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1 The Galton-Watson Process

In this lecture we study the following stochastic process, which is called the
Galton-Watson process [1]. Let X € Zx( be a random variable for which p def

E[X] < co. Define pj, & Pr[X = k]

Let {Xm}n,izl be i.i.d. random variables, each of which is equal in distri-
bution to X. Define Zy = 1 and Z,, = ZiZ:"fl Xp,i for n > 1. This formalizes
a generational process with a single “founder” at generation 0, where each indi-
vidual has a number of children equal in distribution to X.

This captures the dynamics of several natural processes:

e The propagation of a family name
e Nuclear chain reactions
e Percolation on the d-ary tree T,.

Additionally, this is a fundamental process which appears often in the study of
random graphs.



Exercise 1. Show that E[Z,] = u", and M,, = % is a martingale with respect
to Fn=0(Z1,...,2Z).

From this we can deduce by the Martingale Convergence Theorem that
M, %% M, < +oo and E[M,.] < 1 by Fatou’s lemma.

2 Survival Probability

. . . f
One fundamental question we can ask is: what is n L p [X,, = 0 for some n]?
We will assume that pg > 0, as otherwise = 0.

Exercise 2. Show that almost surely, either Z, — 0 or Z, — 0o. Prove that if
w<1thenn=1

Theorem 1. 1 is the smallest fixed point of f in [0, 1] (recall that f(s) = E[s%]).
Furthermore,

o Ifu<lthenn=1

o Ifu>1thenn < 1.

Proof. We analyze the generating function of Z,,. That is, define fi(s def

E[s%] = > k>0 sFpr. Note that f(s) is at least defined when 0 < s )< 1,
and if we adopt a convention that 0° = 1, then f(0) = po.
n=P3tst Z, =0
= P[UZo{Z; = 0}]
=g Pla=0
- tliglo 1:(0)-

So it suffices to compute




—
So by induction on t, f;(s) = f o --- o f(s), which we will denote by f()(s).
Returning to 77, we find that 7 = lim;_,o, f® (0), which intuitively should
be the first fixed point of f. Proving this rigorously uses the following properties
of f, which we will not prove. On the interval [0, 1], f satisfies:

o £(0) = poand f(1) =1
e f is infinitely differentiable.

e f is convex and increasing.

o limg ~ f/'(s) = p < oo.

3 Total Progeny

Another quantity of interestis W = > ;7 Z;, i.e. the total progeny.

Exercise 3. If u < 1, then E[W] = ﬁ

From the results of the previous section, it is easy to see that if ¢ > 1, then
E[W] = co. We will see how to go further and exactly calculate the distribution
of W.

3.1 Random Walk Representation

So far we have analyzed the Galton-Watson process at the granularity of gener-
ations. We can get a finer-grained view of the obtained tree 7" by considering
one vertex at a time. Specifically, we will define sets .A; (the “active vertices”),
&, (the “explored vertices”™), and NV; (the “neutral vertices”) as follows.

1. Initialize Ay = {0}, & = @, and Ny = V(T') \ {0}. (Here V(T') denotes
the set of vertices of T).

2. Fort > 1:
o If A;_1 = @, donothing. Thatis, (A¢, &, Ny) = (Ai—1, E—1, Ni—1).

e Otherwise, choose an arbitrary a; € A;_1. Let
Ay = Ay—1 U {children of a;} \ {a;},
& =&—1U{ar},

and
N = Ni—1 \ {children of a;}.



We will write A;, E}, and N to respectively denote | Az

&tl, and |Ny|. We are

interested in 7o < inf {t > 0: Ay = 0}, because of the following lemma, which
we will not prove.

bl

Lemma 2. W = 7.

Now we notice that the consecutive values of A; are almost a random walk.
Specifically, we could have just defined Ay = 1 and

A1+ Xy —1 ift<m
A = )
0 otherwise,

where {X;};>1 are i.i.d. random variables distributed identically to X. If we
defineY; = X; —land S; =1+ Zle Y;, then S; is genuinely a random walk
and A; = Sinr,- Note that Y; > —1.

To is equivalently defined in terms of S; as

70 = inf{t > 0: 5, =0}
t
=inf{t>0:> X;=t-1}.
i=1

The following exercise shows that when the expected number of children
is greater than 1, the probability of having at least k£ progeny but nevertheless
going extinct decreases exponentially with k.

Exercise 4 (Difficult). If u > 1, then

—kI
Plk<W< <
[k < o] < 1—e!
where
I =sup (t — logE [etX]) > 0.
t<0
Theorem 3.
1

PW=n|=—-—-PX;+ -+ X, =n—1]
n
and more generally, if we have k i.i.d. copies W1, ... , Wy, of W, then

PWi+--+Wp=n]=—-PX1+---+ X, =n—k].

3| =



Proof. This is just a special case of the Hitting Time Theorem, which we prove
in the Section 3.3. [

Corollary 4. When X is a Poisson distribution with intensity A,

()\n)n—le—)\n
n!

P[W =n| =

forn > 1.

3.2 An Aside on Duality

Suppose that we are only interested in the distribution of Z; conditioned on
extinction. It turns out that the resulting conditional distribution of Z; is the
same as the distribution of Z; in a related branching process.

Theorem 5. Let {Z;},- be a Galton-Watson process defined by py, such that

.. L d ,
n < 1. Then conditioned on extinction, Zy = Z;, where {Z]}i>¢ is a Galton-

Watson process defined by p), = n*~'py.

Proof. First, observe that pj. does in fact define a probability distribution, be-

cause 1 1 1
/ k k
P = — npszE[n]=*~fn=1-
E k nE " ” (n)

Now we think of {Z;} and {Z]} as corresponding to valid “histories” H =
(X1,...,X5)and H = (X1,... ,X;é). Note Z; goes extinct iff 79 < co. A
(finite) history (x1, ..., x) is valid if:

e Forevery: <t, X1+ -+ X; >i—1
e X+ 4+ X, =t—1.

Now for every valid (z1, ..., x¢),
P[H = (z1,...,2¢)]
P[H:(xl,...,xt)|70<oo]: IP[T()<OO]
12
e
14
— 7H,’717x1p;1
e

t

- /

- pri
i=1



because i, ;i =t — 1

Exercise 5. Suppose that X ~ Pois()\) for A > 1. Then conditioned on ex-
tinction, 7, < Z] where X' ~ Pois(u) for the (unique) pn < 1 such that

e = pe M.
3.3 Hitting Time Theorem

Theorem 6. Let Y be any integer-valued random variable such that Y > —1

almost surely, let {Y;}1>1 be i.i.d. copies of Y, and let Py, denote the law of

Sn def So + > i, Y for Sy = k. Define Ty def inf{t > 0: S; = 0}. Then for

alln > landall k > 0,
k
Prlro = 1) =~ Pi[S, = 0].

Proof. Our proof is by induction on n.

Base case When n = 1, we consider three cases for k.

e If k=0, then g =0, so
k
]P’k[Tozn]:E'IP’k[Sn:O]ZO.
e If k =1, then

Pk[T():n]:*-Pk[SnZO]:P[Y:—l].
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e If £ > 1, then S, cannot possibly be 0 (because ¥ > —1) so

k
]P’k[Tozn]:E'IP’k[Sn:O]ZO.



Inductive Step When n > 1, we consider two cases for k.
o If k = 0, then just as before 7p = 0 so

k
Pk[m:n]zﬁﬁP’k[Sn:O]:O.

e The interesting case / the case where we actually use the inductive as-
sumption is when k£ > 1. In this case, we have

Py [0 =n] = ZPk[m:mYl:s]-P[Yl:s].

But

Py, [0 = n|Y1 = ] = Prys [10 =1 — 1]

k
= n —_Fi Prys [Sn—1=0] by hypothesis
k+s
= Py [Sp, = 0]Y1 = 5]
n—1
So by Baye’s rule,
k S
Py [r0 =n] = n_lPk[SnZO}—i— Z — P [Y1 = 5|, = 0] - Py [S,, = 0]

s>—1

n—1 n—1

— < k + 1 Ek[}a|5n::(n> 'Pk[sh ::OL

But since each Y; is identically distributed, we have

n
>
=1

Plugging everything in and simplifying, we get

1 k

Sn:()]:—

Pk[n)::n]__ k k
Py[Sn=0] n—-1 n(n—1)
_ nk—k
~n(n—1)

_k
=
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