Quantum field theory

Exercises 4.
2005-11-21

- Exercise 4.1.

Consider a massive particle moving with velocity $v=\tanh \eta$.

- Show that, if E is the energy of the particle and p its momentum along the propogation direction, then

$$
\eta=\frac{1}{2} \log \frac{E+p}{E-p} .
$$

- Verify that under a boost in the direction of motion of the particle with velocity v^{\prime} (and corresponding rapidity $\left.\eta^{\prime}=\operatorname{arctanh} \nu^{\prime}\right) \eta$ transforms additively

$$
\eta \rightarrow \eta+\eta^{\prime}
$$

- Exercise 4.2.

Prove that, if ψ_{R} and ξ_{R} are right-handed Weyl spinors, $\xi_{R}^{\dagger} \sigma^{\mu} \psi_{R}$ is a four-vector, and similarly for $\xi_{L}^{\dagger} \bar{\sigma}^{\mu} \psi_{L}$, where ξ_{L}, ψ_{L} are left-handed Weyl spinors.

- Exercise 4.3.

Find the explicit form of the variation of an antisymmetric tensor $F^{\mu v}$ under an infinitesimal Lorentz transformation. Writing $F^{0 i}=-E^{i}$ and $F^{i j}=-\varepsilon^{i j k} B^{k}$, find the infinitesimal transformation of E^{i} and B^{i}.

