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1 First moment method

Theorem 1 (Markov’s inequality). Let X be a non-negative random variable.
Then

Pr[X ≥ a] ≤ E[X]

a
for any a > 0.

Corollary 2 (The first moment method). If X ≥ 0 is a non-negative integer-
valued random variable, then

Pr[X > 0] ≤ E[X].

The proof is left as an exercise.
The first moment method is a simple application of Markov’s inequality for

integer-valued variables (Corollary 2).

Definition 1. G(n, pn) is a distribution over graphs on n vertices where each
edge is present independently with probability pn.

Theorem 3 (Example). If npn → 0, then

Pr
G←G(n,pn)

[∃ a triangle in G]→ 0.
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Proof. Let T be the number of triangles in the graph G. From Corollary 2 we
get

Pr
G←G(n,pn)

[∃ a triangle in G] = Pr[T > 0] ≤ E[T ]

=
∑

1≤u<v<w≤n
E[1(u,v,w) is a triangle]

≤ n3p3n → 0.

2 Bond percolation on Z2

Definition 2 (2-dimensional square lattice). L2 := (Z2,E2) is the graph with
vertex set Z2 and edge set

E2 :=
{

(u, v) | u, v ∈ Z2 and ‖u− v‖1 = 1
}
.

Definition 3. For any 0 ≤ p ≤ 1, Pp is the distribution over subgraphs of L2

where we keep each edge independently with probability p.

Consider the following physical process. Sample a graph from Pp where
each edge is kept with probability p. Pour water at the origin node (0, 0). If
there is a neighboring edge (edge is “open”), the water flows across it. The
water stops to flow when there are no more open edges. The question that we
want to answer is for what values of p we have a positive probability of water
flowing out infinitely far away. Clearly, if p = 0, then there are no open edges
and the water cannot flow. On the other hand, if p = 1, then the entire graph L2

is present and the water can flow to infinity.
Given a graph, we write x↔ y if and only if there is an open path (consisting

of open edges) connecting x to y. We write Cx := {y ∈ Z2 : y ↔ x} to denote
a random subset of the grid consisting of all vertices y connected to the given
vertex x. For the sake of notational simplicity we will write 0 to denote the
origin (0, 0) of the grid Z2. Let θ(p) := Pp(|C0| = +∞) be the probability
that the connected component containing the origin 0 has an infinite size. Let
pc := pc(L2) := sup{p : θ(p) = 0} be the critical probability of C0 having
infinite size. E∞ denotes the event of having an infinite component somewhere
(not necessarily containing the origin). The event E∞ satisfies the following
two properties.

• If the edge probability p < pc is below the critical probability, then the
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probability of the event E∞ is 0:

Pc(E∞) = Pp
(
|Cx| = +∞ for some x ∈ Z2

)
≤
∑
x∈Z2

Pp(|Cx| = +∞) = 0,

where we use the fact that the set Z2 is countable and that p < pc to
establish the last equality.

• Conversely, if p > pc, then, by Kolmogorov’s zero-one law, Pp(E∞) = 1.
That is, the probability that there is an infinite component somewhere is
equal to 1 in the case when p > pc.

Exercise 1. Show that the critical probability satisfies pc(L1) = 1 for the infinite
line graph.

Claim 1. The critical probability pc(L2) of the two-dimensional grid is strictly
between 0 and 1.

The following two propositions prove the claim.

Proposition 4. pc ≥ 1/3.

Proof. We want to reason about the event that |C0| = +∞. Our goal is to show
that if p < 1/3, then θ(p) = Pp(|C0| = +∞) = 0.

Observe that C0 is of infinite size if and only if there exists a self-avoiding
path (SAP) starting from the origin of infinite length consisting of open edges.
LetXn denote the number of self-avoiding paths of at least n open edges, which
starts from the origin. Then

θ(p) = Pr[Xn > 0 ∀n]

≤ Pr[Xn > 0 for some arbitrary and fixed n]

≤ E[Xn]

=
∑

path pn starting at 0 of at least n edges

Pr[path pn is open]

≤ 4 · 3n−1 · pn → 0

if p < 1/3. In the last inequality we use the union bound over all paths of length
n (not necessarily self-avoiding). The number of such paths is 4 · 3n−1 since
there are 4 possible edges to leave the origin and 3 possible edges to make any
further choice.
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The proof of the second proposition uses the dual lattice.

Definition 4 (Dual lattice). Let L2 be the two dimensional square lattice. The
dual lattice L̂2 has vertex set (1/2, 1/2) + Z2 and the edge set contains edge
(u, v) if and only if ‖u− v‖1 = 1.

Definition 5 (Dual lattice and bond percolation). In the context of bond percola-
tion, suppose we produce first closed and open edges in L2. Then this naturally
produces closed and open edges in L̂2; we will call an edge e of the dual lattice
open if it crosses an open edge in the original L2. If (u, v) is crossing a closed
edge, we will call it closed.

We will also need the following lemma.

Lemma 5. C0 is of infinite size if and only if there is no closed cycle (consisting
of closed edges) in the dual lattice L̂2 containing the origin.

The proof is non-trivial and we will not prove it here. The approach of using
the above lemma is known as “Peierls’ argument”. It was developed to show a
phase transition behavior in the Ising model in two dimensions or more.

Proposition 6. pc < 1.

Proof. Let Mn be the number variable that is equal to the number of closed
cycles of length n in the dual lattice containing the origin. We observe that
E[Mn] ≤ (1−p)n · n2 ·3

n since the number of cycles in the dual lattice containing
origin is upper bounded by n

2 · 3
n and the probability that all n edges appearing

in the cycle are closed is (1− p)n.
Our goal is to show that θ(p) > 0 for a constant p < 1 that is sufficiently

close to 1. We get

1− θ(p) = Pr[C0 is of finite size]

≤ Pr[Mn > 0 for some n ≥ 4] (using that the grid is bi-partite)

≤
+∞∑
n=4

Pr[Mn > 0]

≤
+∞∑
n=4

E[Mn]

≤
+∞∑
n=4

(1− p)n · n
2
· 3n

=

+∞∑
n=4

n

2
· [3(1− p)]n < 1
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for some sufficiently large constant p < 1.

Exercise 2. Prove that pc ≤ 2/3 via similar arguments as in the above proof.
(Hint: let AN be the event that all edges in an open ball around the origin of
radius N are open. For any finite N we have Pr[AN ] > 0. Conditional on AN ,
one may consider the summation over closed cycles in the dual lattice starting
from a value Ω(N2)).

3 Second moment method

Theorem 7 (Chebyshev’s inequality). Let X be a random variable. Then

Pr[|X − E[X]| ≥ a] ≤ var[X]

a2

for any a > 0.

Corollary 8. If X ≥ 0 is non-negative random variable, then

Pr[X > 0] = 1− Pr[X = 0]

≥ 1− var[X]

(E[X])2
.

Proof. We use Chebyshev’s inequality with a = E[X].

Theorem 9 (Second moment method). For any non-negative but not identically
equal to 0, random variable X ≥ 0 we have

Pr[X > 0] ≥ (E[X])2

E[X2]
.

The second moment method is a technique to show that a random variable
has a positive probability of being positive. Theorem 9 is an example. It can be
proved directly, or observed as a consequence of the following inequality with
θ → 0.

Theorem 10 (Paley-Zygmund inequality). Let X ≥ 0 be a non-negative ran-
dom variable. For any 0 < θ < 1 we have

Pr[X > θ · E[X]] ≥ (1− θ)2 (E[X])2

E[X2]
.
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Proof. From Cauchy-Schwarz inequality we get

E[X] = E[X · 1X≤θ·E[X]] + E[X · 1X>θ·E[X]]

≤ θ · E[X] +
√

(E[X])2 Pr[X > θ · E[X]].

Rearranging gives the required inequality.

Exercise 3. Show that Paley-Zygmund inequality is a strict improvement over
Chebyshev’s inequality in some setting.

The second moment method can be thought as a converse to the union
bound.

Theorem 11. Consider m events Am1 , . . . , A
m
m. Let Bm := Am1 ∪ . . . ∪ Amm be

the union of the m events and µm :=
∑m

i=1 Pr[Ami ] be the expected number of
realized events. We write i ∼ j if and only if events Ami and Amj are dependent.
We set γm :=

∑
i∼j Pr(Ami ∩ Amj ) to be a measure of the dependence of the m

events. The following two statements hold.

• lim Pr(Bm) > 0 if µm → +∞ and γ ≤ C ·µ2m for some constant C > 0.

• lim Pr(Bm)→ 1 if µm → +∞ and γ = o(µ2m).

The proof is left as an exercise.

4 Percolation on the d-ary tree

We call an infinite tree d-ary if every vertex has exactly d children. We denote
this tree by T̂d (we use the hat symbol since Td is reserved for d-regular tree).
Pp is the distribution over subgraphs of T̂d where we keep each edge indepen-
dently with probability p. As before we call an edge “open” if we keep it in
the subgraph. C0 is the connected component containing the origin (root of the
tree). θ(p) is the probability that C0 has an infinite size. Similarly as before,
pc := pc(T̂d) := sup{p : θ(p) = 0}.

Theorem 12. pc = 1/d.

Proof. We will first show that pc ≥ 1/d. Assume that p < 1/d. We want to
show that the probability that C0 is infinite is 0. Let ∂n be the set of nodes at
the n-th level of the tree (root is at the 0-th level). Let Xn := |C0 ∩ ∂n| be the
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number of nodes of the connected component C0 in the n-th level. If p < 1/d,
then

θ(p) = Pr[|C0| = +∞] = Pr[Xn > 0 ∀n]

≤ Pr[Xn > 0] (for any particular n)

≤ E[Xn]

= dn · pn → 0.

In the last equality we use that fact that |∂n| = dn and that we keep each edge
on the root-to-node path with probability p.

In the rest we show that pc ≤ 1/d. We want to show that if p > 1/d, then
θ(p) > 0. We will use Theorem 9. We write µn := E[Xn] = E[|C0 ∩ ∂n|] =
dn · pn → +∞. We want to upper bound E[X2

n]. Given two nodes x and y in
the tree we write MRCA(x, y) to denote their most recent common ancestor.

E[X2
n] = E

[∑
x∈∂n

10↔x

]2
=

∑
x,y∈∂n

Pr[x ∈ C0, y ∈ C0]

=
∑
x∈∂n

Pr[x ∈ C0] +
∑

x 6=y∈∂n
Pr[x ∈ C0, y ∈ C0]

= µn +
∑

x6=y∈∂n

n−1∑
m=0

1MRCA(x,y)∈∂m Pr[x ∈ C0, y ∈ C0]

= µn +

n−1∑
m=0

p2n−m · dn · (d− 1)dn−m−1

≤ µn + p2nd2n
+∞∑
m=0

(pd)−m

= µn + µ2n
1

1− (pd)−1
.

In the second to last inequality we use the fact that there are dn options for x and
(d − 1)dn−m−1 options for y such that MRCA(x, y) ∈ ∂m. For such a choice
of x and y we want that 2n−m edges are open which happens with probability
p2n−m.

We can use Theorem 9 since

(E[Xn])2

E[X2
n]
≥
(

1

µn
+

1

1− (pd)−1

)−1
≥ Cp,d > 0.
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We get

θ(p) = Pr[Xn > 0 ∀n] ≥ lim
n→+∞

Pr[Xn > 0] ≥ Cp,d > 0

as required.

Exercise 4. Show the same statement for d-regular trees.
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