We discuss here the Thomson scattering of a point particle by an incoming electromagnetic monochromatic wave. The radiation fields are given by:

$$
\begin{equation*}
\mathbf{E}=\frac{e}{4 \pi \epsilon_{0} c} \frac{1}{R}(\mathbf{n} \wedge(\mathbf{n} \wedge \dot{\boldsymbol{\beta}})), \quad \mathbf{B}=\frac{e}{4 \pi \epsilon_{0} c^{2}} \frac{1}{R}[\mathbf{n} \wedge((\mathbf{n} \wedge \dot{\boldsymbol{\beta}}) \wedge \mathbf{n})], \tag{1}
\end{equation*}
$$

where R is the distance between the observer and the particle. The Poynting vector is therefore given by:

$$
\begin{equation*}
\mathbf{S}=\frac{e^{2}}{16 \pi^{2} \epsilon_{0} c}|\mathbf{n} \wedge(\mathbf{n} \wedge \dot{\boldsymbol{\beta}})|^{2} \frac{\mathbf{n}}{R^{2}}, \tag{2}
\end{equation*}
$$

so the emitted power per unit solid angle is:

$$
\begin{equation*}
\frac{d P}{d \Omega}=\frac{e^{2}}{16 \pi^{2} \epsilon_{0} c}|\mathbf{n} \wedge(\mathbf{n} \wedge \dot{\boldsymbol{\beta}})|^{2} \tag{3}
\end{equation*}
$$

The incoming electric field of the incident wave can be written as:

$$
\begin{align*}
\mathbf{E}= & \mathbf{E}_{\mathbf{0}} e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)}+\text { c.c. }=\boldsymbol{\epsilon} E_{0} e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)}+\text { c.c. }= \tag{4}\\
& 2(\operatorname{Re} \boldsymbol{\epsilon}) E_{0} \cos (\mathbf{k} \cdot \mathbf{x}-\omega t)-2(\operatorname{Im} \boldsymbol{\epsilon}) E_{0} \sin (\mathbf{k} \cdot \mathbf{x}-\omega t),
\end{align*}
$$

where E_{0} is now a real constant and $\boldsymbol{\epsilon}$ satisfies the conditions:

$$
\begin{equation*}
\boldsymbol{\epsilon}^{*} \cdot \boldsymbol{\epsilon}=1, \quad \boldsymbol{\epsilon} \cdot \mathbf{k}=0 \tag{5}
\end{equation*}
$$

The equation of motion for the free particle is therefore:

$$
\begin{equation*}
m \dot{\mathbf{v}}=e\left(\boldsymbol{\epsilon} E_{0} e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)}+\text { c.c. }\right), \tag{6}
\end{equation*}
$$

from which one can derive $\dot{\boldsymbol{\beta}}$. The incoming energy flux can be derived from the Poynting vector, $S_{i n}=2 \epsilon_{0} c\left|\mathbf{E}_{\mathbf{0}}\right|^{2}=2 \epsilon_{0} c E_{0}^{2}$, from which we find the cross section as:

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{1}{S_{i n}} \frac{d P}{d \Omega}=\frac{e^{2}}{16 \pi^{2} \epsilon_{0} c} \frac{1}{2 \epsilon_{0} c E_{0}^{2}}\left(\frac{e}{m c}\right)^{2}|\mathbf{n} \wedge(\mathbf{n} \wedge \mathbf{E})|^{2} . \tag{7}
\end{equation*}
$$

The quantity $|\mathbf{n} \wedge(\mathbf{n} \wedge \mathbf{E})|^{2}$ must be averaged over time and over the initial polarization of the electromagnetic wave. Averaging over time, we get:

$$
\begin{align*}
|\mathbf{n} \wedge(\mathbf{n} \wedge \mathbf{E})|^{2}= & \mid \mathbf{n} \wedge\left[\left.\mathbf{n} \wedge\left(\boldsymbol{\epsilon} E_{0} e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)}+\boldsymbol{\epsilon}^{*} e^{-i(\mathbf{k} \cdot \mathbf{x}-\omega t)}\right]\right|^{2}=\right. \tag{8}\\
& 2\left(\mathbf{n} \wedge\left(\mathbf{n} \wedge \boldsymbol{\epsilon} E_{0}\right)\right) \cdot\left(\mathbf{n} \wedge\left(\mathbf{n} \wedge \boldsymbol{\epsilon}^{*} E_{0}\right)\right)=2 E_{0}^{2}|\mathbf{n} \wedge(\mathbf{n} \wedge \boldsymbol{\epsilon})|^{2} .
\end{align*}
$$

We can rewrite the last result using
$[\mathbf{n} \wedge(\mathbf{n} \wedge \boldsymbol{\epsilon})]_{i}=\epsilon_{i j k} n_{j} \epsilon_{k l m} n_{l} \epsilon_{m}=\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) n_{j} n_{l} \epsilon_{m}=(n \cdot \epsilon) n_{i}-\epsilon_{i}=\left(\delta_{i j}-n_{i} n_{j}\right) \epsilon_{j}$.
Averaging over polarizations, we then find:

$$
\begin{equation*}
<|\mathbf{n} \wedge(\mathbf{n} \wedge \boldsymbol{\epsilon})|^{2}>=<\left(\delta_{i j}-n_{i} n_{j}\right) \epsilon_{j}\left(\delta_{i k}-n_{i} n_{k}\right) \epsilon_{k}^{*}>=\left(\delta_{i j}-n_{i} n_{j}\right)\left(\delta_{i k}-n_{i} n_{k}\right)<\epsilon_{j} \epsilon_{k}^{*}> \tag{10}
\end{equation*}
$$

Now, $\boldsymbol{\epsilon}$ lives in the plane orthogonal to the wave vector of the electromagnetic wave; assuming the wave is propagating in the \mathbf{z} direction, $\mathbf{z}=(0,0,1), \boldsymbol{\epsilon}$ must be a vector in the (x, y) plane. If the incoming wave is not polarized, then $\left.<\epsilon_{j} \epsilon_{k}^{*}\right\rangle$ must be the most symmetric tensor in the (x, y) plane, so we can write:

$$
\begin{equation*}
<\epsilon_{j} \epsilon_{k}^{*}>=a\left(\delta_{j k}-z_{j} z_{k}\right), \tag{11}
\end{equation*}
$$

where a is a constant that can be obtained by noticing that $\delta_{i j} \epsilon_{i} \epsilon_{j}^{*}=1$. So we have:

$$
\begin{equation*}
1=\delta_{i j}\left\langle\epsilon_{i} \epsilon_{j}^{*}\right\rangle=a(3-1)=2 a, \tag{12}
\end{equation*}
$$

so that $a=1 / 2$. We have finally that the average over polarizations can be written as:

$$
\begin{equation*}
<\epsilon_{j} \epsilon_{k}^{*}>=\frac{1}{2}\left(\delta_{j k}-z_{j} z_{k}\right) . \tag{13}
\end{equation*}
$$

We can now compute the average over time and polarization of the quantity in Eq. (9):

$$
\begin{align*}
<|\mathbf{n} \wedge(\mathbf{n} \wedge \boldsymbol{\epsilon})|^{2}> & =\left(\delta_{i j}-n_{i} n_{j}\right)\left(\delta_{i k}-n_{i} n_{k}\right) \frac{1}{2}\left(\delta_{j k}-z_{j} z_{k}\right)=\frac{1}{2}\left(\delta_{j k}-n_{j} n_{k}\right)\left(\delta_{j k}-z_{j} z_{k}\right) \\
& =\frac{1}{2}\left(3-1-1+(\mathbf{n} \cdot \mathbf{z})^{2}\right)=\frac{1}{2}\left(1+\cos ^{2} \theta\right) . \tag{14}
\end{align*}
$$

Putting together the results so far obtained in Eq. (7), we find:

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{e^{4}}{16 \pi^{2} c^{4}\left(\epsilon_{0} m\right)^{2}} \frac{1}{2}\left(1+\cos ^{2} \theta\right) \tag{15}
\end{equation*}
$$

The total cross section is easily found from the previous expression:

$$
\begin{equation*}
\sigma_{t o t}=\int d \Omega \frac{d \sigma}{d \Omega}=\left(\frac{1}{4 \pi \epsilon_{0}}\right)^{2}\left(\frac{e^{2}}{m c^{2}}\right)^{2} \frac{8 \pi}{3} \tag{16}
\end{equation*}
$$

In the case of the electron, the quantity

$$
\begin{equation*}
r_{0}=\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}=2.82 \cdot 10^{-13} \mathrm{~cm} \tag{17}
\end{equation*}
$$

is called classical electron radius.

