
Electrodynamique Série 13: Thomson Scattering 2015

We discuss here the Thomson scattering of a point particle by an incoming electro-
magnetic monochromatic wave. The radiation fields are given by:
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where R is the distance between the observer and the particle. The Poynting vector is
therefore given by:
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so the emitted power per unit solid angle is:
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The incoming electric field of the incident wave can be written as:

E = E0e
i(k·x−ωt) + c.c. = εE0e

i(k·x−ωt) + c.c. =
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where E0 is now a real constant and ε satisfies the conditions:

ε∗ · ε = 1, ε · k = 0. (5)

The equation of motion for the free particle is therefore:

mv̇ = e(εE0e
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from which one can derive β̇. The incoming energy flux can be derived from the Poynting
vector, Sin = 2ε0c|E0|2 = 2ε0cE2

0 , from which we find the cross section as:
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The quantity |n ∧ (n ∧ E)|2 must be averaged over time and over the initial polarization
of the electromagnetic wave. Averaging over time, we get:
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We can rewrite the last result using

[n ∧ (n ∧ ε)]i = εijknjεklmnlεm = (δilδjm−δimδjl)njnlεm = (n·ε)ni−εi = (δij−ninj)εj . (9)

Averaging over polarizations, we then find:

< |n∧(n∧ε)|2 >=< (δij−ninj)εj(δik−nink)ε∗k >= (δij−ninj)(δik−nink) < εjε
∗
k > . (10)



Now, ε lives in the plane orthogonal to the wave vector of the electromagnetic wave;
assuming the wave is propagating in the z direction, z = (0, 0, 1), ε must be a vector in
the (x, y) plane. If the incoming wave is not polarized, then < εjε

∗
k > must be the most

symmetric tensor in the (x, y) plane, so we can write:
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where a is a constant that can be obtained by noticing that δijεiε∗j = 1. So we have:
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so that a = 1/2. We have finally that the average over polarizations can be written as:
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We can now compute the average over time and polarization of the quantity in Eq. (9):
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Putting together the results so far obtained in Eq. (7), we find:
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The total cross section is easily found from the previous expression:
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In the case of the electron, the quantity

r0 =
e2

4πε0mc2
= 2.82 · 10−13cm (17)

is called classical electron radius.
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