RELATIVITY AND COSMOLOGY II

Theoretical Questions

Spring 2013

1) *FLRW*

Metric of a homogeneous and isotropic space.

2) *FLRW*

Friedmann equations

3) *FLRW*

Energy conservation in the expanding Universe

4) *FLRW*

Friedmann equation for a non-relativistic fluid in Newton's theory.

5) *FLRW*

Age of the Universe. Horizon

6) *FLRW*

Einstein's static universe. Universe dominated by radiation, matter and cosmological constant.

7) Hubble's law and redshift

Hubble's law and redshift.

8) Evolution of the universe

Critical density and abundances. Evolution of the Universe depending on $\Omega_{\rm mat}$ and Ω_{Λ} .

9) Evolution of the universe

Experimental basis of the Big Bang theory and its predictions.

10) Thermodynamics

Evolution of the distribution function

11) Thermodynamics

Thermal equilibrium, reaction rate. Freeze out.

12) Thermodynamics

Decoupling of photons.

13) Thermodynamics

Temperature of neutrinos. Constraints on the maximum mass of neutrinos.

14) Thermodynamics

Nucleosynthesis.

15) Baryogenesis

The problem of baryon asymmetry of the Universe. Sakharov conditions

16) Dark matter

Evidence for dark matter. Constraints on the minimum mass of a fermionic dark matter particle.

17) Inflation

Problems of the Big Bang cosmological model

18) Inflation

Inflation as a solution for the problems of Big Bang cosmology

19) Inflation

Slow roll conditions

20) Inflation

Evolution of the modes of a massless scalar field in the inflating Universe

21) Structure formation

Growth of perturbations in a static Universe and Jeans mass.

22) Structure formation

Growth of perturbations in an expanding Universe.

23) Beyond the Standard Model

Beyond the Standard Model problems revealed by cosmology