Advanced Quantum Field Theory

Exercise 3

Consider a non-abelian gauge theory with gauge group $S U(N)$ and N_{f} Dirac fermions in the fundamental of $S U(N)$:

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\sum_{i=1}^{N_{f}} \bar{\psi}_{k}\left(i \not D-m_{k}\right) \psi_{k}+\mathcal{L}_{\text {ghosts }}+\mathcal{L}_{\text {gauge fixing }} \tag{1}
\end{equation*}
$$

where we have defined the covariant derivative and the non-abelian field strength as

$$
\begin{align*}
& F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f^{a b c} A_{\mu}^{b} A_{\nu}^{c} \tag{2}\\
& \left(D_{\mu} \psi\right)_{i}=\partial \psi_{i}-i g A_{\mu}^{a} T_{i j}^{a} \psi_{j} \tag{3}
\end{align*}
$$

Note that in the above equation the indexes i, j runs over the fundamental representation of $S U(N)$ whereas the index k in the Lagrangian span the N_{f} different representations. The quantities $T_{i j}^{a}$ are the generators of $S U(N)$ in the fundamental representation, satisfying the commutation relations:

$$
\begin{equation*}
\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c} \tag{4}
\end{equation*}
$$

and normalized such that

$$
\begin{equation*}
\operatorname{Tr}\left[T^{a} T^{b}\right]=\frac{1}{2} \delta^{a b}, \quad f^{a b c} f^{d b c}=\frac{N^{2}-1}{2 N} \delta^{a b} \tag{5}
\end{equation*}
$$

Finally we use the gauge fixing and ghost Lagrangian

$$
\begin{align*}
& \mathcal{L}_{\text {gauge fixing }}=-\frac{1}{2 \xi}\left(\partial^{\mu} A_{\mu}^{a}\right)^{2} \tag{6}\\
& \mathcal{L}_{\text {ghost }}=\bar{c}^{a} \partial^{\mu}\left(D_{\mu} c\right)^{a} \tag{7}
\end{align*}
$$

The ghosts \bar{c}^{a}, c^{a} are scalar particles with fermionic statistic (hence they anticommute) transforming in the adjoint representation of $S U(N)$. Their covariant derivatives reads:

$$
\begin{equation*}
\left(D_{\mu} c\right)^{a}=\partial_{\mu} c^{a}+g f^{a b c} A_{\mu}^{b} c^{c} \tag{8}
\end{equation*}
$$

From the above Lagrangian one can extract the Feynman rules for this theory (in the Feynman gauge $\xi=1$):

$$
\begin{array}{ll}
\underset{p}{ }=\frac{i(\not p+m)}{p^{2}-m^{2}+i \epsilon} \\
\sim \sim & =\frac{-i g_{\mu \nu}}{p^{2}+i \epsilon}
\end{array}
$$

$$
a \cdots \cdots \ldots . . \ldots \ldots . . b=\frac{i \delta^{a b}}{p^{2}+i \epsilon}
$$

Compute the 1PI two-point function of two gluon fields.
(Recall that a fermion loop and or a ghost loop has an additional (-1) factor).

Compute the 1PI of two fermionic fields (fermion self energy)

Compute the 1PI correlation functions of 2 fermions and 1 gluon (vertex correction).

Express the Lagrangian in terms of renormalized fields:

$$
\begin{equation*}
A_{\mu}^{a}=Z_{A}^{1 / 2} A_{\mu}^{R a} \quad \psi^{=} Z_{\psi}^{1 / 2} \psi^{R} \tag{9}
\end{equation*}
$$

and define the renormalized coupling g_{R} by the relation

$$
\begin{equation*}
g_{R}=Z_{A}^{1 / 2} Z_{\psi} g-g_{R} \Delta_{V} \tag{10}
\end{equation*}
$$

where Δ_{V} is the counter-term needed to cancel the divergence in the vertex containing two fermions and one gluon:

$$
\begin{equation*}
\Delta \mathcal{L} \supset g_{R} \Delta_{V} \bar{\psi}_{R} \mathcal{A} \psi \tag{11}
\end{equation*}
$$

Find the expression of $Z_{A}, Z_{\psi}, \Delta_{V}$ in the $\overline{\mathrm{MS}}$ renormalization scheme.
Compute the expression of the β function of the gauge coupling in terms of the above counter-terms. Compute explicitly β.

