Quantum Field Theory

Set 16

Exercise 1: Physical observables

Consider the Gupta-Bleuler Lagrangian:

$$\mathcal{L}_{GB} = -\frac{1}{2} (\partial_{\mu} A_{\nu}) (\partial^{\mu} A^{\nu}).$$

- Compute the conserved momentum P_{ν} through the Noether procedure.
- By working with the algebra of the ladder operators, show that P_{ν} is a physical observable in the sense that:

$$[L, P_{\nu}] \sim \partial_{\nu} L.$$

where $L \equiv \partial^{\mu} A_{\mu}^{-}$.

Exercise 2: Propagator of the Gupta-Bleurer Lagrangian

Consider the Gupta-Bleurer Lagrangian with generic coefficient ξ , in presence of an external source J^{μ} :

$$\mathcal{L}_{GB} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{\xi}{2} (\partial_{\mu} A^{\mu})^2 + A^{\mu} J_{\mu}$$

• Find the EOM for A^{μ} , and write it in a following form

$$\Pi^{\mu\nu}A_{\nu}=J_{\mu}$$

where $\Pi^{\mu\nu}$ is a tensor dependent on ∂_{μ} and $\eta^{\mu\nu}$

• Invert the EOM:

$$A^{\mu}(x) = (\Pi^{-1})^{\mu\nu} J_{\nu}(x) \tag{1}$$

where $(\Pi^{-1})^{\mu\nu}$ is called *propagator*.

(*Hint:* Decompose $\Pi^{\mu\nu}$ into the orthogonal projectors $P_L^{\mu\nu} = \frac{1}{\Box} \partial^{\mu} \partial^{\nu}$, $P_T^{\mu\nu} = \eta^{\mu\nu} - \frac{1}{\Box} \partial^{\mu} \partial^{\nu}$) Is this procedure possible for $\xi = 0$?

• Specialize now to the case $\xi = 1$ and solve for the Green function of the theory $G^{\mu\nu}(x)$:

$$G^{\mu\nu}(x) = (\Pi^{-1})^{\mu}_{\alpha} \eta^{\alpha\nu} \delta^4(x)$$
 (2)

Use the prescription for going around the poles at $k^0 = \pm |\vec{k}|$ in order to have the *Retarded* green function

• Use now instead the Feynman prescription, which is obtained by the replacement $k^2 \to k^2 + i\epsilon$ for $\epsilon \to 0^+$. (Do not perform the integral over \vec{k} explicitly).

Exercise 3: Non-relativistic limit of the Klein - Gordon - Fock equation

Start from the Klein - Gordon - Fock equation

$$\left(\partial_{\mu}\partial^{\mu} + m^2\right)\psi = 0, \tag{3}$$

and find that in the non - relativistic limit $\Delta E \ll m$ (where ΔE is the classical energy, $E = \Delta E + m$) this equation reduces to the Schrödinger equation,

$$i\partial_t \tilde{\psi} = -\frac{\nabla^2 \tilde{\psi}}{2m} \,,$$

where $\psi = \exp(-imt)\tilde{\psi}$.

*Exercise 4: Klein - Gordon - Fock equation in the external electrostatic potential

Solve the Klein - Gordon - Fock equation

$$(D_{\mu}D^{\mu} + m^2)\psi = 0, \quad D_{\mu} \equiv \partial_{\mu} + ieA_{\mu}, \tag{4}$$

in the electrostatic field with

$$A^0 = \varphi = \frac{Z|e|}{r} \,, \quad \vec{A} = 0 \,,$$

and find relativistic corrections to the Hydrogen energy levels up to the order $\mathcal{O}(\alpha^4)$, where α is the fine structure constant.