Quantum field theory Exercises 8. Solutions 2005-12-19

• Exercise 8.1.

Let us first obtain the zero momentum solution given in the problem. First, let us notice, that *any* solution of Dirac equation also satisfies the Klein–Gordon equation, and thus should have the form of plane waves with dispersion relation $p^2 = m^2$. Really, if we act on the Dirac equation by the conjugate operator, we get

$$0 = (-i\partial - m)(i\partial - m)\psi = (\gamma^{\mu}\gamma^{\nu}\partial_{\mu}\partial_{\nu} - m^{2})\psi = (\eta^{\mu\nu}\partial_{\mu}\partial_{\nu} - m^{2})\psi = 0,$$

where we used the equation $\gamma^{\mu}\gamma^{\nu} = \eta^{\mu\nu} + i\sigma^{\mu\nu}$, and the fact that $\partial_{\mu}\partial_{\nu}$ is symmetric.

So, generic solution of the Dirac equation should be the sum of the plane waves with all possible $p^2 = m^2$. For each momentum it is

$$\Psi(x) = u(p)e^{-ip_{\mu}x^{\mu}} \tag{1}$$

for so called *positive energy* part or

$$\boldsymbol{\psi}(\boldsymbol{x}) = \boldsymbol{v}(\boldsymbol{p}) \mathrm{e}^{i \boldsymbol{p}_{\mu} \boldsymbol{x}^{\mu}}$$

for *negative energy* part. The Dirac equation givus us further constraints on the spinors u(p) and v(p).

Let us focus on the positive frequency part. Substituting (1) into the Dirac equation one gets

$$(\not p - m)u(p) = 0.$$

In Weyl parametrisation of the gamma matrices, for $p^{\mu} = (m, \vec{0})$ this just leads to the requirement that upper two components of u(p) are equal to the lower ones, $u_L = u_R$. The choice of normalisation $\sqrt{m}\xi$, given in the problem, is arbitrary (for linear equation with zero right part we can get a solution only up to the overall normalisation) and is a usual convention.

Let us now perform the boost with repidity η (along the z axis, for definiteness)

$$\begin{split} u(p) &= \exp\left\{-\frac{1}{2}\eta\begin{pmatrix}\sigma^{3} & 0\\ 0 & -\sigma^{3}\end{pmatrix}\right\}\sqrt{m}\begin{pmatrix}\xi\\\xi\end{pmatrix}\\ &= \left\{\cosh\frac{\eta}{2}\begin{pmatrix}1 & 0\\ 0 & 1\end{pmatrix} - \sinh\frac{\eta}{2}\begin{pmatrix}\sigma^{3} & 0\\ 0 & -\sigma^{3}\end{pmatrix}\right\}\sqrt{m}\begin{pmatrix}\xi\\\xi\end{pmatrix}\\ &= \begin{pmatrix}e^{\eta/2}\begin{pmatrix}\frac{1-\sigma^{3}}{2}\end{pmatrix} + e^{-\eta/2}\begin{pmatrix}\frac{1+\sigma^{3}}{2}\end{pmatrix} & 0\\ 0 & e^{\eta/2}\begin{pmatrix}\frac{1+\sigma^{3}}{2}\end{pmatrix} + e^{-\eta/2}\begin{pmatrix}\frac{1-\sigma^{3}}{2}\end{pmatrix}\right)\sqrt{m}\begin{pmatrix}\xi\\\xi\end{pmatrix}. \end{split}$$

For rapidity one has the relations, following from Lorentz transformations,

$$e^{\eta/2} = \sqrt{E + p^3} / \sqrt{m}$$
, $e^{-\eta/2} = \sqrt{E - p^3} / \sqrt{m}$.

This leads to the following result for a particle with positive energy moving along the z axis

$$u(p) = \begin{pmatrix} \begin{pmatrix} \sqrt{E-p^3} & 0\\ 0 & \sqrt{E+p^3} \end{pmatrix} \xi \\ \begin{pmatrix} \sqrt{E+p^3} & 0\\ 0 & \sqrt{E-p^3} \end{pmatrix} \xi \end{pmatrix}$$

One can verify, that for general case it can be written in the form

$$u(p) = \begin{pmatrix} \sqrt{p^{\mu} \sigma_{\mu}} \xi \\ \sqrt{p^{\mu} \bar{\sigma}_{\mu}} \xi \end{pmatrix} ,$$

where square root of the matrix is understood as rotating the matrix to the diagonal form, taking square root of each of the eigenvalues, and then rotating it back.

A similar calculation for the negative energy solution leads to

$$v(p) = \begin{pmatrix} \sqrt{p^{\mu} \sigma_{\mu}} \xi \\ -\sqrt{p^{\mu} \bar{\sigma}_{\mu}} \xi \end{pmatrix} ,$$

• Exercise 8.2.

Let us proove that trace of an odd number of gamma matrices γ^{μ} is zero.

$$\operatorname{tr} \gamma^{\mu} = \operatorname{tr}(\gamma^{\mu} \gamma^{5} \gamma^{5}) = -\operatorname{tr}(\gamma^{5} \gamma^{\mu} \gamma^{5}) = -\operatorname{tr}(\gamma^{\mu} \gamma^{5} \gamma^{5}) = -\operatorname{tr} \gamma^{\mu} ,$$

where we used the fact $\gamma^5 \gamma^5 = 1$, then anticommuted γ^{μ} with γ^5 , then used cyclic permutation under the trace. So, the only possibility is tr $\gamma^{\mu} = 0$.

Absolutely analogous arguments works for any odd number of gamm matrices, because after odd number of commutations with γ^5 wi get minus sign. That is tr $\gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} = 0$.

To calculate trace of two gamma matrices we do

$$\operatorname{tr} \gamma^{\mu} \gamma^{\nu} = \operatorname{tr} (2\eta^{\mu\nu} 1 - \gamma^{\nu} \gamma^{\mu}) = 2\eta^{\mu\nu} \operatorname{tr} (1) - \operatorname{tr} (\gamma^{\mu} \gamma^{\nu})$$

so, as far as in 4 dimensions tr $\mathbf{1} = 1$,

$$\operatorname{tr} \gamma^{\mu} \gamma^{\nu} = 4 \eta^{\mu \nu} .$$

For four gamma matrices

$$\operatorname{tr} \gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma^{\rho} = 2\eta^{\mu\nu} \operatorname{tr} \gamma^{\lambda} \gamma^{\rho} - \operatorname{tr} \gamma^{\nu} \gamma^{\mu} \gamma^{\lambda} \gamma^{\rho} = 2\eta^{\mu\nu} \operatorname{tr} \gamma^{\lambda} \gamma^{\rho} - 2\eta^{\mu\lambda} \operatorname{tr} \gamma^{\nu} \gamma^{\rho} + \operatorname{tr} \gamma^{\nu} \gamma^{\lambda} \gamma^{\mu} \gamma^{\rho}$$
$$= 2\eta^{\mu\nu} \operatorname{tr} \gamma^{\lambda} \gamma^{\rho} - 2\eta^{\mu\lambda} \operatorname{tr} \gamma^{\nu} \gamma^{\rho} + 2\eta^{\mu\rho} \operatorname{tr} \gamma^{\nu} \gamma^{\lambda} + \operatorname{tr} \gamma^{\nu} \gamma^{\lambda} \gamma^{\rho} \gamma^{\mu}$$
$$= 8\eta^{\mu\nu} \eta^{\lambda\rho} - 8\eta^{\mu\lambda} \eta^{\nu\rho} + 8\eta^{\mu\rho} \eta^{\nu\lambda} + \operatorname{tr} \gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma^{\rho}$$

so, finally

$$\operatorname{tr} \gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma^{\rho} = 4(\eta^{\mu\nu} \eta^{\lambda\rho} - \eta^{\mu\lambda} \eta^{\nu\rho} + \eta^{\mu\rho} \eta^{\nu\lambda})$$

For traces with γ^5 we can use the definition $\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3$. Then

$$\operatorname{tr} \gamma^{\mu} \gamma^{\nu} \gamma^{5} = i \operatorname{tr} \gamma^{\mu} \gamma^{\nu} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} = 0 ,$$

because for $\mu = \nu$ we just get tr $\gamma^5 = 0$, and for $\mu \neq \mu$ we always get a trace of two different gamma matrices, which is zero.

The last nontrivial trace is

$$\operatorname{tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\lambda}\gamma^{\rho}\gamma^{5}) = -4i\varepsilon^{\mu\nu\lambda\rho},$$

because it is nonzero only for for different indices, antysimmetric under exchange of any two gamma matrices, and thus should be proportional to the epsilon-symbol. And the overall coefficient can be obtained just by calculating

$$i\operatorname{tr}(\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}) = -i\operatorname{tr}(\gamma^{1}\gamma^{2}\gamma^{3}\gamma^{1}\gamma^{2}\gamma^{3}) = i\operatorname{tr}(\gamma^{2}\gamma^{3}\gamma^{2}\gamma^{3}) = i\operatorname{tr}(\gamma^{3}\gamma^{3}) = -i\operatorname{tr}(1)$$

• Exercise 8.3.

The two Lagrangians differ by a total derivative,

$$\mathscr{L}' = \mathscr{L} - (i/2)\partial_{\mu}(\bar{\psi}\gamma^{\mu}\psi),$$

so the lead to the same equations of motion for ψ and $\bar{\psi}$. With \mathscr{L} we find $T^{\mu\nu} = i\bar{\psi}\gamma^{\mu}\partial^{\nu}\psi - \eta^{\mu\nu}\mathscr{L}$. Note, that if the fields satisfy the equations of motion, then $\mathscr{L} = 0$, so we can write $T^{\mu\nu} = i\bar{\psi}\gamma^{\mu}\partial^{\nu}\psi$. With \mathscr{L}' we get $T'\mu\nu = T^{\mu\nu} - (i/2)\partial^{\nu}j^{\mu}$, where $j^{\mu} = \bar{\psi}\gamma^{\mu}\psi$. Note, that $\mathscr{L}' = 0$ on the equations of motion also. The conservation law $\partial_{\mu}T^{\mu\nu} = 0$ is not spoiled by this term because $\partial_{\mu}j^{\mu} = 0$ (use Dirac equations again here).

The conserved energy-momentum $P^{\nu} = \int d^3x T^{\nu 0}$ changes by $(-i/2) \int d^3x \partial^{\nu} j^0$. This is zero because, if ν is a spatial index it is a spatial derivative and the spatial integral vanishes, assuming the fields decrease sufficiently fast at infinity. For $\nu = 0$ we use $\partial_0 j^0 = -\partial_i j^i$ and again get a spatial derivative. Therefore $P^{\nu} = P'^{\nu}$.