Quantum Field Theory

Set 17

Exercise 1: Multiple photons states

Consider the wave function for a state consisting of two photons:

- Show that the Bose symmetry of the photon imposes a constraint on the wave function.
- Find the condition on the wave function in order to have a physical state.
- Find the condition on the wave function in order to have a state with positive norm.

Exercise 2: Transformation properties of transverse photons

The polarization of a photon of momentum k_{μ} is defined by the four vector ε_{μ} satisfying $\varepsilon_{\mu}k^{\mu}=0$. In the Coulomb gauge we instead use the transverse polarization $\varepsilon_{\mu}^{\perp}=(0,\vec{\varepsilon}^{\perp})$. Show that the conditions $\varepsilon_{0}^{\perp}=0$ and $\varepsilon_{i}^{\perp}k^{i}=0$ are not Lorentz invariant (namely, the Lorentz transform of $\varepsilon_{\mu}^{\perp}$ has in general $\varepsilon_{0}^{\prime}\neq0$ and $\varepsilon_{i}^{\prime}k^{\prime}\neq0$), but it is still possible to find a vector $\tilde{\varepsilon}_{\mu}^{\perp}=\varepsilon_{\mu}^{\prime}+\alpha k_{\mu}^{\prime}$, i.e. equal to $\varepsilon_{\mu}^{\prime}$ up to a longitudinal component, which is satisfying the two conditions.