{\mu v} \eta^{\lambda \rho}-8 \eta^{\mu \lambda} \eta^{v \rho}+8 \eta^{\mu \rho} \eta^{v \lambda}+\operatorname{tr} \gamma^{\mu} \gamma^{v} \gamma^{\lambda} \gamma^{\rho}
\end{gathered}
$$

so, finally

$$
\operatorname{tr} \gamma^{\mu} \gamma^{v} \gamma^{\lambda} \gamma^{\rho}=4\left(\eta^{\mu \nu} \eta^{\lambda \rho}-\eta^{\mu \lambda} \eta^{v \rho}+\eta^{\mu \rho} \eta^{\nu \lambda}\right)
$$

For traces with γ^{5} we can use the definition $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$. Then

$$
\operatorname{tr} \gamma^{\mu} \gamma^{v} \gamma^{5}=i \operatorname{tr} \gamma^{\mu} \gamma^{v} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=0
$$

because for $\mu=v$ we just get $\operatorname{tr} \gamma^{5}=0$, and for $\mu \neq \mu$ we always get a trace of two different gamma matrices, which is zero.

The last nontrivial trace is

$$
\operatorname{tr}\left(\gamma^{\mu} \gamma^{v} \gamma^{\lambda} \gamma^{\rho} \gamma^{5}\right)=-4 i \varepsilon^{\mu \nu \lambda \rho},
$$

because it is nonzero only for for different indices, antysimmetric under exchange of any two gamma matrices, and thus should be proportional to the epsilon-symbol. And the overall coefficient can be obtained just by calculating

$$
i \operatorname{tr}\left(\gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}\right)=-i \operatorname{tr}\left(\gamma^{1} \gamma^{2} \gamma^{3} \gamma^{1} \gamma^{2} \gamma^{3}\right)=i \operatorname{tr}\left(\gamma^{2} \gamma^{3} \gamma^{2} \gamma^{3}\right)=i \operatorname{tr}\left(\gamma^{3} \gamma^{3}\right)=-i \operatorname{tr}(1)
$$

- Exercise 8.3.

The two Lagrangians differ by a total derivative,

$$
\mathscr{L}^{\prime}=\mathscr{L}-(i / 2) \partial_{\mu}\left(\bar{\psi} \gamma^{\mu} \psi\right),
$$

so the lead to the same equations of motion for ψ and $\bar{\psi}$. With \mathscr{L} we find $T^{\mu \nu}=i \bar{\psi} \gamma^{\mu} \partial^{v} \psi-$ $\eta^{\mu v} \mathscr{L}$. Note, that if the fields satisfy the equations of motion, then $\mathscr{L}=0$, so we can write $T^{\mu \nu}=i \bar{\psi} \gamma^{\mu} \partial^{v} \psi$. With \mathscr{L}^{\prime} we get $T \prime \mu \nu=T^{\mu v}-(i / 2) \partial^{v} j^{\mu}$, where $j^{\mu}=\bar{\psi} \gamma^{\mu} \psi$. Note, that $\mathscr{L}^{\prime}=0$ on the equations of motion also. The conservation law $\partial_{\mu} T^{\mu \nu}=0$ is not spoiled by this term because $\partial_{\mu} j^{\mu}=0$ (use Dirac equations again here).

The conserved energy-momentum $P^{v}=\int d^{3} x T^{v 0}$ changes by $(-i / 2) \int d^{3} x \partial^{v} j^{0}$. This is zero because, if v is a spatial index it is a spatial derivative and the spatial integral vanishes, assuming the fields decrease sufficiently fast at infinity. For $v=0$ we use $\partial_{0} j^{0}=-\partial_{i} j^{i}$ and again get a spatial derivative. Therefore $P^{\nu}=P^{\prime \nu}$.

