
Advanced Quantum Field Theory

Exercise 7

Consider a real massive scalar field with quartic interaction:
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Show that the 1-loop diagram with 2N external legs has the value (including the combinatoric factor):
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Write the quantum effective action as an infinite series of diagrams:
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where
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Recalling the expression for the effective potential computed with the determinant-formalism:

Veff[φcl] = − 1
V T

Γ[φcl]
∣∣∣∣
φcl=const

= − 1
4(4π)2

(
m2 +

λ

2
φ2
cl

)2
(

3
2

+ log
Λ̃

m2 + λ
2φ

2
cl

)
+ counter terms (4)

expand Veff[φcl] in powers of φcl and verify that
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Consider now the scalar QED with quartic self-interaction:
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where the covariant derivative is defined as Dµφ = ∂µφ+ ieAµφ. Expand the Lagrangian in terms of φ1 and φ2,
where
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and extract the Feynman rules involving φ1. Consider the infinite series
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where Γ̃(2m) are the 1-loop 1PI correlation function with 2m φ1-external fields. Since we only want to compute
the quantum effective potential we can set φcl = const. This resembles in considering vanishing external momenta
in all the correlation functions. As a all consequence 1-loop diagrams involving cubic vertices vanishes identically
in the Landau gauge. Why?

Compute Γ̃(2m) and resum the series. Restore the φ2cl dependence substituting φ2
1cl → 2|φ|2. What is the

symmetry argument that make the latter substitution produce the right result?


