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1 The Galton-Watson Process

In this lecture we study the following stochastic process, which is called the
Galton-Watson process [1]. Let X ∈ Z≥0 be a random variable for which µ def

=

E[X] <∞. Define pk
def
= Pr [X = k]

Let {Xn,i}n,i≥1 be i.i.d. random variables, each of which is equal in distri-
bution to X . Define Z0 = 1 and Zn =

∑Zn−1

i=1 Xn,i for n ≥ 1. This formalizes
a generational process with a single “founder” at generation 0, where each indi-
vidual has a number of children equal in distribution to X .

This captures the dynamics of several natural processes:

• The propagation of a family name

• Nuclear chain reactions

• Percolation on the d-ary tree T̂d.

Additionally, this is a fundamental process which appears often in the study of
random graphs.
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Exercise 1. Show that E[Zn] = µn, and Mn = Zn
µn is a martingale with respect

to Fn = σ(Z1, . . . , Zn).

From this we can deduce by the Martingale Convergence Theorem that
Mn

a.s.→ M∞ < +∞ and E[M∞] ≤ 1 by Fatou’s lemma.

2 Survival Probability

One fundamental question we can ask is: what is η def
= P [Xn = 0 for some n]?

We will assume that p0 > 0, as otherwise η = 0.

Exercise 2. Show that almost surely, either Zn → 0 or Zn → ∞. Prove that if
µ ≤ 1 then η = 1.

Theorem 1. η is the smallest fixed point of f in [0, 1] (recall that f(s) = E[sX ]).
Furthermore,

• If µ < 1 then η = 1

• If µ > 1 then η < 1.

Proof. We analyze the generating function of Zn. That is, define ft(s)
def
=

E[sZt ] =
∑

k≥0 s
kpk. Note that f(s) is at least defined when 0 < s < 1,

and if we adopt a convention that 00 = 1, then f(0) = p0.

η = P [∃t s.t. Zt = 0]

= P [∪∞t=0{Zt = 0}]
= lim

t→∞
P [Zt = 0]

= lim
t→∞

ft(0).

So it suffices to compute

ft(s) = E
[
sZt
]

= E
[
E
[
sZt
∣∣Ft−1]]

= E
[
E
[
s
∑Zt−1

i=1 Xt,i

∣∣∣∣Ft−1]]

= E

Zt−1∏
i=1

E
[
sXt,i

]
= E

[
f(s)Zt−1

]
= ft−1(f(s)).
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So by induction on t, ft(s) =
t

f ◦ · · · ◦ f(s), which we will denote by f (t)(s).
Returning to η, we find that η = limt→∞ f

(t)(0), which intuitively should
be the first fixed point of f . Proving this rigorously uses the following properties
of f , which we will not prove. On the interval [0, 1], f satisfies:

• f(0) = p0 and f(1) = 1.

• f is infinitely differentiable.

• f is convex and increasing.

• lims↗1 f
′(s) = µ <∞.

3 Total Progeny

Another quantity of interest is W =
∑∞

t=0 Zt, i.e. the total progeny.

Exercise 3. If µ < 1, then E[W ] = 1
1−µ .

From the results of the previous section, it is easy to see that if µ > 1, then
E[W ] =∞. We will see how to go further and exactly calculate the distribution
of W .

3.1 Random Walk Representation

So far we have analyzed the Galton-Watson process at the granularity of gener-
ations. We can get a finer-grained view of the obtained tree T by considering
one vertex at a time. Specifically, we will define sets At (the “active vertices”),
Et (the “explored vertices”), and Nt (the “neutral vertices”) as follows.

1. InitializeA0 = {0}, E0 = Ø, andN0 = V (T )\{0}. (Here V (T ) denotes
the set of vertices of T ).

2. For t ≥ 1:

• IfAt−1 = Ø, do nothing. That is, (At, Et,Nt) = (At−1, Et−1,Nt−1).
• Otherwise, choose an arbitrary at ∈ At−1. Let

At = At−1 ∪ {children of at} \ {at},

Et = Et−1 ∪ {at},
and

Nt = Nt−1 \ {children of at}.
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We will write At, Et, and Nt to respectively denote |At|, |Et|, and |Nt|. We are

interested in τ0
def
= inf{t ≥ 0 : At = 0}, because of the following lemma, which

we will not prove.

Lemma 2. W = τ0.

Now we notice that the consecutive values of At are almost a random walk.
Specifically, we could have just defined A0 = 1 and

At =

{
At−1 +Xt − 1 if t ≤ τ0
0 otherwise,

where {Xt}t≥1 are i.i.d. random variables distributed identically to X . If we
define Yt = Xt − 1 and St = 1+

∑t
i=1 Yt, then St is genuinely a random walk

and At = St∧τ0 . Note that Yt ≥ −1.
τ0 is equivalently defined in terms of St as

τ0 = inf{t ≥ 0 : St = 0}

= inf{t ≥ 0 :

t∑
i=1

Xt = t− 1}.

The following exercise shows that when the expected number of children
is greater than 1, the probability of having at least k progeny but nevertheless
going extinct decreases exponentially with k.

Exercise 4 (Difficult). If µ > 1, then

P [k ≤W <∞] ≤ e−kI

1− e−I

where
I = sup

t≤0

(
t− logE

[
etX
])
> 0.

Theorem 3.

P [W = n] =
1

n
· P [X1 + · · ·+Xn = n− 1]

and more generally, if we have k i.i.d. copies W1, . . . ,Wk of W , then

P [W1 + · · ·+Wk = n] =
k

n
· P [X1 + · · ·+Xn = n− k] .

4



Proof. This is just a special case of the Hitting Time Theorem, which we prove
in the Section 3.3.

Corollary 4. When X is a Poisson distribution with intensity λ,

P [W = n] =
(λn)n−1e−λn

n!

for n ≥ 1.

3.2 An Aside on Duality

Suppose that we are only interested in the distribution of Zt conditioned on
extinction. It turns out that the resulting conditional distribution of Zt is the
same as the distribution of Z ′t in a related branching process.

Theorem 5. Let {Zt}t≥0 be a Galton-Watson process defined by pk such that

η < 1. Then conditioned on extinction, Zt
d
= Z ′t, where {Z ′t}t≥0 is a Galton-

Watson process defined by p′k = ηk−1pk.

Proof. First, observe that p′k does in fact define a probability distribution, be-
cause ∑

p′k =
1

η

∑
ηkpk =

1

η
E
[
ηk
]
=

1

η
· f(η) = 1.

Now we think of {Zt} and {Z ′t} as corresponding to valid “histories” H =
(X1, . . . , Xτ0) and H ′ = (X ′1, . . . , X

′
τ ′0
). Note Zt goes extinct iff τ0 < ∞. A

(finite) history (x1, . . . , xt) is valid if:

• For every i < t, X1 + · · ·+Xi > i− 1

• X1 + · · ·+Xt = t− 1.

Now for every valid (x1, . . . , xt),

P [H = (x1, . . . , xt)|τ0 <∞] =
P [H = (x1, . . . , xt)]

P [τ0 <∞]

=
1

η

t∏
i=1

pxi

=
1

η

t∏
i=1

η1−xip′xi

=

t∏
i=1

p′xi
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because
∑t

i=1 xi = t− 1

= P
[
H ′ = (x1, . . . , xt)

]
.

Exercise 5. Suppose that X ∼ Pois(λ) for λ > 1. Then conditioned on ex-

tinction, Zt
d
= Z ′t where X ′ ∼ Pois(µ) for the (unique) µ < 1 such that

λe−λ = µe−µ.

3.3 Hitting Time Theorem

Theorem 6. Let Y be any integer-valued random variable such that Y ≥ −1
almost surely, let {Yt}t≥1 be i.i.d. copies of Y , and let Pk denote the law of

Sn
def
= S0 +

∑n
i=1 Yi for S0 = k. Define τ0

def
= inf{t ≥ 0 : St = 0}. Then for

all n ≥ 1 and all k ≥ 0,

Pk [τ0 = n] =
k

n
· Pk [Sn = 0] .

Proof. Our proof is by induction on n.

Base case When n = 1, we consider three cases for k.

• If k = 0, then τ0 = 0, so

Pk [τ0 = n] =
k

n
· Pk [Sn = 0] = 0.

• If k = 1, then

Pk [τ0 = n] =
k

n
· Pk [Sn = 0] = P [Y = −1] .

• If k > 1, then Sn cannot possibly be 0 (because Y ≥ −1) so

Pk [τ0 = n] =
k

n
· Pk [Sn = 0] = 0.
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Inductive Step When n > 1, we consider two cases for k.

• If k = 0, then just as before τ0 = 0 so

Pk [τ0 = n] =
k

n
· Pk [Sn = 0] = 0.

• The interesting case / the case where we actually use the inductive as-
sumption is when k ≥ 1. In this case, we have

Pk [τ0 = n] =
∑
s≥−1

Pk [τ0 = n|Y1 = s] · P [Y1 = s] .

But

Pk [τ0 = n|Y1 = s] = Pk+s [τ0 = n− 1]

=
k + s

n− 1
· Pk+s [Sn−1 = 0] by hypothesis

=
k + s

n− 1
· Pk [Sn = 0|Y1 = s]

So by Baye’s rule,

Pk [τ0 = n] =
k

n− 1
Pk [Sn = 0] +

∑
s≥−1

s

n− 1
· Pk [Y1 = s|Sn = 0] · Pk [Sn = 0]

=

(
k

n− 1
+

1

n− 1
Ek [Y1|Sn = 0]

)
· Pk [Sn = 0] .

But since each Yi is identically distributed, we have

Ek [Y1|Sn = 0] =
1

n
Ek

[
n∑
i=1

Yi

∣∣∣∣∣Sn = 0

]
= −k

n
.

Plugging everything in and simplifying, we get

Pk [τ0 = n]

Pk [Sn = 0]
=

k

n− 1
− k

n(n− 1)

=
nk − k
n(n− 1)

=
k

n
.
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