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1 Applications of martingale convergence theorem

1.1 Critical percolation on Td

p = pc =
1
d

Xn = |δn ∩ C0|
Mn = Xn

(pd)n = Xn is a martingale.
Xn ≥ 0 ∀n
We need that supE[M+

n ] <∞ : supE[(−Xn)
+] = 0, then Xn → X a.s.

Xn(ω)→ X(ω) for almost all ω
Xn(ω) = X(ω) for n ≥ N(ω)
P[Xn(ω) = k ∀n ≥ N(ω)] = P[X = k] = 0 by
P[Xn+1 = 2k|Xnk] ≥ (p2)k > 0
⇒ X ≡ 0 a.s.

1.2 Recurrence of simple random walk on Z

Sn =
∑n

i=1Xi where X ∈ {−1, 1} each with probability 1
2 . Define the stop-

ping time N = inf{n : Sn = −1}, the first time we reach -1. Mn = SN∧n is a
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martingale and is bounded below by -1. Since it is a martingale, it is also a super
martingale, so SN∧n

a.s.−−→ S as n→∞, by the martingale convergence theorem.

If k > −1 then P[Mn+1 = k|Mn = k] = 0 so Mn → M ≡ −1. Thus,
M <∞ almost surely. Thus, you are bound to return to -1.

Exercise 1. Show that you can conclude that you will return to -1 infinitely often.
Also, show this will hold true for all negative integers and conclude it holds for
all integers.

1.3 Two stopping Theorems

Theorem 1 (Stopping Theorem 1). Suppose N is a stopping time, such that
Pr[N ≤ k] = 1 and we have a submartingale (Mn)n≥0. Then

E[M0] ≤ E[MN ] ≤ E[Mk].

Proof. MN∧n is a submartingale. So we know

E[M0] = E[MN∧0] ≤ E[MN∧k] = E[MN ]

LetKn = 1n>N = 1N≤n−1, so we haveKn is predictable. Now, (K ·M)n =Mn −MN∧n,
which is a submartingale. Now,

0 = E[(K ·M)0] ≤ E[(K ·M)k] = E[Mk]− E[MN ].

Exercise 2. Generalize the above argument to two stopping times (S, T ). If
S ≤ T , Pr[T ≤ k] = 1, and Mn is a submartingale, then E[MS ] ≤ E[MT ].

Theorem 2 (Stopping Theorem 2). LetMn be a submartingale such that (Mn) ≤ b
almost surely. Suppose T is a stopping time with T <∞ almost surely, then

E[M0] ≤ E[MT ].

Proof. T <∞ gives that for any ε > 0 there exists a tε such that Pr[T > tε] ≤ ε.
Let S = min(T, tε), which is a bounded stopping time. So we have:

E[M0] ≤ E[MS ] (by stopping theorem 1)

≤ E[MT ] + 2bPr[T > tε]

≤ E[MT ] + 2bε

Thus, E[MS ] ≤ E[MT ] as ε is arbitrarily small.
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2 Gambler’s Ruin

We want to know the probability that a gambler will reach ruin. Let Sn =
∑n

i=1Xi,
Ta = inf{n : Sn = −a} the time the gambler reaches ruin and stops playing,
and Tb = inf{n : Sn = b} the time the gambler wins enough to be satisfied and
stops playing. So the probability of the gambler’s ruin is Pr[Ta < Tb] = p.

Let T = Ta ∧ Tb. ST∧n is a bounded martingale, so we can apply stopping
theorem 2. Thus, E[ST ] = E[S0] = 0 and E[ST ] = p(−a) + (1− p)b⇒ p = b

a+b .
Now, we want to know E[T ]. Let Yn = S2

n − n.

Claim 1. Yn is a martingale.

E[S2
n+1 − (n+ 1)|Fn] =

1

2
[(Sn + 1)2 − n− 1] +

1

2
[(Sn − 1)2 − n− 1]

= (Sn)
2 − n.

E[YT ] = E[Y0] = 0

E[YT ] = E[S2
T ]− E[T ]

E[S2
T ] = pa2 + (1− p)b2 = ab

E[T ] = ab

Yn is not bounded, so we cannot use our stopping theorems, but the above
still holds true.

3 Optional stopping theorem

Theorem 3 (Optional stopping theorem). SupposeMn is a uniformly integrable
submartingale and T <∞ is a stopping time. Then

E[M0] ≤ E[MT ] ≤ E[M∞].

4 Uniform Integrability

Suppose that E[|Y |] <∞ is integrable. Then limc→∞ E[|Y | · 1|Y |>c]→ 0.

Definition 1 (Uniform integrability). A collection (Xi)i∈I is uniformly inte-
grable if lim c→∞ supi∈I E[|Xi| · 1|Xi|>c] = 0. This gives |Xi| ≤ |Y | ∀i ∈ I
for some Y , where E[|Y |] <∞.
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Exercise 3. Let φ be a function such that φ(x)x →∞ as x→∞, e.g. φ(x) = x1+ε

or φ(x) = x log+(x). If E[φ(|Xi|)] < c ∀i ∈ I , then (Xi) is uniformly inte-
grable. Note, that this is necessary for uniform integrability.

Theorem 4. The following statements are equivalent.

• Xn is a uniformly integrable martingale

• Xn → X almost surely and converges in L1

• There exists r.v. X such that E[|X|] <∞ and Xn = E[X|Fn]

Theorem 5 (Stopping and bounded differences). Let Mn be a submartingale
with E(|Mn+1 −Mn||Fn) ≤ b. N is a stopping time with E[N ] < ∞. Under
these assumptions then Mn∧N is uniformly integrable and E[M0] ≤ E[MN ].

Note that this theorem is a corollary of the optional stopping time theorem.

Proof. Using the triangle inequality

|MN∧n| ≤ |M0|+
∞∑
m=0

|Mm+1 −Mm| · 1m≤N .

So we want to bound A =
∑∞

m=0 |Mm+1 − Mm| · 1m≤N . Using the tower
property

E[A] =
∞∑
m=0

E[E[|Mm+1 −Mm| · 1m≤N |Fm]]

≤
∞∑
m=0

bPr[N ≥ m]

≤ bE[N ]

<∞

Lemma 6 (Wald’s Equation). Let Sn =
∑n

i=1Xi, where the Xi’s are indepen-
dent and E[Xi] = µ, E|Xi| <∞. If T is a stopping time then E[ST ] = µE[T ].

Exercise 4. Prove Wald’s Equation.
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5 Asymmetric simple random walk

Sn =
∑n

i=1Xi, with Pr[Xi = +1] = p > 1
2 and Pr[Xi = −1] = q = 1− p.

Theorem 7. 1. φ(x) = (1−pp )x ⇒ φ(Sn) is a martingale.

2. Tx = inf{n : Sn = x} and a < 0 < b, thenα = Pr[Ta < Tb] =
φ(b)−φ(0)
φ(b)−φ(a) .

3. If a < 0, then Pr[minn Sn ≤ a] = (1−pp )−a.

4. If b > 0, then Pr(Tb <∞) = 1 and E[Tb] = b
2p−1 .

Proof. 1. Left as an exercise to check that the conditions of a martingale are
met.

2. Let T = Ta ∧ Tb. Claim T < ∞ a.s. Proof of the claim is left as an
exercise.
φ(ST∧n) is a martingale and is also bounded.
φ(0) = E[φ(ST )] = αφ(a)+(1−α)φ(b). Solving for α gives the desired
result.

3. Pr[minn Sn ≤ a] = Pr[Ta <∞]. Take b↗∞. Then {Ta <∞} = {Ta < Tb}
for some b.

4. φ(a) → ∞ as a → −∞ ⇒ Pr[Tb < ∞] = 1. Now for E[Tb] = b
2p−1 .

Let Mn = Sn − n(p− q), which is a martingale. Observe that Tb ∧ n is a
bounded stopping time.
0 = E[STb∧n − (Tb ∧ n)(p− q)]
Observe that b ≥ STb∧n ≥ infn Sn and Pr(infn Sn) = (1−pp )−a. So we
can bound E[STb∧n]. We can use a similar argument to bound E[Tb∧n].
Then using the dominated convergence theorem, we can bring the limit
inside.
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