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• Exercise 3.1. Two body decays
Let us go to the most convenient frame of reference, i.e. rest frame of the decaying particle.

• Momentum conservation gives p1 + p2 = 0, and energy conservation E1 + E2 = M. To-
gether with usual relativistic expressions for energies of the particles E2

i = p2
i + m2

i this
leads to determination of th energies of both particles. So the only free parameters de-
scribe the direction of the p1, i.e. two polar angles θ , φ .

• The expression for the phase space in this frame is

dΦ
(2) = (2π)4

δ (M−E1−E2)δ (3)(p1 +p2)
d3p1

(2π)32E1

d3p2

(2π)32E2
.

We have six integrations, four of them will be removed by delta-functions (we again ar-
rive to the conclusion that there are two parameters describing the final state). Performing
integration over p2 is trivial and leads to

dΦ
(2) =

1
(2π)2 δ (M−E1−E2)

1
4E1E2

d3p1 ,

where E2
1 = m2

1+p2
1 and E2

2 = m2
2+p2

2 = m2
2+p2

1, because spatial δ -function implies p2 =
−p1. Let us change to the polar coordinates for the momentum of the first particle d3p1 =
p2

1d p1dΩ, where p1 ≡ |p1| is absolute value of the momentum and dΩ = sinθdθdφ is
infenitesimal solid angle. Writing explicitly the integral over the p1

dΦ
(2) =

1
(2π)2 dΩ

∫
∞

0
δ (M−E1−E2)

1
4E1E2

d3 p2
1d p1 .

Now we use the identity

δ ( f (x)) = ∑
j

1

f ′(x j
0)

δ (x− x j
0) ,

where sum is over all zeros x j
0 of the function f (x), f (x j

0) = 0. In our case there is only
one zero (as far as p1 ≥ 0), so

dΦ
(2) =

1
32π2M2

√
M4 +(m2

1−m2
2)2−2M2(m2

1 +m2
2) dΩ .

Identical particles. An important note—if the particles are identical (indistinguishable)
then, apart from just setting m1 = m2, one should integrate only over half of the directions
dΩ! Or usually one integrates over the whole set of directions and multiplies the answer
by 1/2.

• The decay rate in the rest frame is

Γ =
∫ |M f i|2

2M
dΦ

(2) =
∫ |M f i|2

2M
1

32π2M2

√
M4 +(m2

1−m2
2)2−2M2(m2

1 +m2
2) dΩ .
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If the matrix element is independent on the direction of flight of the decay products (for
example, this is the case when the initial particle is scalar) the integration is just 4π , so
the decay rate is

Γ =
|M f i|2

16πM3

√
M4 +(m2

1−m2
2)2−2M2(m2

1 +m2
2) .

• Exercise 3.2. Three body decay
We will work in the rest frame of the decaying particle, i.e. p = (M,0). The three body

phase space is

dΦ
(3) =

d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3
(2π)4

δ
(4)(p1 + p2 + p3− p) .

First we perform integration over the d3p3 using the spatial part of the δ -function

dΦ
(3) =

1
8(2π)5

d3p1 d3p2

E1E2E3
δ (E1 +E2 +E3−M) ,

where again p3 ≡ −(p1 + p2), and Ei ≡
√

m2
i +p2

i . We see, that momenta of all the decay
products are in one plane, and the configuration is defined by two angles describing the position
of the plane, one more angle to define some direction on the plane (say, direction of p1) and two
more parameters, for example E1 and angle θ12 between p1 and p2. If we analyze the decay of
a spin-0 particle, or average over its spin states, and there is no external fields, then there is no
preferred direction for the decay, and the amplitude should not depend on the first three angles,
so, changing to polar coordinates for p1 and p2 we have

dΦ
(3) =

1
8(2π)5

4π p2
1d p1

E1E2E3
2π p2

2d p2d cosθ12δ (E1 +E2 +E3−M) ,

whew the first factor 4π appeared form integration over all directions of p1, and the second 2π

corresponds to the integration over rotations of p2 around the axis of p1. Using identities

E2
1 = p2

1 +m2
1 ⇒ E1dE1 = p1d p1

E2
2 = p2

2 +m2
2 ⇒ E2dE2 = p2d p2

E2
3 = (p1 +p2)2 +m2

3 = p2
1 + p2

2 +2p1 p2 cosθ12 +m2
3

⇒ E3dE3 = p1 p2d cosθ13 for fixed p1, p2 .

Now let is perform the integration over d cosθ13 using the last identity

dΦ
(3) =

1
32π3 dE1dE2dE3δ (E1 +E2 +E3−M) =

1
32π3 dE1dE2 .

Using the results from the exercise 2.1 we can write ds =−2MdE1, dt =−2MdE2, so

dΦ
(3) =

dsdt
16M2(2π)3 ,

for the case of decaying spin-0 particle without external fields (i.e. no preferred direction in
space)
• Exercise 3.3.
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Writing explicitly the expressions for dΦ( j) and dΦ(n− j+1) we get

dΦ
(n)(P; p1, . . . , pn) =

∫
∞

0

dµ2

2π

(
j

∏
i=1

d3 pi

(2π)32Ei

)
(2π)4

δ
(4)(p1 + · · ·+ p j −q)

×

(
n

∏
i= j+1

d3 pi

(2π)32Ei

)
d3q

(2π)32q0 (2π)4
δ

(4)(p j+1 + · · ·+ pn +q−P) .

The first δ -function forces q = p1 + · · ·+ p j, so we can insert this into the second δ -function:

dΦ
(n)(P; p1, . . . , pn) =

∫
∞

0

dµ2

2π

[(
n

∏
i=1

d3 pi

(2π)32Ei

)
(2π)4

δ
(4)(p1 + · · ·+ pn−P)

]

× d3q
(2π)32q0 (2π)4

δ
(4)(p1 + · · ·+ p j −q) .

Now we use the identity, following from the definition of µ2,

d3q
2q0 = d4qδ (q2−µ

2)θ(q0) ,

where θ(x) is the step function zero for negative arguments and 1 for positive. Then

dΦ
(n)(P; p1, . . . , pn) =

[(
n

∏
i=1

d3 pi

(2π)32Ei

)
(2π)4

δ
(4)(p1 + · · ·+ pn−P)

]

×
∫

∞

0

dµ2

2π

∫
d4qδ (q2−µ

2)θ(q0)δ (4)(p1 + · · ·+ p j −q) .

The last two integrals (perform first integration over µ2) gives 1. What is left is exactly the
expression for dΦ(n).
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