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1 Review of eigenfunctions and spectral gap

We recall some of the results from last time and derive some new ones. Let X be
a finite state space for an irreducible reversible Markov chain Xt with stationary
distribution π.

• Recall the relaxation time trel := 1/γa where γa := supλ6=1(1 − |λ|) is
the absolute spectral gap. Then

trel ≤ tmix ≤
1

trel
log

(
1

πmin

)
where πmin is the minimal atom of π.

• If X is a transitive chain (i.e., the underlying graph of X is vertex transi-
tive), then

d2(t) =
(∑

λ2tj

)1/2
.

• From problem 3 in homework 7, we have for any function g : X → R,

V ar[Ptg] ≤ (1− γa)2tV ar[g].
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• The following is an analogous result for covariances.

Cov(f(Xt), g(X0)) = (Ptf, g) =
∑
j 6=1

λtjajbj

≤ (1− γa)t
∑
j=1

|ajbj | ≤ (1− γa)t
√
V ar(f)V ar(g)

• Now we can dope out a more concrete interpretation of the relaxation time
by considering fluctuations of the empirical mean of f(Xt):

V ar

(
1

T

T−1∑
t=0

f(Xt)

)
≤ 1

T 2

T−1∑
s=0

2TCov(f(Xt, f(X0))

≤ 1

T

∞∑
t=0

(1− γa)tV ar[f ] =
2V ar[f ]

T/trel
.

The last result tells us that to generate multiple samples va MCMC, it suf-
fices for the sake of an approximation to run the MCMC once and sample from
it every trel steps. This is useful computationally speaking because the mixing
time is often much larger than the relaxation time.

Consider the following interpretation of an eigenfunction f on X . If we
know the value of f(Xt), then a natural estimator is

f̂t+1 = λf(Xt).

Observe the following:

• λ ≈ 1⇒ f is almost constant

• λ ≈ 0⇒ f(Xt) is independent of f(Xt−1).

• λ ≈ −1⇒ f is oscillatory.

Moreover, if

λ2 = max
(
Ef(Xt+1)f(Xt) : Ef = 0,Ef2 = 1

)
is large, then it is impossible to partition X .
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2 The Dirichlet form and applications

The Dirichlet form allows us to develop a notion of spectral gap for Markov
chains that are not reversible.

Definition 1 (Dirichlet form).

E(f, f) , ((I − P )f, f).

Definition 2 (Poincaré constant/spectral gap).

γ , inf
f 6=0

E(f, f)
V ar[f ]

By definition, we have the so-called Poincaré inequality:

V ar[f ] ≤ 1

γ
E(f, f).

Proposition 1. Let P be a reversible MC.

1. E(f, f) = 1
2E[f(X1)− f(X0)].

2. γa = 1− λ2 ≥ γ

3. If P is a simple random walk on a d-regular graph G,

E(f, f) = 1

2d
E ‖∇f‖2

where∇f(x) =
∑

y∼x f(x)− f(y).

We think of 1. in the above proposition as the local variance and 3. as
an interpretation of how the stationary distribution π plays against the ambient
metric.

Proof. 1.

((I−P )f, f) = Ef2−(Pf, f) = Ef2−Ef(X1)f(X0) =
1

2
E(f(X0)−f(X1))

2.

2. Let f =
∑

j 6=1 ajfj , then

E(f, f) =
∑
j

a2j (1− λj) ≤ (1− λ2)V ar[f ].
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3.
E(f, f) = 1

2n

∑
x∼y

1

d
(f(x)− f(y))2 = 1

2d
E ‖∇f‖2 .

As an application, we get an interesting proof of Efron-Stein.

Proof of Efron-Stein. Define P (x, y) = π(y) to be the Markov chain that mixes
in one step. Note that γ(P ) = 1. Next,

E(f, f) = ((I − P )f, f) = ((I − E)f, f) = ((I − E)f, (I − E)f) = V ar[f ]

if Ef = 0. Define the product MC

P (n) =
1

n

∑
i

I ⊗ I ⊗ · · · ⊗ P ⊗ · · · ⊗ I,

and observe that γ(P (n)) = 1
nγ(P ) = 1

n . Let {Xi} ∼ π be iid random vari-
ables, and set X = (X1, . . . , Xn). Note that

E(f, f) = 1

2n

∑
i=1

E(f(X)− f(X(i))2

We see that

V ar(f(X)) ≤ n 1

2n

∑
i

E(f(X)− f(X(i))2 =
1

2

∑
i

E(f(X)− f(X(i))2.

Our second application is the Cheeger inequality.

Theorem 2 (Cheeger Inequality). Let P be a reversible MC. Recall the follow-
ing:

• The capacitance of the edge from x to y is c(x, y) , π(x)P (x, y);

• more generally, we define the capacitance of a subset S of the state space:

c(S, Sc) ,
∑

x∈S,y∈Sc

c(x, y);

and
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• the Cheeger constant is defined to be

ϕ∗ = min
π(S)≤ 1

2

c(S, Sc)

π(s)
.

Then we have
γ

2
≤ ϕ∗ ≤

√
2γ.

Proof. First, we prove the lower bound. Take some S ⊂ X . Then

E(1,1) = 1

2
E[1S(X1)− 1S(X0)]

2

=
1

2
(P[X0 ∈ S,X1 /∈ S] + P[X0 /∈ S,X1 ∈ S]) = P[X0 ∈ S,X1 /∈ S] = C(S, Sc).

Moreover, V ar[1S ] = π(S)π(Sc). Therefore,

γ ≤ E(f, f)
V ar[f ]

=
C(S, Sc)

π(S)(1− π(S))
≤ 2

C(S, Sc)

π(S)
= 2ϕ∗.

For the opposite direction, take an arbitrary g ≥ 0 such that π(g = 0) ≥ |12 |.
Observe that

P[g(X1) ≤ θ < g(X0)] = P[X0 ∈ {x : g(x) > θ}, X1 ∈ Sc]
≥ ϕ∗P[g(X0) > θ] = ϕ∗Eg.

Now integrate both sides with respect to θ:

E
∫

dθ 1{g(X1) ≤ θ < g(X0)} =
1

2
E[g(X1)− g(X0)]

= E(g(X0)− g(X1))+ ≥ ϕ∗Eg.

The third equality follows from reversibility of P . Take g such that π(g =
0) ≥ 1

2 . Let h = g2. By the previous inequality and Cauchy-Schwarz,

h ≤ 1

2
E[g2(X0)− g2(X1)]

≤ 1

2

√
4Eg2 − E[(g(X0)− g(X1))2] =

√
Eg2

√
2E(g, g).

Then from the previous two inequalities,

E(g, g) ≥ ϕ∗2

2
Eg2. (1)
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Take f = max(f2, 0), and WLOG π(f = 0) ≥ 1
2 . From Jenson’s inequality,

Pf ≥ max(Pf2, 0) = λ2f . Thus (Pf, f) ≥ λ2(f, f) and E(f, f) ≤ γ(f, f).
Then apply the inequality (1) with g = f .

Note that for the n-cycle: γ = c/n2, ϕ∗ = 1/n. And for the n-hypercube:
γ = 1/n, ϕ∗ = c/n.

3 Monotone chains

Consider the lazy random walk W on the integer points Pk of the interval [1, k].
This MC is reversible and irreducible, and last time we showed that

f2 = cos

(
π

k + 1
(x− 1)

)
; λ2 =

1

2

(
1 + cos

π

k

)
.

Based on our heuristic for eigenfunctions, we interpret f2 as the slowest varying
non-constant eigenfunction. A suggestive way to see this is to interpret W as a
projection of a lazy random walk on the n-cycle C. Then f2 passes through the
points of C closest to the x-axis, illustrating geometrically its slowly varying
nature.

Recall that given a poset X with order relation ≤, Strassen’s monotone
coupling tells us if ν stochastically dominates µ, then there exists a coupling
X1 ∼ µ, Y1 ∼ ν such that

PX1,Y1 [X1 ≤ Y1] = 1.

Definition 3. A transition kernel P on a poset X is monotone if P (x, ·) ≤
P (y, ·) for all x ≤ y.

Definition 4. P has monotone jumps if

P (x, y) > 0⇒ (x ≥ y or x ≤ y).

Theorem 3. Let P be monotone irreducible reversible MC, then

1. There exists f which is strictly increasing such that Pf = λ2f .

2. Suppose P has monotone jumps. Then if Pf = λf and f is strictly
increasing, then λ = λ2.

Proof. We only give a proof of the first part. Let g0 be any strictly increasing
function. Let g = g0 − Eg0, which has 0 mean and is also strictly increasing.
Set

V2 = span{all λ2 − eigenfunctions}.
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WLOG g is not orthogonal to V2. That is, if g ⊥ V2, take f2 ∈ V2 and consider
g + εf2, which is increasing for ε << 1. Observe that (g + εf2, f2) > 0. Set
g = h2 + hrest, where h2 ∈ V2 and hrest ⊥ V2.

Next,
gt := Ptg/λ

t
2 ⇒ Ptg = λt2h2 + Pthrest

where Pthrest ≤ |λt3|C for some constant C > 0 independent of t. Therefore,

Ptg/λ
t
2 = h2 ±

(
λ3
λ2

)t
C.

Therefore, Ptg → h2 ∈ V2 pointwise and in any norm, since we are working in
a finite-dimensional vector space.

As a sidenote: the above gives a numerical procedure for computing the
second largest eigenvalue: choose some increasing function g on the data and
then compute Ptg/g for t large.

The key observation required is that g monotone implies Pg monotone for a
monotone kernel P . Indeed, if x > y,

Pg(x)− Pg(y) = E[g(X1)− g(Y1)] ≥ 0,

which implies that h2 is monotone.

Proposition 4. If P is irreducible, reversible, monotone, and has monotone
jumps, then the stationary distribution π is also monotone.

Proof. Note that

(f(X1)− f(X0))(g(X1)− g(X0)) ≥ 0,

so that
Efg ≥ (Ptf, g)→ EfEg.
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