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In this lecture we begin analyzing the phase transition in the Ising model.
Specifically, the Ising model is: we have a graph G = (V,E) where |V |= n
and a function x:V → {−1,+1} — that is, a vector x ∈ {−1,+1}n. We
sample x according to the distribution

p(x) =
1

Z
exp

γ ∑
(i,j)∈E

xixj + h
∑
i

xi


We think of γ > 0, so there is a higher probability of xi = xj when i ∼ j
than of the opposite. Here as usual Z is a normalizing constant. The other
model we consider, the Curie-Weiss model, is a special case where G = Kn

(and we reparameterize γ):

p(x) =
1

Z
exp

[
β

n

∑
i 6=j

xixj + h
∑
i

xi

]
We take β > 0. If h ≥ 0 then the event xi = 1 for all i is the most
probable. This model is useful since we can reparameterize it in terms of its
“magnetization” x = 1

n

∑
xi so that the parameter in the exponent is

nβ

2
x2 − β

2
+ nhx

Then the probability of a configuration depends only on its magnetization.
We now have three questions before us, in this simple model:

1. What is the typical value of x? Lest this question seem trivial — be-
cause the highest-probability even is all ones — consider that we might
typically be one of a class of many indistinguishable configurations, as
the high-dimensional normal distributions are typically on a spherical
shell even as the origin has the highest probability mass. It will turn
out here that if β < βc = 1, then typically x ≈ 0, while if β > βc = 1
then x is the solution to x = tanh βx.

2. What is the mixing time of the Glauber dynamics? It will turn out
that in the subcritical regime (β < βc) it takes about n log n time to
mix, while in the supercritical regime the mixing time is no less than
eΩ(n).
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3. What is the overall structure of the probability measure, geometri-
cally speaking? In an unsurprising way given the last assertion, in
the subcritical regime the measure gives probability mass to a unified
blob, while in the supercritical regime there are at least two almost-
disconnected components that receive substantial mass.

Let’s briefly state what the Glauber dynamics are here: we choose a vertex
v ∈ V randomly, then update its spin to be +1 with probability P[xv = 1 |
x∼v], and −1 otherwise. This former probability is

exp [γ
∑

v∼w xw + h]

exp [γ
∑

v∼w xw + h] + exp [−γ
∑

v∼w xw + h]

First we tackle the question of what the typical value of x is.
Lemma 1. Let m ∈ [−1, 1], and define

ψβ(m) =
β

2
m2 + hm+H

(
m+ 1

2

)
where H(x) = −x log x− (1− x) log(1− x) is the binary entropy. Then

e−β/2

m+ 1

enψβ(m)

Zn(β)
≤ P[x = m] ≤ enψβ(m)

Zn(β)

Proof. By simple counting

P[x = m] =
1

Zn(β)
exp

[
n

(
β

2
m2 − β

2n
+ hm

)]
·
(

n

n(m+ 1)/2

)
By Stirling’s approximation from both sides(

n

n(m+ 1)/2

)
∼ exp

[
nH

(
m+ 1

2

)]
where on one side we have a simple inequality and on the other we have it
with the factor of 1

m+1
. Inserting this concludes.

In light of the previous lemma, the following has the interpretation that the
events with the highest probability make overwhelming contributions to the
average case, while the other events make almost none. This is just how in
the limit (∑

enbi
)1/n

→ emaxi bi
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Lemma 2. Define the “free energy”

ϕn(β) =
1

n
logZn(β)

and
ϕ∗(β) = sup

m∈[−1,1]

ψβ(m)

Then

ϕ∗(β)− β

2n
− 1

n
log n(n+ 1) ≤ ϕn(β) ≤ ϕ∗(β) +

1

n
log n

Proof. By the last lemma we have

Zn(β) ≤
∑
m

enψβ(m) ≤ n
∑
m

enϕ∗(β)

and we can use the above scaling limit to conclude, for very large n. The
lower bound is the same. To get the result for all n, not just large ones, we
just muck around with the limit.

Now we are in a position to answer the first question we posed at the begin-
ning of the lecture, by maximizing ψβ(m). We have

ψ′β(m) = h+ βm+ log

(
1−m
1 +m

)
= 0

⇒ m = tanh(βm+ h)

The behavior of this solution differs dramatically for β ≤ 1 and β > 1. For
β ≤ 1 there is only one solution, corresponding to a unique maximum of
ψβ (it is off-center). For β > 1 (and 0 ≤ h ≤ h∗(β)) there are actually
three solutions, because the slope of the tanh function becomes steeper than
the line y = m, and these correspond to two maxima and one minimum.
The minimum is at zero, and the maxima are symmetric about the origin,
as illustrated in the next theorem. The larger of the two maxima is on the
right, and we call it m+(β, h).

If β > 1 but h > H∗(β) there is agaon only one local maximum; we call this
m∗ still.
Theorem 1. If h > 0 or h = 0 and β ≤ 1, there is C = Cε such that

P[|x−m∗(β, h)|< ε] ≥ 1− e−Cεn

If h = 0 and β > 1, then

P[|x−m∗(β, h)|< ε] > 1/2− e−Cεn
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and
P[|x+m∗(β, h)|< ε] > 1/2− e−Cεn

Proof. If h > 0 or β ≤ 1, then

P[|x−m∗(β, h)|> ε] ≤ n+ 1

Zn(β)
exp [nmax{ψβ | |m∗m|> ε}]

≤ (n+ 1)3

eβ/2
exp [nmax{ψβ − ϕ∗(β) | |m∗m|> ε}]

The term in the exponent is at most −Cε, and this concludes the first part.
The other is similar, and uses the symmetry of ψβ.

This answers the first question. We leave the second until later. For the
third:
Theorem 2. Define Ω+ = {x | x ≥ 0} and Ω− = {x | x < 0, and define the
ε-boundary ∂ε(A) = {x | 1 ≤ dH(x,A) ≤ nε}. Then there is ε > 0 such that

p(∂εΩ±)

p(Ω±)(1− p(Ω±))
→ 0

and in fact this occurs exponentially quickly.

Proof. Take ε = m∗/2; then ∂ε(Ω+) = {x | −m∗/2 ≤ x ≤ 0} ⇒ p(∂εΩ+) ≤
e−cn from the last theorem.

From this, we get a conductance lower bound on the mixing time for Glauber
dynamics of eΩ(n) in the β > 1 case.

The last thing to do is fast mixing at high temperatures. For this we move
to more general graphs, and assume h = 0. We’ll make use of path coupling:
Theorem 3. Suppose for all neighboring states x, y ∈ Ω there is a coupling
X1 ∼ p(x, ·), Y1 ∼ p(y, ·) such that Eρ(X1, Y1) ≤ e−αρ(x, y), where ρ is a
metric on the state space Ω. Then tmix . α−1 log diamΩ.

Let σ and τ be two states differing only at some vertex v, and let ρ be the
Hamming metric (so ρ(x, y) = 1). The coupling we use is obvious: let

p(σ,w) = P[σw = +1 | σ∼w]

p(τ, w) = P[τw = +1 | τ∼w]

and let U ∈ [0, 1]. We pick w randomly and update τ(w) as 1 if U ≤ p(τ, w)
and −1 else, and update σ(w) as 1 if U ≤ p(σ,w) and −1 else. After one
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step, if we selected w that is not v or a neighbor of v then ρ(σ′, τ ′) stays the
same, at 1. If we selected w = v then ρ(σ′, ρ′) = 0, and if we selected w ∼ v
then with probability p(τ, w) − p(σ,w) we have ρ(σ′, τ ′) = 2 and with the
complementary probabiltiy the distance remains 1. Then

Eρ(σ′, τ ′) = 1− 1

n
+

1

n

∑
w∼v

p(τ, w)− p(σ,w)

If we let S(w) =
∑

u∼w σ(u) then S + 2 =
∑

u∼w τ(u) and so

p(τ, w)−p(σ,w) =
eβ(S+2)

eβ(S+2) + e−β(S+2)
− eβS

eβS + e−βS
=

1

2
(tanh β(S + 2)− tanh βS) ≤ tanh β

so

Eρ(σ′, τ ′) ≤ 1− 1

n
+

∆

n
tanh β = 1− C(β) ≤ e−C(β)/n

so we can apply the path coupling theorem with α = C(β)/n to get a mixing
time of n/C(β) log n, since the diameter of the state space is clearly log n.
Here we defined C(β)− 1 = ∆ tanh β, where ∆ is the maximum degree.
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