Quantum field theory Exercises 2. Solutions 2005-11-07

• Exercise 2.1.

First lest us notice that all s, t and u are Lorentz invariant by construction. So, we can choose any convenient frame of reference to work in, and as far as the result is expressed via s, t and u only it can be used in any other reference frame.

The simplest choice is the rest frame of the initial particle, where its energy E = M, and spatial momentum is zero $\mathbf{p} = 0$. Then immediately

$$s = p^{\mu} p_{\mu} + p_1^{\mu} p_{1\mu} - 2p^{\mu} p_{1\mu} = M^2 + m_1^2 - 2ME_1 ,$$

$$t = M^2 + m_2^2 - 2ME_2 ,$$

$$u = M^2 + m_3^2 - 2ME_3 .$$

It is also useful to write another expressions for *s*, *t* and *u* using four-momentum conservation $P = p_1 + p_2 + p_3$

$$s = (p_2 + p_3)^2$$
, $t = (p_1 + p_3)^2$, $u = (p_1 + p_2)^2$.

1. Using energy conservation $E_1 + E_2 + E_3 = M$ we get for the sum of the Mandelstam variables

$$s+t+u = M^2 + m_1^2 + m_2^2 + m_3^2$$
.

2. Let us first find the limits on *s*. The maximum value is obtained when E_1 is at minimum, i.e. $E_1 = m_1$, so

$$s_{\max} = (M - m_1)^2$$

(this corresponds to decay when particle 1 is at rest, and particles 2 and 3 are flying in opposite directions). To find minimum s value it is convenient to write it as $s = (p_2 + p_3)^2 = m_2^2 + m_3^2 + 2(E_2E_3 - (\mathbf{p}_2 \cdot \mathbf{p}_3))$. As far as it is Lorentz invariant, we can write it in any frame. Let us use centre of mass frame for the particle 2 and 3. There $\mathbf{p}_3 = -\mathbf{p}_3$ and $s = m_2^2 + m_3^2 + 2(E_2E_3 + |\mathbf{p}_2||\mathbf{p}_3|)$, so the minimum value is obtained for $\mathbf{p}_2 = \mathbf{p}_3 = 0$ (and $E_2 = m_2$, $E_3 = m_3$), leading to $s_{\min} = (m_2 + m_3)^2$. In conclusion, the limits on s are

$$(m_2+m_3)^2 \le s \le (M-m_1)^2$$
.

Now, for each *s* in this range we find the allowed region for *t*. Let us write $E_3^2 = \mathbf{p}_3^2 + m_3^2$ and use the energy and momentum conservation $E_3 = M - E_1 - E_2$, $\mathbf{p}_3 = -\mathbf{p}_1 - \mathbf{p}_2$ (as usual, in the initial particle rest frame). Then

$$(M - E_1 - E_2)^2 = m_3^2 + \mathbf{p}_1^2 + \mathbf{p}_2^2 + 2(\mathbf{p}_1 \cdot \mathbf{p}_2)$$

The limiting cases correspond to

$$(\mathbf{p}_1 \cdot \mathbf{p}_2) = \pm |\mathbf{p}_1| |\mathbf{p}_2| = \pm \sqrt{(E_1^2 - m_1^2)(E_2^2 - m_2^2)}$$

Combining these two expressions and expressing squares of all momenta via energies, we get

$$M^{2} + 2E_{1}E_{2} + m_{1}^{2} + m_{2}^{2} - m_{3}^{2} - 2M(E_{1} + E_{2}) = \pm 2\sqrt{(E_{1}^{2} - m_{1}^{2})(E_{2}^{2} - m_{2}^{2})}.$$

The only thing left to do is to express E_1 and E_2 via s and t

$$E_1 = rac{M^2 + m_1^2 - s}{2M} \,, \qquad E_2 = rac{M^2 + m_2^2 - t}{2M} \,.$$

If $m_1 = m_2 = 0$ all the curve with plus sign in the formula becomes $s + t = M^2 + m_3^2$, and with the minus sign $st = m_3^2 M^2$. If m_3 is also 0, this reduces to a triangle between the axes and $s + t = M^2$.