Quantum field theory Exercises 4. 2005-11-21

• Exercise 4.1.

Consider a massive particle moving with velocity $v = \tanh \eta$.

• Show that, if E is the energy of the particle and p its momentum along the propogation direction, then

$$\eta = \frac{1}{2}\log\frac{E+p}{E-p} \,.$$

• Verify that under a boost in the direction of motion of the particle with velocity v' (and corresponding rapidity $\eta' = \operatorname{arctanh} v'$) η transforms additively

$$\eta
ightarrow \eta + \eta'$$
 .

• Exercise 4.2.

Prove that, if ψ_R and ξ_R are right-handed Weyl spinors, $\xi_R^{\dagger} \sigma^{\mu} \psi_R$ is a four-vector, and similarly for $\xi_L^{\dagger} \bar{\sigma}^{\mu} \psi_L$, where ξ_L , ψ_L are left-handed Weyl spinors.

• Exercise 4.3.

Find the explicit form of the variation of an antisymmetric tensor $F^{\mu\nu}$ under an infinitesimal Lorentz transformation. Writing $F^{0i} = -E^i$ and $F^{ij} = -\varepsilon^{ijk}B^k$, find the infinitesimal transformation of E^i and B^i .