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1 Markov chain example and definitions

1.1 Markov chain motivating example

We consider the following problem: We want to generate a bit string uniformly
at random among all the 0 − 1 bit strings of length n that have no two adjacent
1’s. Some approaches:

• simple (and slow): generate a random string uniformly and then check
if it has the desired property (i.e rejection sampling). This is clearly an
exponential algorithm in expectation, since there are only about 1.7n (out
of the 2n) strings of length n which have this property.

• simple (and incorrect): generate first letter uniformly; subsequent letters
are generated uniformly if previous one is 0, or just frozen to 0 if previ-
ous letter is 1. Equivalently: generate N � n fair coin flips and delete
adjacent ones. (Does not work because P [0000] < P [01010].)

• tedious: compute the number of strings with first 0 and first 1 (generating
functions help), then generate the first bit. Proceed recursively.

A much nicer/faster algorithm for sampling from this distribution turns out
to be the following:
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1. Initialize with a string of all 0’s

2. For i=1 to k do: Pick a coordinate u.a.r. If the are no neighboring 0’s
resample it uniformly from {0, 1}.

In order to prove correctness of this algorithm, we need to show that as
k → ∞ the distribution of the output string approaches the desired one. For
proving efficiency, we need to specify is how k has to be in order to get a good
enough approximation. This is an informal definition of the mixing time of a
Markov chain.

The above example shows that one of the main motivations for studying
Markov chains is that it gives us the ability to sample more efficiently from dis-
tributions with huge state spaces which wouldn’t be possible to do with standard
techniques like rejection sampling.

1.2 Definitions

Definition 1. A sequence of random variables (X0, . . . , XN ) (with N = ∞
permitted) is called Markov process with transition kernel P (a, b) (which is a
row stochastic matrix) and initial distribution PX0 if

P[X0 = a0, . . . , Xn = an] = PX0 [a0]
n∏
i=1

P (ai−1, ai)

for all an ∈ X n and all n ≤ N .

Sometimes it is useful to consider Markov chains with state transitions that
correspond to t > 1 transitions of a simpler Markov chain:

Definition 2. Given a transition kernel P (a, b), we define the corresponding
t-step transition kernel to be:

Pt(a, b) =
∑

a1,...,at−1

P (a, a1) · P (a1, a2) · . . . · P (at−1, b)

As a convention, a transition kernel P acts on distributions on the left as
follows:

π → πP :=
∑
b

π(b)P (b, a)

and on functions on the right as follows:

f → Pf(a) :=
∑
b

P (a, b)f(b) = E[f(Xi+1)|Xi = a]
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Definition 3. We will say that a Markov chain that has a transition kernel
P (a, b) is irreducible if

∀a, b ∈ X : ∃t > 0 : Pt(a, b) > 0

In other words, a Markov chain is irreducible if and only if every state is
reachable from every other state. It is also true that every Markov chain is irre-
ducible for a subset of its state space. The states that belong to that subset are
called recurrent states. All other states of the Markov chain are called transient.
If the is only one recurrent state, then this state is called absorbing state.

From the above, it is clear that if we sample a state randomly accodring to
some distribution d and perform one transition of the Markov chain, the new
state will be distributed according to the distribution d′ = dP . If we continue
making transition long enough, we might see convergence to one of the fixed
points of this mapping defined as follows:

Definition 4. A distribution π over X will be called stationary distribution if
and only if the following holds: π = πP .

The following definition and proposition will be useful for talking about
reversibility of Markov chains:

Definition 5. If π is a stationary distribution of a Markov chain with transition
kernel P , then P̃ (a, b) = P (b,a)

π(a) π(b) is called reverse transition kernel.

Proposition 1. If (X0, . . . , XN ) is a Markov chain started from stationary dis-
tribution, then (Xn, . . . , X0) is also Markov (for any n) with transition kernel
P̃ and started from the same stationary distribution.

Even though the Markon chain visits recurrent states infinitely often (if we
run it indefinitely), it is possible that visits to a particular vertex can occur only
periodically.

Definition 6. Let x ∈ X be a state of the Markov chain. The period of x is
defined as gcd{t > 0 : Pt(x, x) > 0}.

Proposition 2. If P is irreducible, then all periods are equal. An irreducible
Markov chain is called aperiodic iff all periods are equal to 1.

Finally, we define the hitting time to be the number of steps until the Markov
chain reaches a subset B of the state space.
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Definition 7. Let B ⊆ X be a set of states of the Markov chain. Then the
following quantity is called hitting time of B:

τB = inf{t ≥ 0 : Xt ∈ B}

τ+B = inf{t > 0 : Xt ∈ B}

2 Strong Markov property

All Markov chains have the “Markov property” by definition, which can be
stated as follows:

P[Xi+1|Xi, Xi−1, . . . , X0] = P[Xi+1|Xi]

We will get a stronger peoperty if we allow k to be a stopping time random
variable.

Theorem 1. Suppose {Xi} is a Markov chain described by a transition kernel
P and τ is a stopping time such that τ < ∞ almost surely. Then (Y0, . . . , Yn),
where Yi := Xτ+i, is a Markov chain with the same transition kernel.

Proof. We want to show that (Y0, . . . , Yn) has the Markov property. Thus, we
want to compute:

P[Y0 = a0, Y1 = a1, . . . , Yn = an] =
∞∑
r=0

P[Y0 = a0, Y1 = a1, . . . , Yn = an, τ = r]

=
∞∑
r=0

P[Xτ = a0, . . . , Xτ+n = an, τ = r]

=

∞∑
r=0

P[Xτ = a0, τ = r]

n∏
i=1

P (ai−1, ai)

= P[Xτ = a0]

n∏
i=1

P (ai−1, ai)

= P[Y0 = a0]

n∏
i=1

P (ai−1, ai)

as required.
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An example of a Markov chain that has the strong Markov property is the
symmetric random walk on Z and the following distribution is an example of a
Markov chain that has the Markov property but not the strong Markov property:

Xt =

{
0 for t ≤ T, T ∼ Exp(1)
t− T for t > T

If we consider the stopping time τ =

inf{t > 0 : Xt > 0}, then we know that Xτ+i = i + 1 deterministically.
Therefore, the Markov chain does not have the strong Markov property.

3 Existence and uniqueness of the stationary distribution

The following theorem establishes the existence and the uniqueness of the sta-
tionary distribution.

Theorem 2. Let P be the transition kernel of some irreducible Markov chain on
a finite domain X . Then, the Markov chain has a unique stationary distribution
π and π(a) = 1

Eα[τ+α ]

Proof.
Uniqueness: If π is a stationary distribution, then we have:

π(α)E[τ+α ] =
∑
t≥0

π(α)Pα[τ+α > t] =
∑
t≥0

Pπ[X0 = α,X1 6= α, . . . ,Xt 6= α]

=
∑
t≥0

Pπ[X̃t = α, X̃t−1 6= α, . . . ,X0 6= α]

= P[X̃ ever hits α] = 1

where (X̃0, X̃1, . . . ) are samples from the reverse Markov chain with kernel
P̃ , and the last equality follows from the irreducibility of P .

Lemma 3. If P is the kernel of an irreducible Markov chain, then Eα[τb] <∞.

Existence: Let

N(b) :=
∑

0≤t<τ+α

I{Xt+1 = b} =
∑

0≤t<τ+α

∑
c

I{Xt = c,Xt+1 = b}

So, the expected number of visits to b before returning to α is the following:

E[N(b)] =
∑
c

E[N(c)]P (c, b)

That is, π(b) , E[N(b)]∑
b′ E[N(b′)] is a stationary distribution.
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The first part of the proof is just a specialization of the following surprising
property:

Lemma 4 (Kac Lemma). For any stationary ergodic process {X0, . . .} we have

E[τ+a |X0 = a] =
1

P[X0 = a]

4 Reversibility of Markov chains

Intuitively, a Markov chain is called time-reversible if for each pair of states i, j
the long-run rate at which the chain makes a transition from state i to state j
equals the long-run rate at which the chain makes a transition from state j to
state i: πiP (i, j) = πjP (j, i). The formal definition follows:

Definition 8. A Markov chain is called reversible at stationary distribution π if
P̃ = P , in which case π is called reversing measure.

Proposition 3. A Markov chain with transition kernel P is reversible iff there
exists a solution to the detailed-balance equation:

π(a)P (a, b) = π(b)P (b, a) , (1)

in which case π is the reversing measure (and hence a stationary distribution of
P ).

Example 1:(non-reversible)
An example of a non reversible Markov chain is a cycle where all clockwise
transitions have probability 2/3 and all counterclockwise transitions have prob-
ability 1/3. Clearly that stationary distribution is uniform due to symmetry.
So, using proposition 3 we see that there is no solution since π(a) = π(b) and
P (a, b) 6= P (b, a) for all a, b.

Example 2:(reversible)
An example of a reversible Markov chain is a random walk on a weighted graph
where the transition probabilties are defined as follows:

P (i, j) :=
wij∑
l wil

The stationary distribution of this Markov chain is:

π(i) =
1

Z

∑
i

wil

where Z is just the appropriate normalization factor for the probabilities to sum
to 1.
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Proposition 4. All reversible Markov chains are random walks on a undirected
weighted graph.

Proof. (sketch) Setting the weights as follows:

wij := π(i)P (i, j) = π(j)P (j, i)

one can verify that
P (i, j) :=

wij∑
l wil

corresponds to the stationary distribution π(i) = 1
Z

∑
j wij .

Also, note that those weigths could not be defined if the Markov cahin was
not reversible.

Since in an undirected graph the smallest cycle that contains a particular
vertex is 2, proposition 4 has the following corollary:

Corollary 5. Reversible Markov chains can have only period 1 or 2.

In particular, for irreducible Markov chains the period is 2 if and only if the
graph is bipartite. Otherwise, the graph has at one odd cycle and is strongly
connected due to irreduciility. Therefore, every vertex is in both a length 2 cycle
and in an odd length cycle, implying that the gcd is 1.

Proposition 5. Birth-death chains are Markov chains on {0, 1, 2, 3, . . . , n} such
that P (a, b) = 0 for any |a − b| > 1. All birth-death Markov chains are re-
versible.

Proof. Just note that detailed balance equation (1) is always solvable recur-
sively: π(1) is written as a function of π(0), π(2) as a function of π(1), etc.
Then normalize.
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