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1 Broadcasting on Trees

Consider the infinite tree T = T̂d = (V,E) with d children at each node. Let
∂n denote the vertices at distance n from the root node ρ.

We define a stochastic process over the vertices of T as follows. Assign a
random variable σv ∈ {−1, 1},∀v ∈ V . Choose σρ uniformly at random. For
ρ 6= v ∈ V , if u is the parent of v, σv = σu w.p 1 − ε and σv = −σu w.p. ε.
Every parent-child path can be seen as a markov chain with a transition matrix

M =

[
1− ε ε
ε 1− ε

]
We ask the following questions: Suppose we observe all the random variables

at level n (denoted by σ∂n ∈ {−1, 1}∂n), how well can we guess the root value?
Suppose the optimal algorithm guesses the correct answer with probability

1
2+∆ where ∆ = ∆(n, T, ε), for what values of ε can we expect limn→∞∆(n, T, ε) >
0 ? This problem has a lot of applications in analysis of Phylogenetic trees and
extremal Gibbs measure.

We identify the trivial cases :
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1. ε = 0⇒ ∆ = 1

2. ε = 1
2 ⇒ ∆ = 0

We have the following Theorem for binary trees.

Theorem 1. Let 2θ2
c = 1 and εc = 1−θc

2 . Then,

1. if ε > εc
lim
n

∆(T̂2, n, ε) = 0

2. if ε < εc
lim
n

∆(T̂2, n, ε) > 0

For a d−ary tree, the corresponding result is obtained when dθ2
c = 1. We

only prove the second statement of Theorem 1 for now; this bound on its own is
known as the Kesten-Stigum bound.We need a few more concepts before pro-
ceeding with the proof.

2 Hypothesis Testing and Reconstruction

We look for a function σ̂ρ(n) : {−1, 1}∂n → {−1, 1} such that given the values
of σ∂n, it guesses the value of σρ.

1. If σρ = 1 : σ∂n has a distribution given by the function P+
∂n := P(σ∂n ∈

A|σρ = 1)

2. If σρ = −1 : σ∂n has a distribution given by the function P−∂n := P(σ∂n ∈
A|σρ = −1)

We treat this problem in a more general way. Suppose we have random variables
X ∈ X (called ‘observation’) and H ∈ {0, 1} (called ‘Hypothesis’). (Assume
X is a discrete set)H is distributed uniformly at random and

1. over {H = 0}, X d
= p

2. over {H = 1}, X d
= q

Therefore, by Bayes’ theorem, X d
= p+q

2 We define a test Ψ : X → {0, 1}
which is a function which guesses the value of H given the value of X ∈ X .
We look for Ψ such that the probability of error in prediction is minimized.
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2.1 A Lower Bound for P[error]

Define A = {x : Ψ(x) = 0}. Clearly,

P[error] =
1

2
P[X ∈ Ac|H = 0] +

1

2
P[X ∈ A|H = 1] (1)

=
1

2
(p(Ac) + q(A)) (2)

=
1

2
− 1

2
(p(A)− q(A)) (3)

≥ 1

2
− sup

A
|p(A)− q(A)| = 1

2
− 1

2
dTV(p.q) (4)

Where dTV(p.q) := supA |p(A)− q(A)|, is called the total variation distance.

Claim 1 (Exercise). dTV is a metric on the space of distribution over X . Fur-
ther, if X is discrete, then A∗ := {x ∈ X : p(x) > q(x)} ⊆ X satisfies
dTV (p, q) = p(A∗)− q(A∗).

Clearly, from the lower bound of the probability of error, we conclude that
the function Ψ∗ = 1A∗ minimizes the probability of error and hence is the
optimum predictor. Therefore,

P[error Ψ∗] =
1

2
− 1

2
dTV(p, q)

Claim 2 (Exercise).

dTV(p, q) =
1

2

∑
x∈X
|p(x)− q(x)|

2.2 Optimal Reconstruction

Define

σ̂ML
ρ (s) =

{
+1 if P+

∂n(s) > P−∂n(s)

−1 otherwise

By the preceding discussion, the ML estimator (Maximum Likelihood) should
give us the minimum possible probability of error. Since this estimator is hard
to analyse, we use a sub-optimal estimator

σ̂MAJ := sign(Sn),

where Sn =
∑

v∈∂n σv.
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Claim 3 (Exercise).
σ̂ML 6= σ̂MAJ

Clearly, ∆MAJ = dTV(p+
Sn
, p−Sn

). To prove the second part of Theorem 1
with Sn, it is sufficient to show that limn ∆MAJ > 0.

3 Random Cluster Representation and Connection to Percolation

We couple the stochastic process over the signs of the vertices of the tree with
the percolation one on the edges of the tree (i.e, define a joint process) such
that the marginals of the process over the edges gives the broadcasting process
defined above. We make the following observation:

M =

[
1− ε ε
ε 1− ε

]
= θI + (1− θ)

[
1
2

1
2

1
2

1
2

]
Where θ = 1− 2ε. The identity matrix corresponds to copying the same vertex
state as the parent and the second matrix correponds to picking the child state
uniformly and independent of the parent. Therefore we define the following
percolation model:

1. Do percolation on the tree with probability θ of any edge being open.

2. Choose σρ ∈ {−1, 1} uniformly at random.

3. If there is an open edge between a parent u and a child v, then σv = σu
-i.e, copy the value of the parent.

4. If the edge between u and v is closed, then pick σv independently and
uniformly at random.

Therefore, the process here is over the product of two spaces - {−1, 1}V ×
{0, 1}E . It is easy to show that, since all edges are independently open or
closed, the marginal distribution over {−1, 1}V is the same as in the broad-
casting model.

4 Second Moment Method Bound

Recall that σ̂MAJ
ρ = sgn(Sn).

Proposition 2.
E±[Sn] = ±(2θ)n

Where E± is the expectation given σρ = ±1
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Proof. Let v ∈ ∂n.

E+(σv) = E+[σv|v ↔ ρ]P[v ↔ ρ] + E+[σv|v 6↔ ρ]P[v 6↔ ρ]

Clearly, E+[σv|v 6↔ ρ] = 0 and E+[σv|v ↔ ρ] = 1 and P[v ↔ ρ] = θn.
Therefore E+(σv) = θn. Since there are 2n vertices in ∂n, we conclude that
E+(Sn) = (2θ)n. By similar arguments, can conclude E− result.

Proposition 3.

var(Sn)

(E+[Sn])2
→

{
1
2

1
1−(2θ2)−1 if 2θ2 > 1

0 otherwise

Proof.

E+[S2
n] =

∑
u,v∈∂n

E(σuσv)

= 2n +
∑
u6=v

E(σuσv)

Ex
= 2n +

1

2
22nθ2n

n−1∑
m=0

(2θ2)−m

We get the last relation by considering pairs with nearest common ancestor
at level m, probability that this path is connected to both the considered vertices
and then summing up over m. Now by symmetry,

var(Sn) = E(S2
n)− (E(Sn))2

= E(S+
n )2

We use Proposition 2 to conclude the result.

We use Chebyshev’s inequality to (unsuccessfully) prove the result. Suppose
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that 2θ2 > 1. Then,

P[error] =
1

2

(
P+[Sn ≤ 0] + P−[Sn > 0]

)
= P+[Sn ≤ 0]

≤ P+[|Sn − E+(Sn)| ≥ E+(Sn)]

≤ var+(Sn)

(E(Sn))2

→ 1

2

1

1− (2θ2)−1
− 1

RHS is< 1
2 iff θ >

√
3
4 . This doesn’t give us the bound we claimed in Theorem

1.

5 Second Moment Bound for Total Variation

Claim 4. If 2θ2 > 1 then,

lim
n
dTV(P+

Sn
, P−Sn

) ≥ 2(1− (2θ2)−1)

We prove a slightly more general result. Consider the hypothesis testing
problem of Section 2. We have the following inequality.

Proposition 4.

dTV(p, q) ≥ 1

4

(Ep(X)− Eq(X))2

var(X)

Proof. Let p̃ := 1
2(p+q) give the distribution ofX . Over the set {z : p̃(z) = 0},

p(z) = 0 and q(z) = 0. Therefore, in summations below, we exclude these
values of z from X

dTV(p, q) =
1

2

∑
z

|p(z)− q(z)|

=
∑
z

|p(z)− q(z)|
2p̃(z)

p̃(z)

Define

f(z) =

{ |p(z)−q(z)|
2p̃(z) if p̃(z) > 0

0 otherwise
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Define the random variable Y = f(X). It is clear that 0 ≤ f(z) ≤ 1. Therefore,
E(Y 2) =

∑
z f(z)2p̃(z) ≤

∑
z f(z)p̃(z) = dTV(p, q) By Cauchy Schwarz

inequality,

E(Y 2) ≥ (E(XY ))2

E(X2)

=
(
∑

z zp̃(z)
|p(z)−q(z)|

2p̃(z) )2∑
z z

2p̃(z)

≥
(
∑

z zp̃(z)
p(z)−q(z)

2p̃(z) )2∑
z z

2p̃(z)

=
1

4

(Ep(X)− Eq(X))2

var(X)

And we conclude the said result.

We immediately conclude that limn→∞ dTV(P+, P−) ≥ 2(1 − (2θ2)−1)
when 2θ2 > 1. Choose A1 to be the set where total variation between S+

n and
S−n is achieved. Let the estimator be Ψ1(n) = 1A1 . Clearly,

PΨ1 [error] =
1

2
− 1

2
dTV(P+, P−)

⇒ lim
n→∞

PΨ1 [error] <
1

2

proving our result.
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