ELECTRODYNAMIQUE Série 13: Thomson Scattering 2015

We discuss here the Thomson scattering of a point particle by an incoming electro-
magnetic monochromatic wave. The radiation fields are given by:
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where R is the distance between the observer and the particle. The Poynting vector is
therefore given by:

2

s A mAB) 5, 2)

- 16m2¢pc
so the emitted power per unit solid angle is:
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The incoming electric field of the incident wave can be written as:
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where Ej is now a real constant and e satisfies the conditions:
€ -e=1, e-k=0. (5)
The equation of motion for the free particle is therefore:

mv = e(eEpe’ ¥ 4 c.c), (6)

from which one can derive 8. The incoming energy flux can be derived from the Poynting
vector, Si, = 2eoc|Eg|? = QGOCE(% , from which we find the cross section as:
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The quantity |n A (n A E)|? must be averaged over time and over the initial polarization
of the electromagnetic wave. Averaging over time, we get:
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We can rewrite the last result using
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Averaging over polarizations, we then find:
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Now, € lives in the plane orthogonal to the wave vector of the electromagnetic wave;
assuming the wave is propagating in the z direction, z = (0,0, 1), € must be a vector in
the (x,y) plane. If the incoming wave is not polarized, then < €;je; > must be the most
symmetric tensor in the (z,y) plane, so we can write:

< ejep >= a0k — zj2k), (11)
where a is a constant that can be obtained by noticing that (51']'62'6; = 1. So we have:
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so that a = 1/2. We have finally that the average over polarizations can be written as:

< €je, >= %(@k — Zj2k)- (13)

We can now compute the average over time and polarization of the quantity in Eq. (9):
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Putting together the results so far obtained in Eq. (7), we find:
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The total cross section is easily found from the previous expression:
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In the case of the electron, the quantity
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is called classical electron radius.



