
Advanced Quantum Field Theory

Exercise 11

Consider a field theory at finite temperature based on the following Lagrangian:
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The Free Energy of the system can be computed as a perturbative series around the configuration λ = 0:
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where S0 + SI is the euclidean action:
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In order to determine the first term in (2) compute first the free propagator expanding the field φ in Fourier modes
(recall that the time is compactified on a circle)
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The propagator is defined as
〈φ(x1)φ(x2)〉0 (5)

Finally, using the Wick theorem, compute:
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Notice that the above term contains a T−dependent divergent piece.


