Quantum field theory

Exercises 4. Solutions

2005-11-21

- Exercise 4.1.
- In the rest fram $E=m, \mathbf{p}=0$. Performing a boost with rapidity η (along x axis for example) we have $E=m \cosh \eta, p_{x}=m \sinh \eta$. Thus, $(E+p) /(E-p)=\mathrm{e}^{2 \eta}$.
- Performing a second boost with rapidity η^{\prime} along x we get $E \rightarrow E \cosh \eta^{\prime}+p \sinh \eta^{\prime}$ and $p \rightarrow E \sinh \eta^{\prime}+p \cosh \eta^{\prime}$, so

$$
\begin{aligned}
\mathrm{e}^{2 \eta} & \rightarrow \frac{\left(E \cosh \eta^{\prime}+p \sinh \eta^{\prime}\right)+\left(E \sinh \eta^{\prime}+p \cosh \eta^{\prime}\right)}{\left(E \cosh \eta^{\prime}+p \sinh \eta^{\prime}\right)-\left(E \sinh \eta^{\prime}+p \cosh \eta^{\prime}\right)} \\
& =\mathrm{e}^{2 \eta^{\prime}} \frac{E+p}{E-p}=\mathrm{e}^{2\left(\eta+\eta^{\prime}\right)}
\end{aligned}
$$

- Exercise 4.2.

Let $v^{0}=\xi_{R}^{\dagger} \psi_{R}$ and $v^{i}=\xi_{R}^{\dagger} \sigma^{i} \psi_{R}$. Using the rules for spinor transformations under infinitesimal boosts and rotations

$$
\psi_{R} \rightarrow \mathrm{e}^{\left(-i \theta_{i}+\eta_{i}\right) \frac{\sigma^{i}}{2}} \psi_{R}=\left(1+\left(-i \theta_{i}+\eta_{i}\right) \frac{\sigma^{i}}{2}+\ldots\right) \psi_{R}
$$

we get for v^{0}

$$
\begin{aligned}
v^{0} & \rightarrow \xi_{R}^{\dagger}\left(1+\left(+i \theta_{i}+\eta_{i}\right) \frac{\sigma^{i}}{2}\right)\left(1+\left(-i \theta_{i}+\eta_{i}\right) \frac{\sigma^{i}}{2}\right) \eta_{R}=\xi_{R}^{\dagger}\left(1+\eta_{i} \sigma^{i}+\ldots\right) \eta_{R} \\
& =v^{0}+\eta_{i} v^{i}+\ldots
\end{aligned}
$$

and for v^{i}

$$
\begin{aligned}
v^{i} & \rightarrow \xi_{R}^{\dagger}\left(1+\left(i \theta_{j}+\eta_{j}\right) \frac{\sigma^{j}}{2}\right) \sigma^{i}\left(1+\left(-i \theta_{k}+\eta_{k}\right) \frac{\sigma^{k}}{2}\right) \eta_{R} \\
& =\xi_{R}^{\dagger}\left(\sigma^{i}+\frac{i}{2} \theta_{j}\left[\sigma^{j}, \sigma^{i}\right]+\frac{1}{2} \eta_{j}\left\{\sigma^{j}, \sigma^{i}\right\}+\ldots\right) \eta_{R}=\xi_{R}^{\dagger}\left(\sigma^{i}-\theta_{j} \varepsilon^{j i k} \sigma^{k}+\eta_{j} \delta^{j i}+\ldots\right) \eta_{R} \\
& =v^{i}-\theta_{j} \varepsilon^{j i k} v^{k}+\eta_{j} \delta^{j i} v^{0}+\ldots
\end{aligned}
$$

This is exactly transformation properties of a (contravariant) four-vector under infinitesimal boost η_{i} (boost of rapidity $|\eta|$ in the direction of $\eta^{i} /|\eta|$). We also checked that it has correct properties under usual rotations θ^{i}.

Calculations for $\xi_{L}^{\dagger} \bar{\sigma}^{\mu} \eta_{L}$ are completely analogous.
You can also check everything explicitly for finite boosts, using the formula

$$
\mathrm{e}^{\eta_{i} \sigma^{i}}=\cosh \eta+\frac{\eta_{i}}{\eta} \sigma^{i} \sinh \eta,
$$

where $\eta=\sqrt{\eta^{i} \eta^{i}}$ is rapidity of the boost and η_{i} / η - its direction.

- Exercise 4.3.

Transformations of the double-contravariant tensor are

$$
F^{\mu} v \rightarrow \Lambda^{\mu}{ }_{\rho} \Lambda^{v}{ }_{\sigma} F^{\rho \sigma},
$$

where $\Lambda^{\mu}{ }_{\rho}=\exp \left\{-(i / 2) \omega_{\alpha \beta}\left(J^{\alpha \beta}\right)^{\mu}{ }_{\rho}\right\}$, and

$$
\left(J^{\alpha \beta}\right)^{\mu}{ }_{\rho}=i\left(\eta^{\alpha \mu} \delta_{\rho}^{\beta}-\eta^{\beta \mu} \delta_{\rho}^{\alpha}\right)
$$

Then, to the first order

$$
\delta F^{\mu v}=\omega^{\mu}{ }_{\rho} F^{\rho v}-\omega^{v}{ }_{\rho} F^{\rho \mu} .
$$

Using the explicit form $\omega_{i 0}=-\omega^{i 0}=-\eta^{i}$ and $\omega_{i j}=\omega^{i j}=\varepsilon^{i j k} \theta^{k}$ one gets for \mathbf{B} and \mathbf{E}

$$
\begin{aligned}
\boldsymbol{\delta} \mathbf{E} & =-[\boldsymbol{\eta} \times \mathbf{B}]+[\boldsymbol{\theta} \times \mathbf{E}], \\
\delta \mathbf{B} & =+[\boldsymbol{\eta} \times \mathbf{E}]+[\boldsymbol{\theta} \times \mathbf{B}] .
\end{aligned}
$$

