Relativity and Cosmology II

Lecture #3

Main points of #2

- Found Friedmann equations:

\[\frac{\dot{R}^2}{R^2} + \frac{k}{R^2} - \frac{\dot{R}}{3} = \frac{8\pi G}{3} \rho \]

\[2 \frac{\ddot{R}}{R} + \frac{\dot{R}}{R} - \frac{k}{R^2} - \lambda = -8\pi G \rho \]

To find evolution of the universe, they have to be supplemented by equation of state, i.e.,

\[\rho = \frac{p}{\gamma} \text{ (relativistic matter)} \]

\[\rho = 0 \text{ (non-relativistic matter)} \]

- Derived F. equations for non-relativistic case, \(\lambda = k = \rho = 0 \), from Newton dynamics.

- Considered Einstein static universe, it is required, \(\lambda = 8\pi G \rho \).

- Considered Friedmann solution,

\[p = 0, \ k = 0, \ A = 0 \]

\[R = R_0 \left(1 + \frac{t^2}{R_0^2}
ight)^{1/2} \]

\[\rho = \frac{1}{6\pi G t^2} \]
found that the distances in expanding universe (flat case) change as:

\[l \sim R(t) \Rightarrow \dot{l} \sim \dot{R}(t) \Rightarrow \frac{\dot{l}}{l} = \frac{\dot{R}}{R} \Rightarrow \]

\[\frac{\dot{l}}{l} = \dot{H} ; \quad H = \frac{\dot{R}}{R} = 2 \frac{\dot{R}}{3R} \quad \text{for } \rho = 0 \]

\[\text{prediction - solution} \]

\[\text{red shift :} \]

\[w' = (1 - \nu)w \quad [\text{Doppler effect}] \]

can be observed, if we have "standard candles" - certain type of similar stars

Today:

- red shift, FRW metric
- luminosity distance, FRW metric
Red shift, FRW metric

Let coordinates of the star are:

\[\theta = \frac{\pi}{2}, \quad \phi = 0, \quad \bar{r} = \bar{r}_0 \]

They are all fixed.

Receive light in \(\bar{r} = 0 \) at \(t_0 \).

Light is emitted in \(\bar{r} = \bar{r}_0 \) at \(t_0 \).

Visualization, 2D sphere

We are here

\[t = t_0 \]

"Size of universe"

\[R(t_0) \]
equation for light propagation:
\[ds^2 = 0 \Rightarrow dt^2 - R^2(t) \frac{dr^2}{1 - kr^2} = 0 \]

\[
\int_{t_1}^{t_2} \frac{dt}{R(t)} = \int_0^{r_2} \frac{dr}{\sqrt{1 - kr^2}} \begin{cases} \arcsin r_1 & k = 1 \\ \arcsinh r_1 & k = -1 \\ \text{the same} & k = 0 \end{cases}
\]

\[\equiv f(r_1) \]

Pulses:
\[t_0, t_0 + \delta t_0 \Rightarrow \]
\[t_1, t_1 + \delta t_1 \]

\[\int_{t_1 + \delta t_1}^{t_0 + \delta t_0} \frac{dt}{R(t)} = f(r_1) - \text{the same} \Rightarrow \]

\[\frac{\delta t_0}{R(t_0)} = \frac{\delta t_1}{R(t_1)} \quad \text{frequency } \omega \sim \frac{1}{\delta t} \Rightarrow \]
\[
\frac{1}{w_2 R(t_2)} = \frac{1}{w_1 R(t_1)} \Rightarrow
\]

\[
\frac{w_0}{w_1} = \frac{R(t_1)}{R(t_2)} \quad w_0 = w_1 \frac{R(t_1)}{R(t_2)}
\]

what we measure = what was emitted

Red shift, definition:

\[
z = \frac{\lambda_0 - \lambda_1}{\lambda_0} = \frac{R(t_0)}{R(t_1)} - 1
\]

observed < emitted

Physical picture:
red shift:
\(z > 0\) if the universe is expanding
\(z < 0\) if the universe is collapsing (blue shift)

Measurements of distances:

(i) comparison between absolute luminosity and apparent luminosity

(ii) if exact size of object is known, we can find the distance
(ii) find parallax - change of position of the object due to change of its visible position due to Earth motion

Consider in more detail 1st method (used for cosmological distances)

\[r = r_1, \text{ source} \]

\[\text{telescope, radius } b, \text{ area } S = \pi b^2 \]

"geometrical" fraction of energy, emitted at \(t = t_1 \) and passing through telescope:

space part of the interval at \(t = t_0 \)

\[dl^2 = R^2(t_0) \left[\frac{d\nu^2}{1 - \nu^2} + \frac{\nu^2}{c^2} d\Omega^2 \right] \]

total area of light front:

\[S_{tot} = \int R^2(t_0) \frac{\nu^2}{c^2} d\Omega^2 = 4\pi r_1^2 R^2(t_0) \]

fraction: \(S / S_{tot} \)
Energy flux registered at telescope:

\[P = \Delta \cdot \frac{S}{4\pi R^2(t_0) \cdot \bar{\nu}^2} \cdot \frac{\hbar \omega_0}{\hbar \omega_1} \cdot \frac{8t_1}{8t_0} \]

Total energy emitted

\[\frac{\hbar \omega_0}{\hbar \omega_1} = \frac{R(t_1)}{R(t_0)} \]

Energy of emitted photon

Ratio between pulses emitted \((8t_1)\) and absorbed \((8t_0)\)

\[\frac{8t_1}{8t_0} = \frac{R(t_1)}{R(t_0)} \]

giving

\[P = \Delta \left(\frac{R^2(t_1)}{R^2(t_0)} \right) \frac{S}{4\pi R^2(t_0) \bar{\nu}^2} \]
apparent luminosity, power per unit of surface,

\[L = \frac{\Delta R^2(t)}{4\pi R_0^2(t) R_1^2} \]

in flat space we would get:

\[d = \frac{\Delta}{4\pi d^2} \quad d: \text{"photometric" distance} \]

\[\Rightarrow \frac{\Delta}{4\pi d^2} = \frac{\Delta R^2(t)}{4\pi R_0^2(t) R_1^2} \Rightarrow d = R^2(t) \frac{R_1^2}{R(t)} \]

let us find now relation between red shift and \(d \):

Then in this equation we have to add:

\[\frac{R(t_0)}{R(t)} - 1 = z \]

and \(\int_{t_1}^{t_0} \frac{dt}{R(t)} = f(z) \), defined at page 4.
This completes the system of equations determining z as a function of d.

How does it work, linear approximation:

Let r_1 be small, and thus t_1 is close to t_0.

Then $f(r) \approx r$; and

$$\frac{t_0 - t_1}{R} \approx r_1$$

$$z = \frac{R(t_0)}{R(t_1)} - 1 = \frac{R(t_0)}{R(t_0) + \frac{R(t_0)}{(t_1 - t_0)}} - 1$$

$$\approx + \frac{\dot{R}(t_0) (t_0 - t_1)}{R(t_0)} \approx \frac{\dot{R}(t_0)}{R(t_0)} \cdot \frac{r_2 R(t_0)}{R(t_0)}$$

and $d \propto R(t_0) \cdot r_2 \Rightarrow$

$$z \approx \frac{\dot{R}(t_0)}{R(t_0)} \cdot d = H \cdot d$$

Red shift is proportional to

distance

Hubble law

In terms of velocity:

$$v = \frac{R}{R} \cdot d$$

If Doppler effect is used.
Relativity and cosmology II

Lecture #4

Main points of #3

- Relations between luminosity distance and red shift

\[d = \frac{R^2(t_0)}{R(t_i)} \quad \frac{R(t_0)}{R(t_i)} \quad (\ast) \]

\[z = \frac{R(t_0)}{R(t_i)} - 1 \quad (\ast\ast) \]

\[\int_{t_0}^{t} \frac{dt}{R(t)} = \int_0^\infty \text{arctan} \frac{1}{\sqrt{1 - \kappa}} \quad \kappa = \pm 1 \quad (\ast\ast\ast) \]

\[\int_0^\infty \text{arcosh} \frac{1}{\sqrt{1 - \kappa}} \quad \kappa = 0 \quad (\ast\ast\ast) \]

- Hubble law:

\[z = H_0 t \]

Plan for today

- Luminosity distance - red shift relation for general case

- Critical density

- Content of the universe, abundances

- Cosmological parameters from supernova

- Properties of universe as a function of \(\Omega_m, \Omega_L \)
To find \(d-z \) relation for general case, find \(\bar{v}_1 \) from (**):

\[
\bar{v}_1 = \left\{ \begin{array}{l}
\int_{t_1}^{t_0} \frac{dt}{R(t)} \\
\sin \left(\int_{t_1}^{t_0} \frac{dt}{R(t)} \right) \end{array} \right\} = \bar{v}_2 \left(t_2, t_0 \right)
\]

depending on \(k = +1, 0 \) and \(-1\)

Then

\[
d(z) = R(t_0)(1+z) \bar{v}_2 \left(t_2, t_0 \right),
\]

and we have to find \(t_2 \) from (**)

We will solve this problem today, and find how \(t_2 \), etc depend on the content of the universe.

- First: introduce "vacuum" energy and pressure
- Second: introduce critical density
- Third: introduce abundances of different components of the universe
Critical density

Let us rewrite F. equations in somewhat different notations:

"vacuum energy density":

\[\rho_v = \frac{\Lambda}{8\pi G} \]

"total energy density"

\[\rho_{\text{tot}} = \rho + \rho_v \]

"total pressure"

\[P_{\text{tot}} = P + P_v \quad \text{and} \quad P_{\text{v}} = -\rho_v \]

and replace \(R \) by \(H R \), where \(H \) is the Hubble constant.

Friedman equations:

\[
\begin{cases}
H^2 + \frac{\mathcal{K}}{R^2} = \frac{8\pi G}{3} \rho_{\text{tot}} \\
\frac{d\rho}{dt} = -3H(\rho + P) = \text{energy conservation}
\end{cases}
\]

Definition: critical density

\[\rho_c = \frac{3H_0^2}{8\pi G} \]
\(p \) depends on time and can be found from the knowledge of the Hubble constant.

Value: \(p_c = 1.88 \times 10^{-39} \text{ g/cm}^3 \)

With \(H_0 = 100 \text{ km/s/Mpc} \)

\(p \) can be found by other means:

\[
\begin{align*}
\text{if } p > p_c & \Rightarrow k > 0 \text{, universe is closed} \\
\text{if } p = p_c & \Rightarrow k = 0 \text{, universe is flat} \\
\text{if } p < p_c & \Rightarrow k < 0 \text{, universe is open}
\end{align*}
\]

The relation between \(p \) and \(p_c \) is also important for the evolution of the universe.

Example: Consider a matter-dominated universe with \(p = 0 \) and \(k = 0 \).

Equation for \(R \), valid also for \(k \neq 0 \):

\[
\frac{\ddot{R}}{R} = -\frac{4\pi G}{3} p \Rightarrow \frac{\ddot{R}}{R} = -\frac{4\pi G}{3} \rho R
\]

Multiply by \(\dot{R} \) and use the fact that

\[
pR^3 = \text{const} = p_0 R_0^3, \quad p = \frac{p_0 R_0^3}{R^3}
\]
\[
\frac{d}{dt}\left(\frac{1}{2} R^2\right) = \ddot{R} R = -\frac{4\pi G}{3} \frac{P_o R_o^3}{R^3} \cdot R \cdot \ddot{R} \Rightarrow
\]

\[
\frac{1}{2} \dot{R}^2 - \frac{4\pi G}{3} \frac{P_o R_o^3}{R} = \text{Const} = -\frac{4\pi G}{3} R_o^3 (P_o - P_c)
\]

Mechanical Interpretation:

Particle of mass \(m\) moves in potential \(U(R)\) with total energy \(E_{\text{tot}}\):

\[
U(R) = -\frac{4\pi G}{3} \frac{P_o R_o^3}{R}
\]

\[
E_{\text{tot}} = -\frac{4\pi G}{3} R_o^3 (P_o - P_c)
\]

- For \(E_{\text{tot}} \geq 0\):
 - Possible behaviours:
 1. \(P_o < P_c \Rightarrow E_{\text{tot}} > 0 \Rightarrow R(t) \to \infty \text{ as } t \to \infty\) \{expands forever\}
 2. \(P_o = P_c \Rightarrow E_{\text{tot}} = 0 \Rightarrow R(t) \to \infty \text{ as } t \to \infty\)
 3. \(P_o < P_c \Rightarrow E_{\text{tot}} < 0 \Rightarrow R_{\text{max}} = \frac{2\pi G P_o}{P_o - P_c}\) bounces back and goes to infinity
General content of the Universe

Let universe contain

- radiation with \(p_r = \frac{p_\gamma}{3} \)
- non-relativistic matter
 (+ dark matter, to be discussed later), \(p_m = 0 \)
- cosmological constant

\[p_\Lambda = -p_\Lambda \]

How did the universe evolve?

Definition: abundances

\[\Omega_\gamma = \frac{p_r}{p_{\text{ent}}}, \quad \Omega_m = \frac{p_m}{p_{\text{ent}}}, \quad \Omega_\Lambda = \frac{p_\Lambda}{p_{\text{ent}}} \]

from \(H^2 = \frac{k}{R^2} = \frac{8\pi G}{3} p_{\text{tot}} \quad \Rightarrow \)

\[\frac{3H^2}{8\pi G} + \frac{3}{8\pi G} \frac{k}{R^2} = p_{\text{tot}} \quad \text{or} \]

\[p_0 \]

\[1 = \Omega_\gamma + \Omega_m + \Omega_\Lambda + \Omega_k \]

where \(\Omega_k = -\frac{k}{p_0 H_0^2} \), curvature contribution

Behaviour of \(p_{\text{tot}} \):
\[p_{\text{tot}} = \rho c \left[\Omega_{\Lambda} + \Omega_{M} \left(\frac{R(H_0)}{R(t)} \right)^3 + \Omega_{\gamma} \left(\frac{R(H_0)}{R(t)} \right)^4 \right] \]

part, associated with cosmological constant does not change.

part, associated with matter:

\[\frac{d}{dt} (\rho m R^3) = 0 \Rightarrow \rho m \propto \frac{1}{R^3(t)} \]

part, associated with radiation:

\[\frac{d}{dt} (\rho \gamma R^3) + \rho \gamma \frac{d}{dt} \frac{R^3}{H} = 0 \]

since \(a = \frac{R}{t} \), \(\frac{d}{dt} (\rho \gamma R^3) = 0 \Rightarrow \)

\[\rho \gamma \propto \frac{1}{R^4} \]

easy to understand:

- # of photons \(\propto \frac{1}{R^3} \)
- energy of photon, \(w = \frac{1}{R} \)
Convenient form of Friedmann equation:

\[
H^2 \equiv \left(\frac{R}{R} \right)^2 = \frac{8 \pi G}{3} \rho_{\text{tot}} - \frac{k}{R^2} = \frac{8 \pi G}{3} (\rho_{\text{tot}} + \rho_k)
\]

Last term, do have similar notations:

\[
\rho_k = -\frac{k}{R^2} \frac{3}{8 \pi G} \equiv \rho_c \Omega_k \frac{R(t_0)^2}{R(t)^2}
\]

"Curvature abundance"

\(\Omega_k\) is not independent,

Sum rule:

\[
1 = \Omega_n + \Omega_m + \Omega_r + \Omega_k
\]

to derive the sum rule, just divide first equation at this page by \(H^2\).

Final form of Friedmann equation we will work:

\[
\left(\frac{\dot{R}}{R} \right)^2 = \frac{8 \pi G}{3} \rho_c \left[\Omega_n + \Omega_m \left(\frac{R(t_0)}{R} \right)^3 + \Omega_r \left(\frac{R(t_0)}{R(t)} \right)^4 \right] + \Omega_k \left(\frac{R(t_0)}{R(t)} \right)^2
\]

Notation: \(R(t_0) = R_0\)
This equation can be also written in a form, which has a simple mechanical analogy:

\[\frac{1}{2} \dot{R}^2 + U(R) = 0, \quad \text{where} \]

\[U(R) = -\frac{4\pi G}{3} \rho_c \left(\Omega_\Lambda \cdot R^2 + \Omega_m \frac{R_0^3}{R}
ight)
+ \Omega_\gamma \left(\frac{R_0^4}{R^2} + \Omega_k R_0^2 \right) \]

it describes a motion of particle with zero energy in potential \(U(R) \)

Let us integrate now \((x x x x)\)

notations: \(x = \frac{R(t)}{R(t_0)} \); \(R(t) = R_0 \cdot x \)

\[\Omega_\Lambda + \Omega_m \frac{1}{x^3} + \Omega_k \frac{1}{x^2} + \Omega_\gamma \frac{1}{x^4} \equiv A^2(x) \]

Eq \((x x x x)\) for \(x \):

\[\frac{x^2}{\dot{x}^2} = H_0^2 A^2(x) \Rightarrow \frac{dx}{dt} = H_0 A(x) \cdot \dot{x} \]

\[dt = \frac{dx}{H_0 A(x) \cdot \dot{x}} \]; \(\frac{dt}{dx} = \frac{1}{H_0 A(x) \cdot \dot{x}} \)
This allows us to get immediately from expression on page 2 for d(t):

\[
\int_{t_1}^{t_0} dt \cdot \int_{t_1}^{t_0} \frac{dt}{dx} \frac{dx}{R_0 x} = \int_{t_1}^{t_0} dx \frac{1}{x^2 R_0 H_0 A(x)}
\]

\[
= \int_{1+z}^{1} \frac{dx}{x^2 R_0 H_0 A(x)}
\]

to corresponds to \(x = 1 \)

t_1 corresponds to \(x = \frac{1}{1+z} = \frac{R(t_1)}{R(t_0)} \)

For example, for \(z = 0 \) we get:

\[
d(t) = \frac{1+z}{H_0} \int_{1}^{1+z} \frac{dx}{x^2 A(x)}
\]

Equation, which can unify all cases:

\[
d(t) = \frac{1+z}{H_0 \Omega_k^{\frac{1}{2}}} \sinh \left[\Omega_k^{\frac{1}{2}} \int_{1}^{1+z} \frac{dx}{x^2 A(x)} \right]
\]

Since, e.g.,

for \(k = +1 \) \(R_0 H_0 = \Omega_k \)

taking formally \(\Omega_k \to 0 \), we get flat case, taking \(\Omega_k < 0 \) we replace \(\sinh \to \sin \)
By product of computation:

ease of the Universe.

Take the formula at the bottom of page 3, and integrate it from $t = 0$ to t_0.

$t = 0$ corresponds to $a = 0$ (since $R = 0$)

$t = t_0$ corresponds to $a = 1$

$$t = \frac{1}{H_0} \int_{0}^{1} \frac{dx}{a A(a)}$$

How do we use $d(\tau)$ for determination of content of the Universe:

1) measure curve $d(\tau)$

2) find parameters Ω_x, Ω_m and Ω_{Λ} from fitting this curve by expression for $d(\tau)$

In practice: $\Omega_x \ll \Omega_m, \Omega_{\Lambda} \ll \Omega_m$

and can be neglected.

$\Lambda \text{CDM model}$
standard candels:

SN Ia,

Instrument: Hubble space telescope

Supernova Cosmology Project
Perlmutter et al. (1998)

\[(\Omega_M, \Omega_A) = (0, 1), (0.5, 0.5), (1, 0), (1.5, 0.5), (2, 0)\]

Calan/Tololo
(Hamuy et al.,
A.J. 1996)

In flat universe: \(\Omega_M = 0.28 \pm 0.085 \text{ statistical} \pm 0.05 \text{ systemat}^2\)

Prob. of fit to \(\Lambda = 0\) universe: 1%

astro-ph/9812133
Supernova Cosmology Project

Knop et al. (2003)
Spergel et al. (2003)
Allen et al. (2002)

Ω_Λ

Ω_M

No Big Bang

Supernovae

CMB

Clusters

expands forever

recollapses eventually

closed

flat

open
Supernova Cosmology Project
Knop et al. (2003)

\(\Omega_\Lambda \)

\(\Omega_M \)

No Big Bang

68%, 90%, 95%, 99%

Accelerating
Decelerating

Expands Forever
Recollapses Eventually

Open
Flat
Closed
- Flat: $\Omega_k = 0$
- Closed: $\Omega_k < 0$
- Open: $\Omega_k > 0$

- Recollapses eventually: $R(t) \rightarrow 0$ for some $t > t_0$ ($\dot{R}(t) = 0$ for some $t > t_0$)

- Expands forever: $R(t) > 0$

- Decelerating: $\ddot{R} < 0$
- Accelerating: $\ddot{R} > 0$

- No Big Bang: $R > 0$ for all $t < t_0$ (no singularity)