Exercice 1 Opérateur de rotation d'un spin 1

Dans ce problème, on s'intéresse à l'opérateur rotation d'un moment cinétique l=1, dont on se propose de déterminer la forme explicite dans plusieurs cas et de plusieurs façons. Pour simplifier, on posera $\hbar=1$.

- 1. On considère un moment cinétique l=1.
 - a. Déterminer la forme de la matrice (3×3) qui représente l'opérateur L_x dans la base $(|l=1, m=1\rangle, |l=1, m=0\rangle, |l=1, m=-1\rangle)$.
 - b. Calculer L_x^2 puis L_x^3 .
 - c. En déduire que l'opérateur de rotation d'angle α autour de l'axe x peut se mettre sous la forme

$$\mathcal{R}_{l=1}(\alpha, \hat{x}) = 1 + uL_x + vL_x^2$$

où u et v sont des nombres complexes que l'on déterminera.

- 2. Nous allons recalculer de façon indépendante l'opérateur $\mathcal{R}_{l=1}(\alpha, \hat{x})$ à partir de l'opérateur rotation d'un spin 1/2.
 - a. Démontrer que l'opérateur rotation d'un spin 1/2 d'un angle α autour du vecteur unitaire \hat{u} peut se mettre sous la forme:

$$\mathcal{R}_{l=1/2}(\alpha, \hat{u}) = \cos \frac{\alpha}{2} \mathbb{1} - i \sin \frac{\alpha}{2} \sigma \cdot \hat{u}.$$

b. Rappeler le résultat général qui permet d'affirmer qu'avec deux spins 1/2, on peut former un moment cinétique l=0 et trois l=1. On rappelle que les états l=1 s'expriment en fonction des états \uparrow et \downarrow des spins 1/2 sous la forme:

$$|l=1,m=1\rangle=|\uparrow\uparrow\rangle, \quad |1,0\rangle=\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle), \quad |1,-1\rangle=|\downarrow\downarrow\rangle$$

- c. Appliquer l'opérateur $\mathcal{R}_{l=1/2}(\alpha,\hat{x})\otimes\mathcal{R}_{l=1/2}(\alpha,\hat{x})$ à l'état $|\uparrow\uparrow\rangle$. Exprimer le résultat dans la base des états de moment cinétique total l=1 de deux spins 1/2 définie par $(|\uparrow\uparrow\rangle,\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle),|\downarrow\downarrow\rangle)$. En déduire la première colonne de la matrice représentant $\mathcal{R}_{l=1}(\alpha,\hat{x})$.
- d. De la même façon, déduire la deuxième et troisième colonne de la matrice représentant $\mathcal{R}_{l=1}(\alpha, \hat{x})$.
- e. Vérifier le résultat à l'aide des résultats de la question 1.
- 3. Nous allons établir la forme générale de l'opérateur rotation d'un angle α autour d'un vecteur unitaire $\hat{u} = x\hat{x} + y\hat{y} + z\hat{z}$ pour un moment cinétique l = 1.

a. Démontrer que l'opérateur $\mathcal{R}_{l=1/2}(\alpha,\hat{u})$ peut être représenté par une matrice (2×2) de la forme

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix}$$

où a et b sont des nombres complexes que l'on déterminera.

- b. En procédant comme dans la question 2, en déduire la forme générale de la matrice représentant $\mathcal{R}_{l=1}(\alpha, \hat{u})$ en fonction de a et b.
- c. Vérifier le résultat dans le cas (x,y,z)=(1,0,0), puis dans le cas $\alpha=2\pi$.