Quantum Field Theory

Set 15

Exercise 1: Maxwell's equations and transverse components

• Show the quantities $P_{\perp}^{ij} = \left(\delta^{ij} - \frac{\partial^i \partial^j}{\nabla^2}\right)$, $P_L^{ij} = \frac{\partial^i \partial^j}{\nabla^2}$ are orthogonal projectors on the space of three-dimensional vector fields:

$$(P_L)^{ij}(P_\perp)^{jk} = 0 \,, \qquad (P_L)^{ij}(P_L)^{jk} = (P_L)^{ik} \,, \qquad (P_\perp)^{ij}(P_\perp)^{jk} = (P_\perp)^{ik} \,, \qquad P_L^{ij} + P_\perp^{ij} = \delta^{ij}$$

• Decompose the electric and magnetic field into longitudinal and transverse parts, $\vec{E} = \vec{E}_L + \vec{E}_\perp$, $\vec{B} = \vec{B}_L + \vec{B}_\perp$, where:

$$E^i_\perp = P^{ij}_\perp E^j \,, \qquad E^i_L \equiv P^{ij}_L E^j$$

Using the Bianchi identity for the field strength, namely $\epsilon_{\mu\nu\rho\sigma}\partial^{\mu}F^{\rho\sigma}=0$, show that the number of degrees of freedom encoded in $F_{\mu\nu}$ is 3. In particular, prove that $\vec{B}_L=0$, while \vec{B}_{\perp} can be expressed in terms of \vec{E}_{\perp} only. Finally, consider Maxwell's inhomogeneous equations to show that \vec{E}_L is completely fixed by the charge density. Thus, the number of dynamical degrees of freedom is only 2.

• Now solve the Maxwell equation for A^0 and substitute the solution into the remaining non trivial equations. Show that the result is a wave equation for the transverse components of the gauge potential and that the longitudinal component decouples completely.

Exercise 2: Energy momentum tensor

Consider the following Lagrangian:

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - \frac{\lambda}{2}(\partial_{\rho}A^{\rho})^{2}.$$

- Find the energy momentum tensor using the standard procedure and show explicitly that it is conserved by imposing the equations of motion.
- Discuss the gauge transformation properties of $T^{\mu}_{\ \nu}$ for $\lambda=0$. What about the associated charges?
- Improve the energy momentum tensor you found for $\lambda = 0$ by adding a term $F^{\mu\rho}\partial_{\rho}A_{\nu}$. Show that the new tensor is still conserved and gives rise to the same charges as before, but is now also symmetric, traceless and gauge invariant.
- What happens if $\lambda \neq 0$? Do currents and charges depend on λ ?

Exercise 3: Coulomb gauge

Consider the Lagrangian of a massless vector field:

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} \ ,$$

where $F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$.

• Compute the equations of motion.

- Compute the conjugate momenta Π^i . What about Π^0 ? Compare the result with the usual canonical commutation relations. Are they consistent? Rewrite the equations of motion for the 0-component in terms of Π^i .
- Show that, thanks to the gauge invariance of the theory ($A_{\mu}(x) \longrightarrow A_{\mu}(x) \partial_{\mu}\Lambda(x)$), we can always impose the constraint $\nabla \cdot \vec{A} = 0$ (i.e. we can always find a Λ such that \vec{A} satisfies that constraint).
- Consider the commutation relation:

$$[\Pi(\vec{x},t)_{j},A(\vec{y},t)_{i}] = +i\delta_{ij}\delta^{3}(\vec{x}+\vec{y}) - i\partial_{i}^{(x)}\partial_{j}^{(y)}\frac{1}{4\pi|\vec{x}-\vec{y}|}.$$

Show that the above expression is consistent with the gauge choice $\vec{\nabla} \cdot \vec{A} = 0$ and with the constraint $\vec{\nabla} \cdot \vec{\Pi} = 0$.