Quantum Field Theory

Set 11

Exercise 1: Coherent states

A state like $|\chi\rangle \equiv a^{\dagger}(\vec{k}_1)a^{\dagger}(\vec{k}_2)\dots a^{\dagger}(\vec{k}_n)|0>$ describes a definite number of particles with spatial momenta $\vec{k}_1,\vec{k}_2,\dots,\vec{k}_n$. Instead, a coherent state in quantum mechanics is an eigenvector of the annihilation operators, $a(\vec{q})|\psi>=\alpha(\vec{q})|\psi>$, where the eigenvalue α is a complex function of the momenta. Obviously $|\chi>$ defined above cannot be a coherent states, since it has a definite number of particles.

Using the normalization for the ladder operators $[a(\vec{q}), a^{\dagger}(\vec{p})] = \delta^3(\vec{k} - \vec{q})$, solve the following points:

- Find the general form of a coherent state, disregarding for the moment the normalization factor. Hint: start from the ansatz $|\psi>=\sum_{n=0}^{\infty}c_n\left(\int dkz(\vec{k})a^{\dagger}(\vec{k})\right)^n|0>$ with $z(\vec{k})$ a generic complex functions and the coefficients c_n to be fixed. How can the result be written in a compact way? Hint: Use the formula $[A,B^n]=[A,B]B^{n-1}+B[A,B]B^{n-2}+\cdots+B^{n-1}[A,B]$
- Put the right normalization factor in front of $|\psi>$, so that $<\psi|\psi>=1$ (Assume that the vacuum is normalized to 1, $\langle 0|0\rangle=1$). Hint: when the commutator of two operators A,B is a c-number (not an operator) then the Baker–Campbell–Hausdorff formula reduces to:

$$e^{A}e^{B} = e^{A+B}e^{\frac{1}{2}[A,B]} \tag{1}$$

• Compute the expectation value $<\psi|\phi(x)|\psi>$ of the Klein-Gordon field $\phi(x)=\int \frac{d^3k}{(2\pi)^{3/2}\sqrt{2\omega_{\vec{k}}}}\left[a(\vec{k})e^{-ikx}+a^{\dagger}(\vec{k})e^{ikx}\right]$. Is the result different from the case of a state with definite particle number?