Advanced Quantum Field Theory

Exercise 7

Consider a real massive scalar field with quartic interaction:

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4} \tag{1}
\end{equation*}
$$

Show that the 1-loop diagram with $2 N$ external legs has the value (including the combinatoric factor):

$$
\sim \frac{(2 N)!}{2^{N+1} N} \quad(-i \lambda)^{N} \int \frac{d^{d} q}{(2 \pi)} \frac{1}{\left(q^{2}-m^{2}\right)^{N}}
$$

Write the quantum effective action as an infinite series of diagrams:

$$
\begin{equation*}
\Gamma\left[\phi_{c l}\right]=\sum_{m} \frac{1}{(2 m)!} \Gamma^{(2 m)} \phi_{c l}^{2} m \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma^{(2 m)}=\frac{\delta^{2 m} \Gamma}{\delta \phi_{c l} \cdots \delta \phi_{c l}}=1 \text { PI n-points correlation function } \tag{3}
\end{equation*}
$$

Recalling the expression for the effective potential computed with the determinant-formalism:

$$
\begin{equation*}
V_{\mathrm{eff}}\left[\phi_{c l}\right]=-\left.\frac{1}{V T} \Gamma\left[\phi_{c l}\right]\right|_{\phi_{c l}=\mathrm{const}}=-\frac{1}{4(4 \pi)^{2}}\left(m^{2}+\frac{\lambda}{2} \phi_{c l}^{2}\right)^{2}\left(\frac{3}{2}+\log \frac{\tilde{\Lambda}}{m^{2}+\frac{\lambda}{2} \phi_{c l}^{2}}\right)+\text { counter terms } \tag{4}
\end{equation*}
$$

expand $V_{\text {eff }}\left[\phi_{c l}\right]$ in powers of $\phi_{c l}$ and verify that

$$
\begin{equation*}
\left.\Gamma\left[\phi_{c l}\right]\right|_{\phi_{c l}=c o n s t}=-V_{\mathrm{eff}}\left[\phi_{c l}\right] \tag{5}
\end{equation*}
$$

Consider now the scalar QED with quartic self-interaction:

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+D_{\mu} \phi^{\dagger} D^{\mu} \phi-\frac{\lambda}{4!}\left(|\phi|^{2}\right)^{2} \tag{6}
\end{equation*}
$$

where the covariant derivative is defined as $D_{\mu} \phi=\partial_{\mu} \phi+i e A_{\mu} \phi$. Expand the Lagrangian in terms of ϕ_{1} and ϕ_{2}, where

$$
\begin{equation*}
\phi=\frac{\phi_{1}+i \phi_{2}}{\sqrt{2}} \tag{7}
\end{equation*}
$$

and extract the Feynman rules involving ϕ_{1}. Consider the infinite series

$$
\begin{equation*}
\tilde{\Gamma}\left[\phi_{1 c l}\right]=\sum_{m} \frac{1}{(2 m)!} \tilde{\Gamma}^{(2 m)} \phi_{1 c l}^{2} m \tag{8}
\end{equation*}
$$

where $\tilde{\Gamma}^{(2 m)}$ are the 1-loop 1PI correlation function with $2 m \phi_{1}$-external fields. Since we only want to compute the quantum effective potential we can set $\phi_{c l}=$ const. This resembles in considering vanishing external momenta in all the correlation functions. As a all consequence 1-loop diagrams involving cubic vertices vanishes identically in the Landau gauge. Why?

Compute $\tilde{\Gamma}^{(2 m)}$ and resum the series. Restore the $\phi_{2 c l}$ dependence substituting $\phi_{1 c l}^{2} \rightarrow 2|\phi|^{2}$. What is the symmetry argument that make the latter substitution produce the right result?

