Advanced Quantum Field Theory

Exercise 7

Consider a real massive scalar field with quartic interaction:
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Show that the 1-loop diagram with 2V external legs has the value (including the combinatoric factor):
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Write the quantum effective action as an infinite series of diagrams:
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Recalling the expression for the effective potential computed with the determinant-formalism:
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expand Veg[pe] in powers of ¢, and verify that
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Consider now the scalar QED with quartic self-interaction:
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where the covariant derivative is defined as D, ¢ = 0,¢ + ieA,¢. Expand the Lagrangian in terms of ¢1 and ¢o,
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and extract the Feynman rules involving ¢;. Consider the infinite series
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where T2™) are the 1-loop 1PI correlation function with 2m ¢1-external fields. Since we only want to compute

the quantum effective potential we can set ¢, = const. This resembles in considering vanishing external momenta

in all the correlation functions. As a all consequence 1-loop diagrams involving cubic vertices vanishes identically

in the Landau gauge. Why?

Compute T?™) and resum the series. Restore the ¢oy dependence substituting 2., — 2|¢|?>. What is the
symmetry argument that make the latter substitution produce the right result?



