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Exercises 1. Solutions
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• Exercise 1.1.
In SI: h̄' 1.055 ·10−34 J s; c = 299792458 ms−1

Using electron charge we get: 1 GeV = 109 eV' 109 ·1.602 ·10−19 J = 1.602 ·10−10 J

⇒ h̄' 1.055 ·10−34

1.602 ·10−10 GeVs' 6.582 ·10−25 GeV s

h̄c' 1.055 ·10−34 J s ·2.998 ·108 ms−1 ' 1.973 ·10−16 GeVm

(and both h̄ = h̄c = 1)

1. 1 m = 1
1.973·10−16 GeV = 5.067 ·1015 GeV−1 ⇒ 1 cm = 5.067 ·1013 GeV−1

2. 1 s = 1
6.582·10−25 GeV = 1.519 ·1024 GeV−1

3. 1 kg = 8.988 ·1016 kgm2

s2 = 8.988 ·1016 J = 8.988·1016

1.602·10−10 GeV = 5.610 ·1026 GeV
⇒ 1 g = 5.610 ·1023 GeV

4. Boltzmann constant k = 1.381 ·10−23 JK−1 = 8.617 ·10−14 GeVK−1, in h̄ = c = 1 sys-
tem k ≡ 1 also, ⇒ 1 K = 8.617 ·10−14 GeV

5. We are using Heaviside system of units, i.e. ε0 = µ0 = 1 if we start from SI—the
Coulomb law is F = 1

4π

q1q2
r2 . Thus charge is dimensionless. Best thing to remember

is the fine structure constant α = e2

4πε0h̄c '
1

137 . ⇒ e =
√

4πα = 0.303.

6. There is 1/4π in the Coulomb law and analogous law for magnetic field, but now extra
4π in the Ampere law F = [B× I]L

1 G = 10−4 T = 10−4 kgC−1 s−1

= 10−4 5.610 ·1026 GeV
1.519 ·1024 GeV−1(

√
4π/137/1.6 ·10−19)

= 1.95 ·10−20 GeV2

7. GN = 6.67 ·10−11 kg−1 m3 s−2 = 6.67 ·10−11 (5.067·1015 GeV−1)3

5.610·1026 GeV·(1.519·1024 GeV−1)2

⇒ GN ' 6.703 ·10−39 GeV−2

8. H = 100kms−1 Mpc−1

1Mpc = 3.26LY = 106 ·3.26 ·2.998 ·108ms−1 ·3600 ·24 ·365.25s' 3.084 ·1022m
H = 105ms−1 · 1

3.084·1022m = 3.242 ·10−18s−1

⇒ H ' 3.242 ·10−18 ·1.519 ·6.583 ·10−25 GeV∼ 2 ·10−42 GeV

9. ρcrit = 3H2/(8πGN)∼ 8 ·10−47 GeV4

1



• Exercise 1.2.
The only dimensional quantity you have for a gas of massles particles is its temperature T

(or, in usual notations, kT for energy). Thus energy density should by something like ργ ∼ T 4.
Using result from previous exercise ργ ∼ (2.725 ·8.617 ·10−14 GeV)4 = 3 ·10−51 GeV4. This
is about 4 ·10−5 of the critical density ρcrit. And experimentally we know that overall universe
density is quite close to critical, so photons contribute a very small part of the density of the
Universe.
• Exercise 1.3.

A temperature T ' 4.5 ·106K corresponds to an energy' 388 eV. For a relativistic particle
at the equilibrium temperature T , the average energy is Eγ ' 3kT ∼ O(1) keV. Since Eγ �
me � mp, we can use the Thomson phormula for the crossection of scattering on electrons
and the same formula for protons, only with mp instead of me. Therefore, for protons we
have σ(γ p → γ p) ' 8πα2/(3m2

p). This is smaller than γe → γe cross-section by a factor
m2

e/m2
p, and therefore contribution of scattering off the protons is neglidgible. Because of

electric charge neutrality number density for electrons and protons is the same and is n =
ρ/(me +mp)' ρ/mp ' 0.8 ·1024cm−3. Inserting the numerical value for the Thompson cross-
section, σ(γe → γe) ' 6.65 · 10−25cm2, we find l ' 1.8cm (more accurate modelling of the
Sun gives l ' 0.5cm). The photons therephore perform a random walk of step l inside the Sun.
For a random walk in one dimension, after N steps we have 〈x2〉= Nl2. In three dimensions a
radial distance R� is covered in N steps with R2

� = (1/3)Nl2 because, if we denote by x the axis
along which the photon finally escaped, not all steps have been performed along the x direction.
Rather in each step 〈x2 + y2 + z2〉 increased by l2, so 〈x2〉 effectively performs a random walk
of step l2/3. Therefore we get an escape time t = Nl/c = 4r3

�/(lc)' 3 ·105yr.
• Exercise 1.4.

Let us search for the expression in the form

dN = An1n2dV dt .

dN obviously does not depend on frame of reference, dV dt is invariant by definition. So we
should find an invariant expression An1n2, which reduces to σv1n1n2 in the rest frame of the
particles of type 2.

Let us notice first that the volume element changes with change to reference frame of speed
v like

V →V ′ = V
√

1− v2

(the “length” of the box reduces by this factor, and two transverse coordinates does not change
with frame of reference). Thus, the number density changes like

n→ n′ =
n√

1− v2
,

exactly like the energy of a particle. So, statement that An1n2 is invariant is equivalent to the
statement that

A
E1E2

pµ

1 p2µ

= A
E1E2

E1E2−p1p2
= inv

(the denominator here is invariant—it is a scalar product of four-vectors). In rest frame for
particle “2” its energy E2 = m2, and momenum is zero p2 = 0, so then this invariant is just
equal to A in this frame. At the same time it is σvrel in this frame. So, we have

A = σvrel
pµ

1 p2µ

E1E2
.
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To get it into a final form we note, that invariant expression pµ

1 p2µ in the rest frame of particle
“2” is

pµ

1 p2µ = E1E2 =
m1√

1− v2
rel

m2 .

Thus we get

vrel =

√
1−

m2
1m2

2

(pµ

1 p2µ)2
,

or, after expressing the energies and momenta of the particles from their speeds v1, v2 and some
algebra

vrel =

√
(v1−v2)2− [v1×v2]2

1− (v1 ·v2)

(notice that this expression is symmetric under exchange of v1 and v2, i.e. it is not important in
rest frame of which particle you define relative velocity).

Collectiong everything we get the general formula for number of scattering events

dN = σ

√
(pµ

1 p2µ)2−m2
1m2

2

E1E2
n1n2 dV dt

= σ

√
(v1−v2)2− [v1×v2]2n1n2 dV dt

(last one is by W. Pauli, 1933).
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