Quantum field theory

Exercises 1. Solutions

2005-10-31

- Exercise 1.1.

In SI: $\hbar \simeq 1.055 \cdot 10^{-34} \mathrm{~J} \mathrm{~s} ; \quad c=299792458 \mathrm{~m} \mathrm{~s}^{-1}$
Using electron charge we get: $1 \mathrm{GeV}=10^{9} \mathrm{eV} \simeq 10^{9} \cdot 1.602 \cdot 10^{-19} \mathrm{~J}=1.602 \cdot 10^{-10} \mathrm{~J}$

$$
\begin{array}{r}
\hbar \quad \hbar \simeq \frac{1.055 \cdot 10^{-34}}{1.602 \cdot 10^{-10}} \mathrm{GeV} \mathrm{~s} \simeq 6.582 \cdot 10^{-25} \mathrm{GeV} \mathrm{~s} \\
\hbar c \simeq 1.055 \cdot 10^{-34} \mathrm{~J} \mathrm{~s} \cdot 2.998 \cdot 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \simeq 1.973 \cdot 10^{-16} \mathrm{GeV} \mathrm{~m}
\end{array}
$$

(and both $\hbar=\hbar c=1$)

1. $1 \mathrm{~m}=\frac{1}{1.973 \cdot 10^{-16} \mathrm{GeV}}=5.067 \cdot 10^{15} \mathrm{GeV}^{-1} \quad \Rightarrow 1 \mathrm{~cm}=5.067 \cdot 10^{13} \mathrm{GeV}^{-1}$
2. $1 \mathrm{~s}=\frac{1}{6.582 \cdot 10^{-25} \mathrm{GeV}}=1.519 \cdot 10^{24} \mathrm{GeV}^{-1}$
3. $1 \mathrm{~kg}=8.988 \cdot 10^{16} \mathrm{~kg} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}=8.988 \cdot 10^{16} \mathrm{~J}=\frac{8.988 \cdot 10^{16}}{1.602 \cdot 10^{-10}} \mathrm{GeV}=5.610 \cdot 10^{26} \mathrm{GeV}$
$\Rightarrow 1 \mathrm{~g}=5.610 \cdot 10^{23} \mathrm{GeV}$
4. Boltzmann constant $k=1.381 \cdot 10^{-23} \mathrm{JK}^{-1}=8.617 \cdot 10^{-14} \mathrm{GeV} \mathrm{K}^{-1}$, in $\hbar=c=1$ system $k \equiv 1$ also, $\Rightarrow 1 \mathrm{~K}=8.617 \cdot 10^{-14} \mathrm{GeV}$
5. We are using Heaviside system of units, i.e. $\varepsilon_{0}=\mu_{0}=1$ if we start from SI-the Coulomb law is $F=\frac{1}{4 \pi} \frac{q_{1} q_{2}}{r^{2}}$. Thus charge is dimensionless. Best thing to remember is the fine structure constant $\alpha=\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c} \simeq \frac{1}{137} . \Rightarrow e=\sqrt{4 \pi \alpha}=0.303$.
6. There is $1 / 4 \pi$ in the Coulomb law and analogous law for magnetic field, but now extra 4π in the Ampere law $\mathbf{F}=[\mathbf{B} \times \mathbf{I}] L$

$$
\begin{aligned}
1 \mathrm{G}=10^{-4} \mathrm{~T} & =10^{-4} \mathrm{~kg} \mathrm{C}^{-1} \mathrm{~s}^{-1} \\
= & \left.10^{-4} \frac{5.610 \cdot 10^{26} \mathrm{GeV}}{1.519 \cdot 10^{24} \mathrm{GeV}^{-1}\left(\sqrt{4 \pi / 137} / 1.6 \cdot 10^{-19}\right.}\right)
\end{aligned}=1.95 \cdot 10^{-20} \mathrm{GeV}^{2} .
$$

7. $G_{N}=6.67 \cdot 10^{-11} \mathrm{~kg}^{-1} \mathrm{~m}^{3} \mathrm{~s}^{-2}=6.67 \cdot 10^{-11} \frac{\left(5.067 \cdot 10^{15} \mathrm{GeV}^{-1}\right)^{3}}{5.610 \cdot 10^{26} \mathrm{GeV} \cdot\left(1.519 \cdot 10^{24} \mathrm{GeV}^{-1}\right)^{2}}$
$\Rightarrow \quad G_{N} \simeq 6.703 \cdot 10^{-39} \mathrm{GeV}^{-2}$
8. $H=100 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$
$1 \mathrm{Mpc}=3.26 \mathrm{LY}=10^{6} \cdot 3.26 \cdot 2.998 \cdot 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \cdot 3600 \cdot 24 \cdot 365.25 \mathrm{~s} \simeq 3.084 \cdot 10^{22} \mathrm{~m}$
$H=10^{5} \mathrm{~m} \mathrm{~s}^{-1} \cdot \frac{1}{3.084 \cdot 10^{22} \mathrm{~m}}=3.242 \cdot 10^{-18} \mathrm{~s}^{-1}$
$\Rightarrow \quad H \simeq 3.242 \cdot 10^{-18} \cdot 1.519 \cdot 6.583 \cdot 10^{-25} \mathrm{GeV} \sim 2 \cdot 10^{-42} \mathrm{GeV}$
9. $\rho_{\text {crit }}=3 H^{2} /\left(8 \pi G_{N}\right) \sim 8 \cdot 10^{-47} \mathrm{GeV}^{4}$

- Exercise 1.2.

The only dimensional quantity you have for a gas of massles particles is its temperature T (or, in usual notations, $k T$ for energy). Thus energy density should by something like $\rho_{\gamma} \sim T^{4}$. Using result from previous exercise $\rho_{\gamma} \sim\left(2.725 \cdot 8.617 \cdot 10^{-14} \mathrm{GeV}\right)^{4}=3 \cdot 10^{-51} \mathrm{GeV}^{4}$. This is about $4 \cdot 10^{-5}$ of the critical density $\rho_{\text {crit }}$. And experimentally we know that overall universe density is quite close to critical, so photons contribute a very small part of the density of the Universe.

- Exercise 1.3.

A temperature $T \simeq 4.5 \cdot 10^{6} \mathrm{~K}$ corresponds to an energy $\simeq 388 \mathrm{eV}$. For a relativistic particle at the equilibrium temperature T, the average energy is $E_{\gamma} \simeq 3 k T \sim O(1) \mathrm{keV}$. Since $E_{\gamma} \ll$ $m_{e} \ll m_{p}$, we can use the Thomson phormula for the crossection of scattering on electrons and the same formula for protons, only with m_{p} instead of m_{e}. Therefore, for protons we have $\sigma(\gamma p \rightarrow \gamma p) \simeq 8 \pi \alpha^{2} /\left(3 m_{p}^{2}\right)$. This is smaller than $\gamma e \rightarrow \gamma e$ cross-section by a factor m_{e}^{2} / m_{p}^{2}, and therefore contribution of scattering off the protons is neglidgible. Because of electric charge neutrality number density for electrons and protons is the same and is $n=$ $\rho /\left(m_{e}+m_{p}\right) \simeq \rho / m_{p} \simeq 0.8 \cdot 10^{24} \mathrm{~cm}^{-3}$. Inserting the numerical value for the Thompson crosssection, $\sigma(\gamma e \rightarrow \gamma e) \simeq 6.65 \cdot 10^{-25} \mathrm{~cm}^{2}$, we find $l \simeq 1.8 \mathrm{~cm}$ (more accurate modelling of the Sun gives $l \simeq 0.5 \mathrm{~cm}$). The photons therephore perform a random walk of step l inside the Sun. For a random walk in one dimension, after N steps we have $\left\langle x^{2}\right\rangle=N l^{2}$. In three dimensions a radial distance R_{\odot} is covered in N steps with $R_{\odot}^{2}=(1 / 3) N l^{2}$ because, if we denote by x the axis along which the photon finally escaped, not all steps have been performed along the x direction. Rather in each step $\left\langle x^{2}+y^{2}+z^{2}\right\rangle$ increased by l^{2}, so $\left\langle x^{2}\right\rangle$ effectively performs a random walk of step $l^{2} / 3$. Therefore we get an escape time $t=N l / c=4 r_{\odot}^{3} /(l c) \simeq 3 \cdot 10^{5} \mathrm{yr}$.

- Exercise 1.4.

Let us search for the expression in the form

$$
d N=A n_{1} n_{2} d V d t
$$

$d N$ obviously does not depend on frame of reference, $d V d t$ is invariant by definition. So we should find an invariant expression $A n_{1} n_{2}$, which reduces to $\sigma v_{1} n_{1} n_{2}$ in the rest frame of the particles of type 2 .

Let us notice first that the volume element changes with change to reference frame of speed v like

$$
V \rightarrow V^{\prime}=V \sqrt{1-v^{2}}
$$

(the "length" of the box reduces by this factor, and two transverse coordinates does not change with frame of reference). Thus, the number density changes like

$$
n \rightarrow n^{\prime}=\frac{n}{\sqrt{1-v^{2}}},
$$

exactly like the energy of a particle. So, statement that $A n_{1} n_{2}$ is invariant is equivalent to the statement that

$$
A \frac{E_{1} E_{2}}{p_{1}^{\mu} p_{2 \mu}}=A \frac{E_{1} E_{2}}{E_{1} E_{2}-\mathbf{p}_{1} \mathbf{p}_{2}}=\mathrm{inv}
$$

(the denominator here is invariant-it is a scalar product of four-vectors). In rest frame for particle " 2 " its energy $E_{2}=m_{2}$, and momenum is zero $\mathbf{p}_{2}=0$, so then this invariant is just equal to A in this frame. At the same time it is $\sigma v_{\text {rel }}$ in this frame. So, we have

$$
A=\sigma v_{\mathrm{rel}} \frac{p_{1}^{\mu} p_{2 \mu}}{E_{1} E_{2}}
$$

To get it into a final form we note, that invariant expression $p_{1}^{\mu} p_{2 \mu}$ in the rest frame of particle " 2 " is

$$
p_{1}^{\mu} p_{2 \mu}=E_{1} E_{2}=\frac{m_{1}}{\sqrt{1-v_{\mathrm{rel}}^{2}}} m_{2} .
$$

Thus we get

$$
v_{\mathrm{rel}}=\sqrt{1-\frac{m_{1}^{2} m_{2}^{2}}{\left(p_{1}^{\mu} p_{2 \mu}\right)^{2}}},
$$

or, after expressing the energies and momenta of the particles from their speeds $\mathbf{v}_{1}, \mathbf{v}_{2}$ and some algebra

$$
v_{\text {rel }}=\frac{\sqrt{\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)^{2}-\left[\mathbf{v}_{1} \times \mathbf{v}_{2}\right]^{2}}}{1-\left(\mathbf{v}_{1} \cdot \mathbf{v}_{2}\right)}
$$

(notice that this expression is symmetric under exchange of \mathbf{v}_{1} and \mathbf{v}_{2}, i.e. it is not important in rest frame of which particle you define relative velocity).

Collectiong everything we get the general formula for number of scattering events

$$
\begin{aligned}
d N & =\sigma \frac{\sqrt{\left(p_{1}^{\mu} p_{2 \mu}\right)^{2}-m_{1}^{2} m_{2}^{2}}}{E_{1} E_{2}} n_{1} n_{2} d V d t \\
& =\sigma \sqrt{\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)^{2}-\left[\mathbf{v}_{1} \times \mathbf{v}_{2}\right]^{2}} n_{1} n_{2} d V d t
\end{aligned}
$$

(last one is by W. Pauli, 1933).

