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1 Introduction

1.1 An analogy

To help guide our intuition, here are a few different areas of math and general
meta-principles whose relationships are all analogous to each other.

• Discrete Probability: If Z is a RV which depends ”nicely” on a bunch of
independents, then

P[|Z − EZ| > t] . e−t
2/2ν

where ν ≈ varZ.

• Geometry: High-Dimensional spaces under product measures ”look star-
shaped”, with tendril lengths ∼ n and core size ∼

√
n.

• Functional Analysis: ∫
f2 log fdνn .

∫
‖∇f‖2
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1.2 Longest Common Subsequence

Let LCS(a, b) denote the length of the longest common subsequence of two
strings a and b.
(Note: This is not to be confused with the similarly defined longest common
substring. For example, the longest common substring of 01010 and 00001
is 01, but the longest common subsequence is 001 or 000 since it allows char-
acters to be skipped in a and b.)

Consider Xi ∼ Ber(1/2) iid and Yi ∼ Ber(1/2) iid. Is there something
we can say about the expected value of LCS, normalized by n? On one hand,
using superadditivity (ie. E[Xm+n, Y m+n] ≥ E[Xm, Y m] + E[Xn, Y n]), it is
not too much work to realize that there is a constant ν such that

E
[
1
nLCS(Xn, Y n)

]
→ ν

Historically, it has been difficult to compute ν precisely or to compute the dis-
tribution of LCS, but we can still compute bounds on the tail probabilities. (For
example, we might want to try and estimate ν using a sampling method, for
which we would like to determine how many samples we might need.) One way
to do this is to apply Chebyshev’s inequality by bounding the variance by 1/n,
which results in

P
[∣∣∣∣ 1nLCS − µ

∣∣∣∣ > t

]
<

1

nt2

More generally, using the ideas from this section, we will be able to find expo-
nential bounds such as

P
[∣∣∣∣ 1nLCS − µ

∣∣∣∣ > t

]
≤ 2e−nt

2/2

2 Precursor to Concentration of Measure: Large Deviations Principle

Theorem 1. Let Xi ∼ PX iid taking (discrete) values in R. If t > EX , then

P

[
1

n

n∑
i=1

Xi > t

]
= exp(−nE(t) + o(n))

and if t < EX , then

P

[
1

n

n∑
i=1

Xi < t

]
= exp(−nE(t) + o(n))

where E(t) = supλ λt−ΨX(λ) and ΨX(λ) = logE[eλX ], the log MGF.
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Proof. (We only prove the theorem for the case t > EX . The other is analo-
gous.)

Without loss of generality, let PX =
∑m

i=1 piδai ; i.e. X takes value ai with
probability pi.
(≤): Use the Chernoff bound

P
[
1
n

∑
Xi > t

]
≤ E[exp(n(ΨX(λ)− λt))]

by minimizing over all λ, we get the upper bound e−nE(t).
(≥): The technique here is referred to as the ”method of types”. We introduce a
few notations:

• As shorthand for the n-tuple (x1, . . . , xn), we write x(n).

• p̂ denotes the distribution on [n] with rational probabilities such that np̂i ∈
Z for all i ∈ [m]. This distribution is called an n-type.

• For all n-types p̂, let Tp̂ denote the set of all outcomes of size n whose
empirical distribution is exactly p̂:

Tp̂ = {x(n) : #{i : xi = aj} = np̂j}

From the above, we see that

P
[
1
n

∑
Xi > t

]
=

∑
n-types p̂:

∑
p̂iqi>t

P[X(n) ∈ Tp̂]

≥ P[X(n) ∈ Tp̂∗ ]

where p̂∗ is the argmax of the probabilities in the summand. However, Tp̂ is
permutation-invariant, so in fact

P[X(n) ∈ Tp̂] =

(
n

n1, . . . , nm

)
pn1
1 · · · p

nm
m

= exp
(
nH(p̂) + o(n) + n

∑
p̂i ln pi

)
In the second line in the above calculations, we made use of Stirling’s approxi-
mation, and the definition of entropy H(π) =

∑
πi ln 1

πi
.

At this point we are basically done. We compute P[X(n) ∈ Tp̂∗ ] by maximiz-
ing the above over all p̂, subject to

∑
p̂iqi > t. This can be accomplished using

Lagrange multipliers, which yields −E(t). (The computation is omitted.)
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There are a few problems with this result, which we will address shortly.

1. E(t) is hard to evaluate.

2. What if (Xi) are independent, but not identically distributed?

3. What if they are not even independent?

(1) and (2) will be resolved by Hoeffding’s lemma, and (3) will be addressed by
another, related lemma called Azuma-Hoeffding.

3 Hoeffding and Azuma-Hoeffding Lemmas

Lemma 2 (Hoeffding’s Lemma). If a ≤ X ≤ b almost surely, then

Ψ′′X(λ) ≤
(
b− a

2

)2

An immediate, useful corollary is

Corollary 3. If (Xi) are independent and ai ≤ Xi ≤ bi for all i, then

P

[∣∣∣∣∣
n∑
i=1

Xi − EXi

∣∣∣∣∣ > t

]
≤ 2 exp

(
− 2t2∑

i(bi − ai)2

)
Here, we present the proof of both.

Proof of Lemma 2.

Ψ′(x) =
EXeλX

EeλX

⇒ Ψ′′(x) =
EX2eλX

EeλX
−
(
EXeλX

EeλX

)2

= var(Xλ)

≤
(
b− a

2

)2

where Xλ ∼ PX(dx) eλx

Eeλx is the specified exponential tilt of X .
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Proof of Corollary 3. Without loss of generality, assume EXi = 0 for all i.
Observe that

ΨX1+···Xn(λ) = ΨX1(λ) + · · ·+ ΨXn(λ)

By taylor expanding each individial Ψ, we see that

ΨXi(λ) ≤ 1

2

(
bi − ai

2

)2

λ2

⇒ Ψ∑
Xi ≤

λ2

2

∑
i

(
bi − ai

2

)2

Applying Chernoff’s bound completes the proof.

Theorem 4 (Azuma-Hoeffding). Let (Sk)k=1,...,n be a martingale with respect
to the filtration (Fk)k=1,...,n, with |Sk − Sk−1| ≤ ck for all k. Then

P [|Sn − ESn| > t] ≤ exp

(
− t2

2
∑n

k=1 c
2
k

)
Proof. Without loss of generality, assume S0 = 0. Let M be the martingale
difference of S: Mi = Si − Si−1. (Note that Sn =

∑
Mi.)

By hypothesis, we know that |Mi| ≤ ci for all i, and E[Mi

∣∣ Fi−1] = 0 by
definition of a MG. Observe that

E[eλSn
∣∣ Fn−1] = eλSn−1E[eλMn

∣∣ Fn−1]
so to get a bound on the conditional expectation of eλSn , it suffices to get a bound
on that of eλMn . This is straightforward using a linear interpolation: since exp

is convex, the function eλx is upper bounded by (x+ c) · eλc−e−λc2c + e−λc in the
region x ∈ [−c, c].

E[eλMn
∣∣ Fn−1] ≤ (E[Mn

∣∣ Fn−1] + cn) ·
(
eλcn − e−λcn

2cn

)
+ e−λcn

=
eλcn + e−λcn

2

=
∑
m≥0

(λcn)2m

(2m)!

≤
∑
m≥0

(λ2c2n/2)m

m!
= eλ

2c2n/2
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and therefore E[eλSn
∣∣ Fn−1] ≤ eλSn−1eλ

2c2n/2. Applying this argument induc-
tively yields the bound

EeλSn ≤ e
1
2
λ2

∑
c2i

From here, using a Chernoff bound completes the proof.

4 Sub-gaussian Random Variables

Frequently, we have been proving bounds in the form

P[|Z − EZ| > t] . e−t
2/2ν

The following definition generalizes this.

Definition 1. A random variable Z is (b, ν)-subgaussian if for all t > 0, it
satisfies

P[|Z − EZ| > t] ≤ be−t2/2ν

The parameter ν here should be thought of as a placeholder for the variance
of some gaussian distribution. Here is an easy property we can prove right away:

Proposition 5. If Z is (b, ν)-subgaussian, then varZ ≤ 2bν.

Proof. Without loss of generality, assume EZ = 0. The derivation is straight-
forward:

varZ = EZ2 =

∫ ∞
0

P[Z2 > s]ds

≤
∫ ∞
0

be−s/2νds = 2bν

In the context of Homework 1, this puts a bound on how different the mean
and the median can be: |EZ −MZ| ≤

√
varZ =

√
2νb.

In fact, there are many ways to characterize a subgaussian random variable.
In fact, depending on the literature being referenced, one may see any of the
following properties used in the definition of a subgaussian RV.

Proposition 6. The following are equivalent, up to absolute constants that relate
b, b′ and ν, ν ′ in each of the statements separately.

(1) Z is a (b, ν)-subgaussian RV.
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(2) ΨZ(λ) ≤ λEZ + ν′

2 λ
2 + ln b′

(3) E[exp( 1
2ν′ (Z − EZ)2)] ≤ b′

(1’) P[|Z −MZ|] ≤ b′ exp
(
− t2

2ν

)
(2’) ΨZ(λ) ≤ λMZ + ν′

2 λ
2 + ln b′

(3’) E[exp( 1
2ν′ (Z −MZ)2)] ≤ b′

We sketch a proof for the equivalence of some of the above. The rest aren’t
too much more work.

Proof. (2⇒ 1) with b = 2b′, ν = ν ′.

P[|Z − EZ| > t] ≤ 2 exp(Ψx(λ)− λt)
≤ 2b′ exp(λ(EZ − t) + ν ′λ2/2)

WLOG assume EZ = 0. Also, take λ = t/ν ′ to minimize the right hand side.

= 2b′ exp(−λt+ ν ′t2/2) = 2b′e−t
2/2ν′

(1⇒ 2) with b′ = b
√

2π, and ν ′ = 2ν.

EeλZ =

∫ ∞
0

P[eλZ > s]ds

=

∫ ∞
0

P[Z > 1
λ lnS]ds

=

∫ ∞
−∞

euP[z > u/λ]du

= b
√

2πλ2νeλ
2ν/2 ≤ b

√
2πeλ

2ν

(3 ⇒ 1) with b = b′ and ν = ν ′: The idea is to bound P[|Z − EZ| > t] =
P[e(Z−EZ)

2
> et

2
] ≤ b′ exp(−t2/2ν ′) via Chebyshev.

(1⇒ 3) with b = b′ and ν = ν ′. This is shown similarly to (1⇒ 2): just bound∫
P[e

1
2ν′ (Z−EZ)

2

> s]ds.
Finally, to convert to 1′), 2′), 3′) we use |EZ − MZ| ≤

√
2νb and after

simple algebra we get, for example, that (1 ⇒ 1′) with b′ = beb and ν ′ = 2ν
and, similarly, (1′ ⇒ 1) with b = b′eb

′
and ν = 2ν ′. The equivalence of all

1′, 2′, 3′ is shown as above.

7


