Baryon asymmetry of the Universe

Observed matter-antimatter asymmetry

- Main questions: Why do the Earth, the Solar system and our galaxy consists of of matter and not of antimatter?
- Why we do not see any traces of antimatter in the universe except of those where antiparticles are created in collisions of ordinary particles?
- This looks really strange, as the properties of matter and antimatter are very similar.

There are two possibilities:

- Observed universe is asymmetric and does not contain any antimatter
- The universe consists of domains of matter and antimatter separated by voids to prevent annihilation. The size of these zones should be greater than 1000 Mpc, in order not to contradict observations of the diffuse γ spectrum.

The second option, however, contradicts to the large scale isotropy of the cosmic microwave background.

Thus, we are facing the question: Why the universe is globally asymmetric?

Data and expectations for the diffuse γ -ray spectrum (upper curve d = 20 Mpc, lower curve d = 1000 Mpc)

Antiprotons in the universe

Example: antiproton-to-proton fraction in GeV: $10^{-7} - 10^{-3}$

Positrons in the universe

Example: positron-to-electron fraction in GeV: 0.02 - 0.2

IF THERE ARE NO ANTI-BARYONS NOW, WHAT KIND OF ASYMMETRY THIS IMPLIES IN THE EARLY UNIVERSE? Thermal history of baryon asymmetry

• The baryon asymmetry
$$\Delta_B = \frac{n_B - n_{\bar{B}}}{n_B + n_{\bar{B}}}$$
 today is very close to 1

- How did it evolve? What was its value in the earlier times?
- Any quark (actually, any particle) is present in the plasma if $T \gtrsim m_q$, because of the annihilation processes $q + \bar{q} \leftrightarrows \gamma + \gamma$ (or $q + \bar{q} \leftrightarrows g + g$)

Thermal history of baryon asymmetry

- At early times for each 10^{10} quarks there is $10^{10} 1$ antiquark.
- Symmetric quark-antiquark background annihilates into photons and neutrinos while the asymmetric part survives and gives rise to galaxies, stars, planets.

Sakharov: To generate baryon asymmetry of the Universe 3 conditions should be satisfied

- I. Baryon number should not be conserved
- **II.** C-symmetry and CP-symmetry must be broken
- **III.** Deviation from thermal equilibrium in the Universe expansion

• If baryon number is conserved, then in every process

 $\psi_1 + \psi_2 + \cdots \rightarrow \chi_1 + \chi_2 + \cdots$ left hand side and right hand side contain equal number of (baryons

- anti-baryons)

- Experimentally we see that baryon charge is conserved in particle physics processes.
- As a consequence proton (the latest baryon) is stable (proton lifetime > 6.6×10^{33} years for decays such as $p \to \pi^0 + e^+$ or $p \to \pi^0 + \mu^+$. This bound is 5×10^{23} times longer than the age of the Universe
- The conservation of baryon number would mean that the total baryon charge of the Universe remains constant in the process of evolution.
- If initial conditions were matter-antimater symmetric no baryon asymmetry could have been generated

Sakharov conditions-I

Problem. Taking the lower bound on the proton's lifetime as its actual lifetime, compute the amount of water one would need to observe 1 proton decay during 10 years.

• Postulate new interaction mediated but a massive gauge boson (Xboson), transforming quarks to leptons: $X \to q + \ell$ (similar to W boson in electroweak theory where $W \to e + \bar{\nu}_e$)

• As a consequence, the processes with *X*-boson exchange violate the baryon number

• For example, the protons may decay.

The proton decays mediated by *X*-boson: $\Rightarrow p \rightarrow e^+ + \pi^0$

$$\Rightarrow p \rightarrow \bar{\nu}_e + \pi^+$$

Oleg Ruchayskiy

New interactions violating baryon number

- The proton lifetime can be estimated as (similar to muon decay): $\tau_p^{-1} \sim \left(\frac{\alpha_X}{M_X^2}\right)^2 m_p^5$ $\tau_\mu^{-1} \sim \left(\frac{\alpha_W}{M_W^2}\right)^2 m_\mu^5$
- Existing experimental bounds on the proton lifetime: $\tau_p \gtrsim 10^{33}$ yrs gives $M_X \gtrsim 10^{16}$ GeV.
- Yukawa couplings may violate *CP* (Sakharov conditions).
- However, this mechanism requires **new physics** at $E \sim M_X \dots$

Can we generate baryon number at **lower** energies? **YES!**

Quantum anomalies

(violation of classical symmetries at quantum level)

 Massless fermions can be left and right-chiral (left and right moving):

$$(i\gamma^{\mu}\partial_{\mu} - \mathcal{M})\psi = \begin{pmatrix} \mathcal{M}^{0} & i(\partial_{t} + \vec{\sigma} \cdot \vec{\nabla}) \\ i(\partial_{t} - \vec{\sigma} \cdot \vec{\nabla}) & \mathcal{M}^{0} \end{pmatrix} \begin{pmatrix} \psi_{L} \\ \psi_{R} \end{pmatrix} = 0$$

where $\gamma_5\psi_{R,L}=\pm\psi_{R,L}$ and $\gamma_5=i\gamma_0\gamma_1\gamma_2\gamma_3$

- Two global symmetries: $\psi_L \to e^{i\alpha} \psi_L$ and $\psi_R \to e^{i\beta} \psi_R$
- According to the Nöther theorem, one can define two **independently** conserved charges that we call the number of left-movers $N_L = \int d^3x \, \psi_L^{\dagger} \psi_L$ and the number of right-movers $N_R = \int d^3x \, \psi_R^{\dagger} \psi_R$.

Linear combinations of these charges are known as **fermion number** $N_L + N_R$ (current $\bar{\psi}\gamma^{\mu}\psi$) and **axial fermion number** $N_L - N_R$ (current $\bar{\psi}\gamma^{\mu}\gamma_5\psi$). Again, both are conserved independently in the free theory • Gauge interactions respects chirality $(D_{\mu} = \partial_{\mu} + eA_{\mu})...$

$$\begin{pmatrix} 0 & i(D_t + \vec{\sigma} \cdot \vec{D}) \\ i(D_t - \vec{\sigma} \cdot \vec{D}) & 0 \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} = 0$$

The symmetry $\psi \rightarrow e^{i\alpha(x)}\psi$ is *gauged*, but the Lagrangian seemingly still preserves both global symmetries: $\psi_L \rightarrow e^{i\alpha}\psi_L$ and $\psi_R \rightarrow e^{i\beta}\psi_R$

• ... but the difference of left and right-movers is **not conserved anymore**:

$$\frac{d(N_L - N_R)}{dt} = \int d^3 \vec{x} \left(\partial_\mu j^5_\mu\right) = \frac{e^2}{2\pi^2} \int d^3 \vec{x} \, \vec{E} \cdot \vec{B} \neq 0$$

... if one takes into account quantum corrections

- Recall: particle in the uniform magnetic field , parallel to z axis: $\vec{B}=(0,0,B)$
- Take Dirac equation coupled to the gauge potential $\vec{A} = (0, Bx, 0)$
- Conserved quantities: energy, momenta p_y, p_z
- Take the square of the Dirac equation to get:

$$\left(-\frac{d^2}{dx^2} + (eBx - p_y)^2 - 2eBs_z\right)\phi = (E^2 - p_z^2)\phi$$
(1)

Spin projection $s_z = \pm \frac{1}{2}$

- The l.h.s. of (1) is just a Schödinger equation for the harmonic oscillator with the frequency $\omega = 2eB$, whose origin is shifted by $\pm eB$
- The energy levels of harmonic oscillators $\epsilon_n = \omega(n + \frac{1}{2}), n \ge 0$

Reminder: Landau levels

• Therefore, the spectrum of Eq. (1) is given by

$$E_n^2 - p_z^2 = eB(2n+1) + 2s_z eB$$
⁽²⁾

• Spectrum has three quantum numbers:

$$\triangleright n = 0, 1, 2 \dots$$

$$\triangleright -\infty \le p_z \le +\infty$$

$$\triangleright s_z = \pm \frac{1}{2}$$

• Consider n = 0. For $s_z = -\frac{1}{2}$ the spectrum (2) becomes

$$E^2 = p_z^2$$
 massless 1-dimensional fermion (3)

for $s_z = +\frac{1}{2}$ there is **no** massless mode

• For n > 0 there is no cancellation between eB(2n + 1) and $2s_z eB$ term

Chiral anomaly explained

 Consider Landau levels: •• n=2 $E^{2} = p_{z}^{2} + eB(2n+1) + 2e\vec{B}\cdot\vec{s}$ •n=1 • Particles with $\vec{B} \cdot \vec{s} < 0$ have n=0 massless branches: ତଚ $E = \begin{cases} -p_z & \text{move down along z-axis} \\ p_z & \text{move up along z-axis} \end{cases}$ • Dirac vacuum \leftrightarrow all states E < 0are filled: $\triangleright E = -p_z < 0 \Rightarrow \vec{p} \cdot \vec{s} < 0 - \text{left}$ particles $\triangleright E = p_z < 0 \Rightarrow \vec{p} \cdot \vec{s} > 0 - \text{right}$ particles

Chiral anomaly explained

- Electric field $\vec{E} = E\hat{z}$ creates right particle (because $p_z(t) = p_z(0) + eEt$)
- For particles of the other chirality the situation is opposite: such electric field destroys such particles (creates **hole** in the Dirac sea)

- As a result:
 - Total number of particles does not change
 - Difference of left minus right appears chiral anomaly!
- This only happens when $\vec{E} \parallel \vec{B}$ (proportional to $\vec{E} \cdot \vec{B}$)

 One can see this for example by computing the diagram with two electromagnetic vertices and one axial current

Adler, Bell, Jackiw

• This diagram changes sign if we change all **left particles** into **right particles** (Furry theorem). Therefore it is proportional to

triangular diagram =
$$\left[e^2(-1) - e^2(+1)\right]F(p,\epsilon_{\mu},\epsilon_{\nu})$$

• In general, any triangular diagram factorizes into some momentum

Oleg Ruchayskiy

Axial anomaly

integral, multiplied by

Anomaly cancellation condition =
$$\left(\sum_{left} e_L^2 Q_L - \sum_{right} e_R^2 Q_R\right)$$

where e_L , e_R are gauge charges of left/right particles and Q_L , Q_R are charges with respect to the global symmetry

- Anomaly means that the notion of left and right chirality for massless fermions is not gauge invariant
- What if current in the vertex is the gauge current? Anomaly of a gauge symmetry renders theory inconsistent (non-unitary):

$$\partial_{\nu} \left(\partial_{\mu} F^{\mu\nu} = j^{\nu} \right) \Longrightarrow 0 = \partial_{\nu} j^{\nu}$$

• Gauge anomaly cancels if charges of "vector-like" (for each fermion $e_L = e_R$). For example, electrodynamic is vector like.

• Consider two Dirac fermions $b = (b_L, b_R)$ and $\ell = (\ell_L, \ell_R)$, charged with respect to a gauge group U(1) in the following way:

$$-Q(b_L) = Q(\ell_L) = e$$
$$Q(b_R) = Q(\ell_R) = 0$$

• The Lagrangian has the form

$$\mathcal{L} = \bar{b} \Big(\partial -\frac{e}{2} \mathcal{A}(1-\gamma_5) \Big) b + m_b \bar{b} b + \bar{\ell} \Big(\partial +\frac{e}{2} \mathcal{A}(1-\gamma_5) \Big) \ell + m_\ell \bar{\ell} \ell$$

- U(1) theory with chiral gauge group
- This theory does not have gauge anomaly, as "anomaly cancellation condition" is satisfied:

$$Q(b_L)^3 + Q(\ell_L)^3 - Q(b_R)^3 - Q(\ell_R)^3 = 0$$

U(1) model

• At classical level the theory has two **global** U(1) symmetries:

 $b \to e^{i\alpha}b$ and $\ell \to e^{i\beta}\ell$

with the corresponding Nöther currents:

$$J_b^{\mu} = \bar{b}\gamma^{\mu}b \quad ; \quad J_{\ell}^{\mu} = \bar{\ell}\gamma^{\mu}\ell$$

you can think of corresponding conserved charges as analog of **baryon** and **lepton** number

- Are these symmetries anomalous?
- Compute anomaly cancellation condition for J_b^{μ} :

$$\underbrace{(-e)^{2}(+1)}_{b_{L}} + \underbrace{e^{2} \times 0}_{\ell_{L}} - \underbrace{0^{2} \times (+1)}_{b_{R}} - \underbrace{0^{2} \times 0}_{\ell_{R}} = -e^{2} \neq 0$$

 \Rightarrow symmetry J_b^{μ} is anomalous (same is true for J_{ℓ}^{μ})

Oleg Ruchayskiy

U(1) model

In the theory with vector-like symmetries **but** chiral gauge charges these vector-like symmetries are anomalous! (if **both** gauge interactions **and** symmetries are vector-like \Rightarrow there is no anomaly)

- Notion of chirality (left/right particles) may get incompatible with requirement of gauge invariants in **quantum** theories.
- In this case the chirality (or *the number of left minus right particles*) changes if one turns out field configurations proportional to $\vec{E} \cdot \vec{B}$.
- Anomalies in general appear when there is
 - > Chiral current in the background of vector-like gauge fields
 - ▷ Vector-like current in the background of chiral gauge fields
 - > Chiral current in the background of chiral gauge fields

Standard Model

Standard Model of FUNDAMENTAL PARTICLES AND INTERACTIONS

The Standard Model summarizes the current knowledge in Particle Physics. It is the quantum theory that includes the theory of strong interactions (quantum chromodynamics or QCD) and the unified theory of weak and electromagnetic interactions (electroweak). Gravity is included on this chart because it is one of the fundamental interactions even though not part of the "Standard Model."

matter constituents FERMIONS spin = 1/2, 3/2, 5/2,

Leptons spin = 1/2			Quarks spin = 1/2			
Flavor	Mass GeV/c ²	Electric charge	Flavor		Approx. Mass GeV/c ²	Electric charge
$v_{e}^{electron}$	<1×10 ⁻⁸	0	U up		0.003	2/3
e electron	0.000511	-1	d down	I.	0.006	-1/3
$ u_{\!\mu}^{ m muon}_{ m neutrino}$	<0.0002	0	C charm	n	1.3	2/3
$oldsymbol{\mu}$ muon	0.106	-1	S stran	ge	0.1	-1/3
$v_{ au}^{ ext{ tau}}_{ ext{ neutrino}}$	< 0.02	0	t top		175	2/3
au tau	1.7771	-1	b botto	m	4.3	-1/3

Spin is the intrinsic angular momentum of particles. Spin is given in units of l_1 , which is the quantum unit of angular momentum, where $l_1 = h/2\pi = 6.58 \times 10^{-25}$ GeV s = 1.05×10^{-34} J s.

Electric charges are given in units of the proton's charge. In SI units the electric charge of the proton is 1.60×10^{-19} coulombs.

The **energy** unit of particle physics is the electronvolt (eV), the energy gained by one electron in crossing a potential difference of one volt. **Masses** are given in GeV/c² (remember E = mc³), where 1 GeV = 10³ eV = 1.65×10⁻¹⁰ joule. The mass of the proton is 0.393 GeV/c² = 1.67×10⁻²⁷ kg.

Baryons qqq and Antibaryons वृव् Baryons are fermionic hadrons. There are about 120 types of baryons.							
Symbol	Name	Name Quark Electric Mass content charge GeV/c ²		Spin			
р	proton	uud	1	0.938	1/2		
p	anti- proton	ūūd	-1	0.938	1/2		
n	neutron	udd	0	0.940	1/2		
Λ	lambda	uds	0	1.116	1/2		
Ω-	omega	SSS	-1	1.672	3/2		

Matter and Antimatter

For every particle type there is a corresponding antiparticle type, denoted by a bar over the particle symbol (unless + or – charge is shown). Particle and antiparticle have identical mass and spin but opposite charges. Some electrically neutral bosons (e.g., Z^0 , γ , and $\eta_c = c\overline{c}$, but not $K^0 = d\bar{s}$) are their own antiparticles.

Figures

These diagrams are an artist's conception of physical processes. They are **not** exact and have **no** meaningful scale. Green shaded areas represent the cloud of gluons or the gluon field, and red lines the quark paths.

force carriers BOSONS spin = 0, 1, 2, ...Unified Electroweak spin = 1 Strong (color) spin = 1

Electric charge

0

e types of

lor charge do with the

Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c		
γ photon	0	0	g gluon	0		
W-	80.4	-1	Color Char	ge		
W+	80.4	+1	Each quark ca "strong charg	Each quark carries one of thr "strong charge," also called '		
Z ⁰	91.187	0	These charge colors of visib	These charges have nothing t colors of visible light. There a		

e eight poss types of color charge for gluons. Just as electr cally-charged particles interact by exchanging photons, in strong interactions color-charged par ticles interact by exchanging gluons. Leptons, photons, and W and Z bosons have no strong interactions and hence no color charge.

Quarks Confined in Mesons and Baryons

One cannot isolate quarks and gluons; they are confined in color-neutral particles called hadrons. This confinement (binding) results from multiple exchanges of gluons among the hadrows, this continement (unitarity results from multiple exchanges or guidors among the color-charged constituents. As color-charged particles (quarks and guidons) move apart, the ener-gy in the color-force field between them increases. This energy eventually is converted into addi-tional quark-antiquark pairs (see figure below). The quarks and antiquarks then combine into hadrons; these are the particles seen to emerge. Two types of hadrons have been observed in nature: mesons qq and baryons qqq.

Residual Strong Interaction

The strong binding of color-neutral protons and neutrons to form nuclei is due to residual strong interactions between their color-charged constituents. It is similar to the residual electrical interaction that binds electrically neutral atoms to form molecules. It can also be viewed as the exchange of mesons between the hadrons.

Interaction		Gravitational	Weak	Electromagnetic	Strong	
			(Electroweak)		Fundamental	Residual
Acts on:		Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note
Particles experiencing:		All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons
Particles mediating:		Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons
ength relative to electromag	10 ⁻¹⁸ m	10 ⁻⁴¹	0.8	1	25	Not applicable
two u quarks at:	3×10 ^{−17} m	10 ⁻⁴¹	10 ⁻⁴	1	60	to quarks
two protons in nucle	us	10 ⁻³⁶	10 ⁻⁷	1	Not applicable to hadrons	20

e⁺e⁻ → B⁰ Ē⁰

 $n \rightarrow p e^- \overline{\nu}_o$

A neutron decays to a proton, an electron, and an antineutrino via a virtual (mediating) W boson. This is neutron β decay.

e⁻

 $\overline{\nu}_{e}$

or An electron and positron (antielectron) colliding at high energy can annihilate to produce B^0 and \overline{B}^0 mesons via a virtual Z boson or a virtual photon.

The Particle Adventure Visit the award-winning web feature The Particle Adventure at http://ParticleAdventure.org This chart has been made possible by the generous support of: U.S. Department of Energy U.S. National Science Foundation

U.S. National Science Foundation Lawrence Berkeley National Laboratory Stanford Linear Accelerator Center American Physical Society, Division of Particles and Fields

BURLE INDUSTRIES, INC.

©2000 Contemporary Physics Education Project. CPEP is a non-profit organiza-tion of teachers, physicists, and educators. Send mail to: CPEP, MS 50-308, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720. For information on charts, text materials, hands-on classroom activities, and workshops, see:

http://CPEPweb.org

PROPERTIES OF THE INTERACTIONS

Gauge anomalies in the Standard Model

- **BUT!** in the SM electroweak interactions are chiral. If the notion of chirality is **not-gauge invariant** how SM can be consistent?
- There are many left and many right states in the SM. If you sum them up – they cancel all anomalies

From Peskin & Schroeder [Sec. 20.2]

• Baryon number in the Standard Model:

$$J^{\mu}_{B} = \frac{1}{3}(\bar{u}\gamma^{\mu}u + \bar{d}\gamma^{\mu}d + \text{other quarks})$$

where $u = (u_L, u_R)$, etc. – vector like U(1) symmetry. Same is true for the lepton number J_L^{μ}

- However, only left-chiral components couple to the SU(2) gauge field
- SU(2) gauge fields: three gauge components A^a_{μ} , a = 1, 2, 3
- The non-conservation of baryon and lepton numbers is given by

$$\partial_{\mu}J^{\mu}_{B} = \partial_{\mu}J^{\mu}_{L} = \frac{N_{f}g^{2}}{32\pi^{2}}\sum_{a=1}^{3}\mathcal{F}^{a}_{\mu\nu}\tilde{\mathcal{F}}^{\mu\nu}_{a}$$

where $\mathcal{F}_{\mu\nu}$ is the SU(2) field strength:

$$\mathcal{F}^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g \epsilon^{abc} A^b_\mu A^c_\nu$$

 $\tilde{\mathcal{F}}_{\mu\nu} = \frac{1}{4} \epsilon_{\mu\nu\alpha\beta} \mathcal{F}^{\alpha\beta}$ is the dual field strength ($\epsilon_{\mu\nu\alpha\beta}$ is the Levi-Civita tensor)

Problems: Recall that in the electrodynamics the electric and magnetic fields are defined from the field strength $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ as $E_i = F_{0i}$ and $H_i = \frac{1}{2}\epsilon_{ijk}F^{jk}$, where i, j, k = 1, 2, 3 are spatial indexes

- Show that the dual field strength tensor $\tilde{F}_{\mu\nu} = \frac{1}{4} \epsilon_{\mu\nu\alpha\beta} F^{\alpha\beta}$ interchanges $\vec{E} \leftrightarrow \vec{H}$, i.e. $H_i = \tilde{F}_{0i}$ and $E_i = \frac{1}{2} \epsilon_{ijk} \tilde{F}^{jk}$
- Show that $F_{\mu\nu}F^{\mu\nu} = \tilde{F}_{\mu\nu}\tilde{F}^{\mu\nu} = \vec{E}^2 \vec{H}^2$
- Show that $F_{\mu\nu}\tilde{F}^{\mu\nu} = 4\vec{E}\cdot\vec{H}$
- Show that $F_{\mu\nu}\tilde{F}^{\mu\nu}$ is full 4-divergence, i.e. $F_{\mu\nu}\tilde{F}^{\mu\nu} = \partial_{\mu}K^{\mu}$ where K^{μ} is some 4-vector

Anomalous baryon number non-conservation

• The total baryon number non-conservation is given by

$$\Delta B = \int_{t_1}^{t_2} dt \, \frac{dB}{dt} = \frac{N_f g^2}{8\pi^2} \int_{t_1}^{t_2} dt \int dV \sum_{a=1}^3 \vec{\mathcal{E}}_a \cdot \vec{\mathcal{H}}_a$$

• Recall that in U(1) theory

$$\int dV \vec{E} \cdot \vec{B} = \frac{dN_{\rm CS}}{dt}$$

where we defined the Chern-Simons number

$$N_{\rm CS} = \frac{g^2}{96\pi^2} \int d^3x \vec{A} \cdot \vec{B}$$

a very similar formula holds for non-Abelian SU(2) fields

Oleg Ruchayskiy

Anomalous baryon number non-conservation

To generate non-zero baryon number in transitions from $t_1 \rightarrow t_2$, we need fluctuations of the SU(2) gauge that change N_{cs} :

$$B(t_2) - B(t_1) = N_f \left[N_{CS}(t_2) - N_{CS}(t_1) \right]$$

Immediate questions:

- If baryon number is not conserved in the Standard Model why proton is stable?
- How possible are the configurations with non-zero $\vec{\mathcal{E}}_a \cdot \vec{\mathcal{H}}_a$?? How often do they occur at T = 0 and at high temperatures?
- $\Delta B \propto g^2 \int \vec{\mathcal{E}} \cdot \vec{\mathcal{H}} \Longrightarrow \vec{\mathcal{E}} \cdot \vec{\mathcal{H}} \propto \frac{1}{g^2} \Rightarrow$ energy density of the SU(2) gauge field is $\propto \vec{\mathcal{E}}^2 + \vec{\mathcal{H}}^2 \propto \frac{1}{q^2}$. What do they mean?

Chern-Simons number

- Example: configuration with $\vec{A}(\vec{x}) = A_0 \left(\sin(kz), \cos(kz), 0 \right)$ has the magnetic field $\vec{B} = \operatorname{curl} \vec{A} = \vec{B}(\vec{x}) = k\vec{A}(\vec{x})$
- Magnetic energy density

$$\rho_B = \lim_{V \to \infty} \frac{1}{V} \int dV \frac{\vec{B}^2}{2} = \frac{1}{2} k^2 A_0^2$$

• Its Chern-Simons number density:

$$n_{\rm CS} = \lim_{V \to \infty} \frac{1}{V} \int dV \, \vec{A} \cdot \vec{B} = k A_0^2$$

• $N_{cs} \neq 0$ means that the field is "helical"

• Notice that we can send $k \to 0$ and $A_0 \to \infty$ so that

$$n_{cs} = const$$
 but $\rho_B \to 0$

Space of all fields

 \Rightarrow Configurations with $n_{cs} \neq 0$ have same energy as vacuum ($\vec{B} = 0$). Arbitrary configuration of gauge fields has higher energy

• The height of this barrier is

$$E_{\text{barrier}} pprox rac{2M_W}{lpha_W} \sim 10 \, \mathrm{TeV}$$

• At zero energy to change N_{cs} one needs to tunnel through the barrier. The probability is given by

$$P_{\text{tunnel}} \sim e^{-\frac{4\pi}{\alpha_W}} \sim 10^{-160}$$

- therefore proton is stable

• At finite temperatures the rate of transition becomes unsuppressed:

$$\Gamma_{\rm sph}(T) = \begin{cases} (\alpha_W T)^4 \alpha_W \log(1/\alpha_W), & T \gtrsim E_{\rm barrier} \\ (\alpha_W T)^4 \left(\frac{E_{\rm barrier}}{T}\right)^7 \exp\left(-\frac{E_{\rm barrier}}{T}\right), & T \lesssim E_{\rm barrier} \\ \exp\left(-\frac{4\pi}{\alpha_W}\right), & T = 0 \end{cases}$$

• Each fluctuation of SU(2) field with $\Delta N_{\rm CS} = 1$ creates 9 quarks + 3 leptons violating both baryon and lepton number but leaving B-L conserved
Sakharov condition-II

- C- and CP-symmetries change all charges including baryon number:
 C |p⟩ = |p̄⟩, C |n⟩ = |n̄⟩, C |e⁻⟩ = |e⁺⟩, etc.
- If these symmetries were conserved in the early Universe this would mean that for any process, changing baryon number, there is another process, restoring baryon number. Namely, if

$$X_1 + X_2 + \dots \rightarrow Y_1 + Y_2 + \dots$$

change baryon number by +1, then there is a process:

$$\bar{X}_1 + \bar{X}_2 + \dots \rightarrow \bar{Y}_1 + \bar{Y}_2 + \dots$$

in which baryon number changes by -1 and their probabilities are the same.

- Time reversal $T: P_{\alpha \to \beta} \xrightarrow{T} P_{\beta \to \alpha}$
- **CP** : $|\nu(\vec{p})\rangle \xrightarrow{CP} |\bar{\nu}(-\vec{p})\rangle$

$$P_{\alpha \to \beta} \xrightarrow{CP} P_{\bar{\alpha} \to \bar{\beta}}$$

CP was believed to be the exact symmetry of nature after parity violations were discovered

- However: CP-violation in kaon decays (1964 Cronin, Fitch,...) In a small fraction of cases ($\sim 10^{-3}$), long-lived K_L (a mixture of K^0 and \bar{K}^0 decays into pair of two pions, what is forbidden by CP-conservation.
- If CP were exact symmetry, an equal number of K^0 and \bar{K}^0 would produce an equal number of electrons and positrons in the reaction

$$K^0 \to \pi^- e^+ \nu_e, \quad \bar{K}^0 \to \pi^+ e^- \bar{\nu}_e,$$

Oleg Ruchayskiy

• However, the number of positrons is somewhat larger ($\sim 10^{-3}$) than the number of electrons.

• **CPT**: $P_{\alpha \to \beta} \xrightarrow{CPT} P_{\bar{\beta} \to \bar{\alpha}}$

CPT theorem: particles and antiparticles have the same mass, the same lifetime, but *all* their charges (electric, baryonic, leptonic, etc) are opposite.

• All known processes conserve CPT

- Parity transformation is a discrete space-time symmetry, such that all spatial coordinates flip $\vec{x} \to -\vec{x}$ and time does not change $t \to t$
- Show that: • Show that: P-eventime position \vec{x} angular momentum mass density electric charge electric current magnetic field electric field
- For fermions parity is related to the notion of chirality
- Dirac equation without mass can be split into two non-interacting parts

$$(i\gamma^{\mu}\partial_{\mu} - \mathcal{M})\psi = \begin{pmatrix} \mathcal{M}^{0} & i(\partial_{t} + \vec{\sigma} \cdot \vec{\nabla}) \\ i(\partial_{t} - \vec{\sigma} \cdot \vec{\nabla}) & \mathcal{M}^{0} \end{pmatrix} \begin{pmatrix} \psi_{L} \\ \psi_{R} \end{pmatrix} = 0$$

Parity transformation

- Show that if particle moves only in one direction $p = (p_x, 0, 0)$, then these two components $\psi_{L,R}$ are left-moving and right-moving along *x*-direction.
- One can define the $\gamma_5 = i\gamma_0\gamma_1\gamma_2\gamma_3$. In the above basis (Peskin & Schroeder conventions)':

$$\gamma_5 = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}$$

and

$$\gamma_5\psi_{R,L}=\pm\psi_{R,L}$$

• **Show** that for massless fermions one can define a conserved quantity **helicity**: projection of spin onto momentum:

$$h \equiv rac{(oldsymbol{p} \cdot oldsymbol{s})}{|oldsymbol{p}|}$$

Show that left/right chiral particles have definite helicity ± 1 .

Parity transformation

- For fermions: Left-Handed \rightleftharpoons Right-Handed. $|\psi_L(\vec{p})\rangle \xrightarrow{P} |\psi_R(-\vec{p})\rangle$.
- The neutrino being massless particle would have two states:
 - Left neutrino: spin **anti-parallel** to the momentum p
 - Right neutrino: spin **parallel** to the momentum p
- This has been tested in the experiment by Wu et al. in 1957

Parity violation in weak interactions

- Put nuclei into the strong magnetic field to align their spins
- Cool the system down (to reduce fluctuations, flipping spin of the Cobalt nucleus)
- The transition from 60 Co to 60 Ni has momentum difference $\Delta J = 1$ (spins of nuclei were known)
- Spins of electron and neutrino are parallel to each other
- Electron and neutrino fly in the opposite directions
- Parity flips momentum but does not flip angular momentum/spin/magnetic field

Parity violation in weak interactions

Parity violation in weak interactions

- This result means that neutrino always has spin anti-parallel to its momentum (left-chiral particle)
- Parity exchanges left and right chiralities. As neutrino is always left-polarized this means that

Particle looked in the mirror and did not see itself ???

• How can this be?

Another symmetry, charge conjugation comes to rescue. Charge conjugation exchanges particle and anti-particle. Combine it with parity (CP-symmetry):

$$\begin{array}{ccc} - \mathsf{P}: & |\nu_L\rangle & \rightarrow & |\nu_R\rangle & - \\ & \mathbf{impossible} \end{array}$$

- Life turned out to be more complicated. CP-symmetry is also broken

- All CP-non-conservation effects in the SM are in the quark sector
- These are complex phases of Cabbibo-Kobayashi-Maskawa mass matrix
- In analogy with neutrino mass matrix, one needs at least 3 flavours to have a possibility for the presence of complex phase that cannot be removed by field redefinition (CP-violation)
- There are two types of quark matrices: M_u for "up-quarks" (u,c,t) and M_d for "down-quarks" (d,s,b). Up-sector can be made diagonal, and the M_d is non-diagonal in flavour space.
- Notice, that some elements of these matrices do not play role in physical processes and can be reabsorbed in the redefinition of fields

CP non-conservation in the SM at $T \neq 0$

• The lowest order in mass CP-non-invariant expression that is invariant under all possible quark fields redefinitions is given by

$$J_{\rm CP} = {\rm Im}\,{\rm Tr}\Big(M_u^4 M_d^4 M_u^2 M_d^2\Big) \propto m_t^4 m_b^4 m_c^2 m_s^2 \sin \delta_{CP} \sim 10^4 \,\,{\rm GeV}^{12}$$

where $\delta_{\rm CP}$ is the CP-violating phase that can be measured from kaon decays

• Notice that $J_{\rm CP}/T_{\rm sph}^{12} \sim 10^{-20}$, where $T_{\rm sph}$ is a temperature of sphaleron freeze-out – a number much smaller than the baryon asymmetry (that we expect to be of the order 10^{-10})

Deviation from thermal equilibrium

- In thermal equilibrium any quantity is defined in a unique way as a function of temperature and possibly a number of some conserved charges Q or corresponding chemical potentials
- To any equilibrium process (changing C, CP, B, or any other quantity) there is a reverse process, changing any charge in the opposite direction. As a result for example, the total baryon charge $\langle B \rangle$ will approach its equilibrium value $B_{\rm eq}(T,Q,\ldots)$ a unique function of T and values of other conserved charges.
- Notice, that if a model does not have any conserved charges Q ≠ 0, than in equilibrium baryon number (also, lepton number or any other quantum number will be equal to zero:

Density matrix $\hat{\varrho} = e^{-\hat{H}/T}$ is CPT invariant (CPT theorem), while any charge Q changes sign under CPT. Therefore in equilibrium

$$\langle Q \rangle = \text{Tr}\left(\hat{Q}\hat{\varrho}\right) = \text{Tr}\left(\hat{Q}^{(\text{CPT})}\hat{\varrho}\right) = \text{Tr}\left(-\hat{Q}\hat{\varrho}\right) \Longrightarrow \langle Q \rangle = 0$$

Problems about thermal equilibrium

- 1. Estimate within the Fermi theory at what temperatures weak interactions enter thermal equilibrium? At what temperatures they go out of thermal equilibrium again?
- 2. At high temperatures ($T \gg 100$ GeV) one can speak about unbroken $SU(2) \times U(1)$ electroweak symmetry. The interaction is characterized by "weak oupling constant" $\alpha_W = \frac{g_W^2}{4\pi} \approx \frac{1}{30}$. Estimate, at what temperatures typical electroweak reactions are in thermal equilibrium? (Hint: use the analogy with the electromagnetic interactions)
- 3. Below temperatures $T \ll 100$ GeV electroweak symmetry is broken and one can speak about electromagnetic interactions. Estimate at what temperatures electromagnetic processes enter thermal equilibrium. At what temperatures they go out of thermal equilibrium again?
- 4. At temperatures $T \ll 100$ GeV interactions of sterile neutrino with other leptons can be described by the analog of Fermi theory (with the "sterile Fermi constant" $G'_F = \theta * G_F$, where $\theta \sim 10^{-5}$). At what temperatures such sterile neutrinos enter thermal equilibrium and go out of thermal equilibrium.

- We saw that all the SM processes containing quarks (particle, carrying baryon number) are in thermal equilibrium in the early Universe down to temperatures ~ 1 MeV when proton and neutron freeze-out. Therefore, they cannot be responsible for generation of baryon asymmetry of the Universe?
- What are physical processes can violate thermal equilibrium conditions?

PHASE TRANSITIONS IN THE EARLY UNIVERSE

Spontaneous symmetry breaking

a

Massive scalar $V(\phi) = \frac{m^2}{2}\phi^2 + \frac{\lambda}{4}\phi^4$

Spontaneous symmetry breaking $V_{\rm SSB}(\phi) = -\frac{m^2}{2}\phi^2 + \frac{\lambda}{4}\phi^4 + V_0$ (4) Minimum at $\phi_0^2 = \frac{m^2}{\lambda}$

- 1. Expand the potential (4) around the true minimum ϕ_0 and find the mass of the particle. Notice that it is not equal to m^2 !
- 2. Generalize the potential (4) for the case of U(1) charged scalar field with the charge q (i.e. ϕ is the complex field and gauge transformation acts as $\phi \rightarrow e^{iq\xi}\phi$)
- 3. Introduce the gauge field A_{μ} and write the kinetic term for the charged scalar field ϕ (changing ordinary derivative ∂_{μ} to covariant derivative $D_{\mu} = \partial_{\mu} + qA_{\mu}$). Show that at the minimum of the potential $V_{\rm SBB}$ the gauge field becomes massive. Find the mass of the gauge field
- 4. Introduce the charged fermions, coupled to the field ϕ via Yukawa interaction $f \bar{\psi} \phi \psi$. Show that when ϕ is at the minimum of the potential (4) the Yukawa term becomes the Dirac mass term for the fermion.

Symmetry breaking at finite temperatures

- What happens with the system at finite temperatures (e.g. when $T^4 \sim V_0$)?
- Consider **free energy per unit volume** of the scalar field in the homogeneous and isotropic Universe:

 $V_{\rm EFF}(\phi,T)\equiv{\rm Free\ energy}/{\rm Volume}$

- At low temperatures $V_{\text{EFF}}(\phi, T) \approx V_{\text{SBB}}(\phi)$
- The minimum of effective potential $\langle \phi \rangle_T$ is determined from the usual condition of minimum $\frac{\partial V_{\text{EFF}}(\phi,T)}{\partial \phi} = 0$ while $\frac{\partial^2 V_{\text{EFF}}(\phi,T)}{\partial \phi^2} > 0$

Effective potential

• What is the form of $V_{\text{EFF}}(\phi, T)$? Consider the situation when the temperature is high $T \gg \langle \phi \rangle_T$. Qualitatively in this situation all the particles have masses $m(\phi) \propto \langle \phi \rangle_T$ and $m(\phi) \ll T$. In this limit one would expect that the change in free energy density (is given by)

$$V_{\rm EFF}(\phi,T) \approx V_{\rm SBB}(\phi) + T^4 \sum_{\text{all massive particles}} c_i \frac{m_i^2(\phi)}{T^2}$$

• Then we have

$$V_{\rm EFF}(\phi,T)\approx (-\lambda v^2+\alpha T^2)\phi^2+\lambda\phi^4$$

where

 $\alpha = \frac{1}{12v^2}(6M_W^2 + 3M_Z^2 + 6m_t^2) - \text{heaviest particles to which Higgs couples}$

• If
$$T > \sqrt{\frac{\lambda}{\alpha}}v$$
 then $\phi = 0$ is the minimum of the system

1st order phase transition

A:
$$T = 0$$
, $\phi_{min} = \phi_0$

Two main types of phase transitions:

- I order Discontinuity of $\frac{\partial F}{\partial T} \propto \langle \phi \rangle_T$ (left).
- Il order No discontinuity of $\langle \phi \rangle_T$ (right).

First-order phase transition

2nd order phase transition

A:
$$T = 0$$
, $\phi_{min} = \phi_0$

In the presence of the temperature, the potential for the field ϕ can change:

From http://www.phys.uu.nl/~prokopec

2nd order phase transition

Back to Sakharov

Oleg Ruchayskiy

First-order phase transition

- In the SM all the conditions seems to be satisfied:
 - CP is violated
 - Baryon number may not be non-conserved: it can be created from lepton number by non-perturbative processes active at high temperature
 - There may be phase transitions (EW, QCD).
- However, experimental bounds on the SM parameters show that this does not happen!

- Sphaleron processes violate B + L but do not affect B L charge.
- If at $T > T_{sph}$ you generate non-zero lepton number via some process (so that B L becomes $\neq 0$) ...
- ... then sphalerons will "transform *L* into *B*" (so that, for example, in the SM plasma one gets $B = \frac{28}{79}(B L)$ and $L = -\frac{51}{79}(B L)$)

Khlebnikov & Shaposhnikov, "*The Statistical Theory of Anomalous Fermion Number Nonconservation*" Nucl. Phys. B308 (1988) 885-912

This class of scenarios is called LEPTOGENESIS

Sterile neutrinos and leptogenesis

There exist three classes of leptogenesis scenario related to sterile neutrinos:

Thermal leptogenesis: Works for $M_N \sim 10^{12}$ GeV

Fukugita & Yanagida'86

Resonant leptogenesis: Pilaftsis, Underwood'04–'05 Works for $M_{N_1} \approx M_{N_2} \sim M_W$ and $|M_{N_1} - M_{N_2}| \ll M_{N_1,N_2}$

Leptogenesis via oscillations:

Akhmedov, Smirnov & Rubakov'98

Asaka & Shaposhnikov'05

Works for $M_{N_1} \approx M_{N_2} \lesssim M_W$ and $|M_{N_1} - M_{N_2}| \ll M_{N_1,N_2}$

The main idea of thermal leptogenesis

 "Sufficiently heavy" sterile neutrinos can decay into left leptons + Higgs

Fig. from Strumia & Vissani

- Due to their Majorana mass these decays break lepton number $(N \rightarrow L + H \text{ and } N \rightarrow \overline{L} + \overline{H})$
- Decay rate $\Gamma_{tot} \propto |F|^2 M_N$
- Tree level decay of $N_1 \rightarrow L + H$ (the first graph):

$$\Gamma = \frac{|F|^2 M_1}{8\pi}$$

The main idea of thermal leptogenesis

– complex phase does not contributes, so not satisfied 2nd
 Sakharov condition

- Need to take into account loop effects (graphs 2 and 3)
- The resulting $\eta_B \propto 10^{-3} |F|^2 \Rightarrow |F|^2 \sim 10^{-7} \Rightarrow M_N \sim 10^{12} \text{ GeV}$
- Such sterile neutrinos would add corrections to the Higgs mass of the order of $|F|^2 M_N^2 \sim 10^{14} \text{ GeV}^2 \gg M_{\text{Higgs}}^2$ gauge hierarchy problem!

- Can lighter sterile neutrinos provide leptogenesis?
- Yes! but still $\eta_B \propto |F|^2$ and one needs to compensate smaller Yukawas (the smaller is the mass, the smaller are the Yukawa couplings)

- If masses of two sterile neutrinos **approximately equal**, then in the last diagram the production of lepton number is enhanced by $\frac{M_1\Gamma_{tot}}{(M_1 M_2)^2 + \Gamma_{tot}^2}$
- Leptogenesis possible for $M_N \sim M_W!$

Leptogenesis via oscillations

• As M_N decreases, the Majorana nature of particles plays lesser $\frac{\text{Smirnov}}{\text{Rubakov'98}}$ role. Can one get a leptogenesis for $M_N \ll T_{\text{sph}}$

Asaka, Shaposhnikov

Akhmedov,

- Recall, that sphalerons (SU(2) gauge configurations) convert ^{'05}
 lepton number stored in left lepton doublets into the baryon number.
- Can it be that total lepton number = 0 but is distributed between sectors:

Lepton # of left $\nu = -$ Lepton # of $N_I \neq 0$

sterile neutrinos are Majorana particles, so for them role of lepton number is played by helicity

• Need at least two sterile neutrinos with $M_{N_1} \approx M_{N_2}$
Leptogenesis via oscillations

Akhmedov, Smirnov,

- **1)** Need to choose at least two sterile neutrinos that do not $\frac{Smirnov}{Rubakov'98}$ thermalize until T_{sph}
 - At $T > m_t$ thermalization goes via Higgs exchange $N + t \leftrightarrow \nu + t$ or $H \leftrightarrow N + \nu, \dots$
 - $\Gamma_{therm} \sim \frac{9|F|^2 f_t^2}{64\pi^3}$ compares to H(T) at $T_{eq} \sim 5M_N$.
 - Therefore, if $M_N < M_W$ particles not thermalized until sphalerons freeze-out
- 2) Sterile neutrinos are produced (e.g. via $H \rightarrow N + \nu$) no lepton number is any sectors so far!
- **3)** Sterile neutrinos oscillate into each other in the CP-violating way recall, that we can have CP-phases in the Yukawa matrix of sterile neutrinos!
- **4)** This generate some effective "lepton number" in sterile (and, therefore, in active) sectors

• The frequency oscillation between two neutrinos with masses $M_1 \approx M_2$ is given by

$$\omega_{\rm osc} \sim \frac{M_1^2 - M_2^2}{E_N} \approx \frac{M_N \Delta M(T)}{T}$$

- If $\omega_{osc} \gg H(T_{sph})$ many oscillations had occurred by the time of sphaleron freeze-out and lepton number is "washed out"
- If $\omega_{osc} \ll H(T_{sph})$ essentially no oscillations had occurred and lepton number in the sterile sector did not have time to develop
- Optimal condition:

$$\omega_{\rm osc} \sim \frac{T_{\rm sph}^2}{M_*} \Longrightarrow \left(M_* M_N \Delta M(T) \right)^{1/3} \sim T_{\rm sph}$$

Leptogenesis via oscillations

- Mechanism works down to $M_N \sim 1 \; {\rm MeV}$

• Roughly
$$\Delta M(T_{\rm sph}) \sim m_{\rm atm} \left(\frac{1 \text{ GeV}}{M_N} \right)$$

• This leptogenesis do no have to stop at $T \sim T_{\rm sph}$. Lepton asymmetry continues to be generated below sphaleron freezeout

- Sterile neutrinos with the masses from 1 MeV to 10¹² GeV can be responsible for generation of baryon asymmetry of the Universe through leptogenesis
- Heavy particles ($M_N \sim 10^{12}~{\rm GeV}$) would lead to the gauge hierarchy problem
- Almost degenerate particles with the masses from $M_N \sim M_W$ can produce baryon asymmetry through either **resonant leptogenesis** (Majorana nature of particles plays crucial role) or via **coherent CP-violating oscillations** – total lepton number is non-zero but the active neutrinos acquire an effective lepton number
- The latter mechanism allows for lepton asymmetry to be generated below the sphaleron freeze-out temperature. Therefore, it is possible that $\eta_L \gg \eta_B$ in such models