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Note: Everything below will be in the p = 1/2 setting.

1 Proof of KKL via Hypercontractivity

Last time: Fourier decomposition

f@) = 3 F(S)us(x)
ScC[n]

where

i€s
and ||ug||2 = 1 and the ug are orthogonal.
Therefore

f(S) = Blfus)]

Then R
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Theorem 1 (KKL 88). There exists a universal ¢ > 0 such that for all n and

£:{0,1}" = {0,1},
I(f) = cVar(f)log(1/7)

where
7 = max [;(f)
(A

Theorem 2 (Hypercontractivity). For any f : {0,1}" — R, forallt > 0
Y e PEIFA(S) = (Bl f(2)|%)*

S

where ¢ = 1+ e~ 2,

Proof (KKL using Hypercontractivity). Poincare tells us that

4>718172(8) = 4 FA(S) = aVar(/)
5#0

I >4Var(f)

But this is very loose in symmetric case where all coordinates have similar small
influence.
Recall

Vif(z) = f(z) = fz +ei)

If f is boolean then | V; f|? is also boolean. Also
Ii(f) = E| Vi f|*

for any a > 0. - A
Last time we checked that V; f(.S) is 0 for S > ¢ and is 2f(S) for S > i.
Thus from hypercontractivity

4Zf2(s)e—2t|5\ < (E‘ V; f‘q)2/q _ I;/q

S31

and for ¢ < 2 we know 2/q > 1
We only need hypercontractivity for some ¢, we pick 2t = log 2, then ¢ =
1+1/2=3/2s02/q=4/3. Then we get the following inequality:

43" PSS < 1

eV



Summing over all ¢ we get
AN ISI2S)2 8 < ST < BN L = 2 (p)
S i i

and we can lowerbound for any L by

4-270 3" f2(8) <4y |SIf2(9)271l,
S

|S|<L

Thus
> f(s 2L YRI(f).
0<|SI<L

Also

S P < 3 IIPS) < ISP =

[S|>L |S|>L

Also from Poincare we know

> s izww

S#0
Observe
Var(f)=Y_ F7(5)= Y S+ > f*(s 2L Y3/ 0)r
S#0 |S|<L |S|>L

What remains is to balance the terms in the sum. We take L = ¢; log(1/7) —
cologlog(1/7) (1 = (log2)/3) and then we get an upper bound of

1
og(i/m)

which is the desired result. O

)M(f)

2 Proof of Hypercontractivity

Remaining question: how to prove hypercontractivity?

Let X; be a discrete time simple random walk on {0,1}™. (not lazy). Define
N¢ ~ Pois(n) and X; = X N, a continuous time markov chain (n-fold speedup
of previously introduced continuous time markov chain, which was Pois(1)).

So
1—et

X, = Xo + Ber( )@,




The kernel of this markov chain is
Ti(w,a') = (1 — )/ (14 et /2
The following are basic properties of 73:
Proposition 3.
1. TiTs =T s fort,s >0
2. Tyf(x) = Ef(x + Z;) and Zy ~ Ber((1 —e™t)/2)

3. cov(Xy, Xo) = (1/4)pI,, where p = et is the “correlation coefficient”
and Xy ~ Uniform.

4. T,f(S) = e S f(9)

5. T = (T ie. Ty((a, ... an), (@, ..., ah)) = [T (2, )
and
(1+e /2 (1—et)/2

1) _
To=la=et2 q+et)2

Only one which is worthwhile to check is 4th one. Observe
1 _
T (1) = (1= p) (-1 = e (-1)¥

(column matrix 1 —1)
Therefore

1{us =[] uie) = e~ Slus
€S

Corollary 4.
ITf 13 = 1Y T (S)usl3 = 3 f2(S)e1S
S s

and observe the rhs is the lhs of hypercontractivity inequality.
Note that T} is a conditional expectation operator, and so therefore by Jensen

Tip < o(T)

where ¢ convex. In particular

IT:fll2 < 11712



Also we know
1 fllqg < 11fllp

whenever ¢ < p.
Hypercontractivity (restated):

HthH2 < HfHH-e*Qf

note this is stronger than just the 2-norm estimate by Jensen.
Proof: First check n = 1.

1A +e /2 (1—eYH/2] [a a
I35 [(1 —e)/2 (1+e‘t)/2} [b] l2 <] [b] (1/2)llq
where e.g.
I|s] /2= /iar + a2y

Fix one guy by rescaling, then check in matlab.
Induction Lemma: For matrices A, B suppose: ¢ < 2 and

[Afll2 < 11 fllg

for any f and
1Bgll2 < llgllq
for any g and also A;;, B;; > 0. Then:

|A® Bhlla < [[hllq

Proof: See Yury’s note on Stellar.

Side-note: cool proof of Hypercontractivity is to know that there is equality
at time 0 and then just differentiate with respect to ¢ and get logarithmic sobolev
inequality to check.

3 Noise Sensitivity

Define for any f boolean

Ni(p) = Ef(X2)f(Xo) = (f, Tof) = (Tij2f, Tyj2f)

where p = et as before is the correlation coefficient. Note ¢+ = 0 corresponds
to p = 1 and t = oo corresponds to p = 0. Thus

Ni(p) =) fAS)e ¥ =3 " f2(5)pl°!
S S
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and we see from the last expression that this is convex and increasing. Suppose
E[f] = d and f is boolean. Then we can visualize the graph of N¢(p) as starting
at 62 and curving upward as we increase the correlation p .

Corollary 5. If Ef = 1/2 then

Ny(p) < (1/4)(1 + p)
(tight iff f(x) = 1 or one of its symmetric partners)

Take f,, a sequence of boolean functions, each with domain {0,1}" s.t.
Ef, — 9.

Definition 1. {f,} is noise sensitive if

forall p € (0,1). (“asymptotically flat”)

Definition 2. {f,} is noise-stable if

SELP(an(l) — Ny, () —p—10

i.e. “uniformly continuous at 1”.

These definitions are almost complementary but not strictly so, e.g. a con-
stant function satisfies both.
Idea: noise sensitive should be like, for all ¢

E fn(zt) fa(xo) =~ E2fn(x0)

We consider the following example from percolation: what is the probabil-
ity there exists a L to R crossing on an n x n square? This is exactly 1/2
because there is either an left-to-right crossing in the primal lattice or an up-
down crossing in the dual lattice. Also if we consider majority, we see that
E fimaj(x) = 1/2. But these functions are different: majority is noise stable and
the left-to-right crossing is noise-sensitive.
Observe
Njpaa(p) = Emaj(Xeymaj(Xo)

which by CLT is
P[Zl > 0,pZ1 + 1 —p2ZQ > O]



where 77, Z are iid standard normals. And can compute that this is (look at 2d
intersection of halfplanes with specified angle)

i + (aresin(p)/2m)

Previously we saw dictator is most noise stable but it has very nasty/“unfair”
influences. In fact there is a theorem which asserts that among functions without
nice influences, majority is asymptotically stablest.

Theorem 6 (MOO ’10). For every § > 0 there exists T > 0 such that if
Inax(f) < 7 then
Ni(p) < Nmaj(p) + 6

i.e. “majority is stablest”.
The next theorem gives a criterion for proving functions are noise sensitive.

Theorem 7 (BKS 99). If > I?(fn) — 0 as n — oo then f, is noise sensitive.
Furthermore this is an iff when f,, are monotone.

Weaker statement which suffices for most applications: if ) I Z2 ¢ — 0 then
noise sensitive. Proof: Application of Hypercontractivity, very similar to use in

KKL theorem. X
YISIAS)e B <>y e =0
i

which means f is conecentrated on high frequencies and thus noise sensitive.

Recall that our application of KKL to prove the Kesten theorem uses the
idea that when something is small (max influence), then something else is very
big (derivative equal to total influence). We give an example of this philosophy
with percolation and BKS.

Pick a single edge e in percolation on n X n square lattice. If this edge
is influential then there is a crossing through it in both primal and dual lattice.
Draw circle of radius r, we call this a “four-arm” event in this circle.

I,(f) < Plfour-arm event in B(r = d(e, 0))] = ro/4

where 0 denotes the boundary and the last equality is well-known to percolation
theorists. Then we get n?n~19/4 = n~'/2 — 0 in BKS theorem which proves
noise sensitivity of the left-to-right crossing. (Ignoring the boundary)

Let fy,(x;) be the indicator that there exists L-R crossing in X;.

Sample X iid bernoulli in 1/2. Dynamical percolation: suppose we know
at time O there is a crossing and each edge “blinks” with poisson rate 1

B[fu(X0)|fa(Xo) = 1] = 2Ny, (™)



which goes to 2(1/2)? = 1/2 very quickly. So even after a very short time there
is basically a 1/2 chance that there exists a left to right crossing.

Note monotone noise-sensitive functions necessarily have a sharp threshold
and we can prove noise sensitivity by BKS, which is one way to see that perco-
lation etc. have sharp thresholds.

Inspirational quote: There are two stages of not knowing, the first is not
knowing what exists... hopefully you are at the second stage, not knowing things
but knowing that they exist.



