Quantum field theory Exercises 12. 2006-04-10

• Exercise 12.1.

In the theory of a scalar field ϕ with mass *m* and cubic interaction $\mathscr{L}_{int} = -\frac{\lambda}{3!}\phi^3$ calculate the cross section σ of the 2 \rightarrow 2 scattering.

• Exercise 12.2.

Consider the theory with a scalar ϕ with mass *M* and Dirac fermion ψ with mass *m* and Yukawa interaction

$$\mathscr{L}_{\text{int}} = -f\phi \bar{\psi}\psi$$

(f - Yukawa coupling constant). Calculate decay width (and lifetime) of the scalar particle (M > 2m).

• Exercise 12.3.

In the lectures you considered a scalar theory with the interaction of the form $\lambda \phi^4$. One could also study a normal ordered interaction, : $\lambda \phi^4$: (it is even quite natural – we considered that the free Hamiltonian is normal ordered, why not make the interaction normal ordered also?). Compare the perturbative expansions for the two cases. Specifically, show that the contribution to $\langle 0|T\{\phi(x)\phi(y)\}|0\rangle$ (or mass renormalisation) vanishes at the order $O(\lambda)$ for the normal ordered interaction.