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1 Review

Let us first review the definition of an Ising model and its associated Glauber
dynamics. (For further reading, see Section 3 of the textbook [LPW].)

Definition 1. The Ising model on a graph G = (V,E) with temperature β is
the probability distribution on {−1, 1}V defined by:

π(x) =
1

Z(β)
exp

β ∑
(i,j)∈E

xixj

 (1)

We often denote w(x) := exp
(
β
∑

(i,j)∈E xixj

)
. The normalization constant

Z(β) is then equal to
∑

x∈{−1,1}V w(x).

Remark.∑
(i,j)∈E

xixj = (# agreeing neighbors)− (# disagreeing neighbors)

Definition 2. The Glauber dynamics for the above Ising model is the Markov
chain that evolves by selecting a vector u ∈ V at random and updating the spin
at u according to the distribution π conditioned to agree with the spins at all
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vertices not equal to u. That is, if the current configuration is x and vertex u is
selected, then the probability that the spin at u is updated to +1 is equal to

P (x, u) =
exp

(
β
∑

v∈N(u) xv

)
exp

(
β
∑

v∈N(u) xv

)
+ exp

(
−β
∑

v∈N(u) xv

)
2 Fast mixing of Glauber dynamics of Ising models at high temperatures

(For further reading, see Section 15.1 of the textbook [LPW].)
The main result of this section is the following.

Theorem 1. Consider Glauber dynamics for the Ising model on a graph with n
vertices and max degree ∆. Define c(β) := 1 − ∆ tanh(β). If ∆ tanhβ < 1
then:

tmix(ε) ≤

⌈
n(log n+ log 1

ε )

c(β)

⌉

Remark. ∆ tanhβ < 1 whenever β < 1
∆ . The latter condition is typically

easier to check.

Remark. Theorem 1 is tight e.g. for d-regular graphs.

Before we prove Theorem 1, let us first recall the method of path-coupling,
which will be our main proof ingredient. For us, the path metric ρ(·, ·) can be
thought of as Hamming distance.

Theorem 2. Suppose for all pairs of neighboring states x, y ∈ Ω, there exists
a coupling (X1, Y1) where X1 ∼ P (x, ·), Y1 ∼ P (y, ·), and E[ρ(X1, Y1)] ≤
e−αρ(x, y). Then:

tmix(ε) = O
(
α−1 log diam(Ω)

)
We are now ready to prove Theorem 1.

Proof of Theorem 1. To use the path-coupling theorem, we will need to, for each
pair of neighboring configurations, create a coupling that contracts in expecta-
tion w.r.t. our path metric. It will be convenient to use Hamming distance as our
path metric ρ(·, ·). Let σ, τ ∈ {−1, 1}V be neighbors (equal except one vertex);
that is, σ(u) = τ(u) for all u ∈ V \ {v}. Then define the following coupling:

• Draw U ∼ unif[0, 1]

• Pick w ∈ V u.a.r.

2



• Update both σ(w) =

{
+1 U ≤ P (σ,w)

−1 U > P (σ,w)
and τ(w) =

{
+1 U ≤ P (τ, w)

−1 U > P (τ, w)

Denote by σ′ and τ ′ the updated configurations after one step of this coupling.
We wish to upper bound E[ρ(σ′, τ ′)]. Let us evaluate this by conditioning on
which w ∈ V was chosen. There are three cases.

• Case 1: w ∈ N(v) ∪ {v}. Then ρ(σ′, τ ′) = 1.

• Case 2: w = v. Then ρ(σ′, τ ′) = 0.

• Case 3: w ∈ N(v). WLOG let τ(v) = +1 and σ(v) = −1. Then
ρ(σ′, τ ′) = 2 occurs w.p. P (τ, w)− P (σ,w) and is otherwise equal to 1.

In conclusion, we have:

E[ρ(σ′, τ ′)] = 1− 1

n
+

1

n

∑
w∈N(v)

(P (τ, w)− P (σ,w))

Let us analyze the final term. Let S :=
∑

u∈N(w) σ(u). Then S + 2 =∑
u∈N(w) τ(u), and so by definition of Glauber updates:

P (τ, w)−P (σ,w) =
eβ(S+2)

eβ(S+2) + e−β(S+2)
− eβS

eβS + e−βS
=

1

2
(tanh (β(S + 2))− tanh (βS))

which can be bounded above by tanh(β) (details omitted in lecture; see instead
e.g. Section 15.1 of the textbook [LPW]). Therefore we conclude:

E[ρ(σ′, τ ′)] ≤ 1− 1

n
(1−∆ tanh(β)) = 1− c(β)

n
≤ e−c(β)/n

The desired claim then follows directly from an application of Theorem 2 with
α := c(β)/n and diam({−1,+1}V ) = n.

3 2D Ising Models

(For further reading, see Section 15.6 of the textbook [LPW].)
The setup. The graph will be the grid of n × n squares G = L2 ∩ [0, n]2.

Formally, the graph is defined with V = {(i, j) : 0 ≤ i, j ≤ n− 1} and edges
connecting vertices at unit Euclidean distance.

In what follows, we will study the associated Glauber dynamics for the Ising
model on V . Mixing times of these Glauber dynamics undergo the following
phase transition:
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Theorem 3. Let βc := 1
2 log

(
1 +
√

2
)
. Then:

tmix =

{
O(n2 log n) β < βc

ecn β > βc

We will not prove Theorem 3, since getting all the way down to the critical
threshold βc requires significant work. Instead we will prove the following much
weaker result.

Theorem 4. For large enough constant β > 0, mixing time is exponentially
slow:

tmix = eΩ(n)

The path to proving Theorem 4 will require developing some definitions and
small lemmas, which we do presently. (Note that in what follows we distinguish
between lattice paths (paths on edges) and square paths (paths on the squares of
the grid).)

Definition 3. A fault line is a self-avoiding lattice path from LEFT to RIGHT or
TOP to BOTTOM of [0, n]2, such that for each of the edges of the path, the two
squares adjacent to it have different spins. A fault line with at most k defects is
defined similarly with all but at most k edges satisfying the property of: the two
squares adjacent to it have different spins.

Further, denote by F := {x ∈ {−1, 1}V : ∃ LEFT-RIGHT fault line} the
set of all Ising configurations that contain at least one LEFT− RIGHT fault line.
Define Fk analogously for configurations that contain at least one LEFT−RIGHT

fault line with at most k defects.

Lemma 5. For β > 1
2 log 3 and k ≤ 3:

π(F ) ≤ e−cn

π(Fk) ≤ e−c(k)n

where c(k) is a constant depending only on k.

Proof. Fix a fault line L of length ` from LEFT to RIGHT (or from TOP to
BOTTOM). Define F (L) := {x ∈ {−1, 1}V : L is a fault line}. Consider
the operation x 7→ x′ that flips all signs of the configuration above L. Then:

π(F (L)) =
∑

x∈F (L)

w(x)

Z
= e−2β`

∑
x∈F (L)

w(x′)

Z
≤ e−2β`
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Now summing over all self-avoiding paths in F , we obtain:

π(F ) ≤ 2n
∑
`≥n

3`e−2β`

where the 2 is because it could go from TOP−BOTTOM or LEFT−RIGHT, and the
3` is because it is self-avoiding. This bound is of the desired form ≤ e−cn since
we assumed β > 1

2 ln 3. The same argument applies to π(Fk) with only a few
changes (e.g. the flipping operation now amplifies the probability by e2β(`−2k)

instead of e2β`).

Lemma 6. Fix some Ising configuration x ∈ {−1, 1}V .

• If there is neither an all positive nor an all negative LEFT−RIGHT square
path, then there exists a BOTTOM − TOP fault line.

• If ∃ a square v ∈ V with both a positive path and a negative path of
squares to TOP, then there exists a “fault line” from v to TOP.

Proof. For the first part, the key observation is just to define the setA of squares
reachable by a monochromatic path from left, and then to go along the boundary
of A from top to bottom. The remaining details are simple and were ommitted
in lecture.

The second part is slightly more nuanced. Denote by Γ+ (resp. Γ−) a pos-
itive (resp. negative) path of squares from v to the top. Suppose WLOG that
the square that Γ+ terminates on (in the TOP) is to the left of the square that Γ−
terminates on. Define A+ to be the set of squares reachable from T+ with all
positive squares, and let A∗+ be the set of negative squares separated from the
boundary of [0, n]2 by A+. We can then create a “fault line” from v to the top
inductively. Start with a lattice edge that has v on the right, and an element of
Γ+ on the left. Inductively move to an edge that has on its left a positive square
ofA+ and a negative square not inA∗+ on its right. It is simple to see that we can
always find such a next edge, and that the path will never contain a cycle.

We are now ready to conclude the proof of the main result of this section.

Proof of Theorem 4. Define S+ (resp. S−) to be the set of configurations with
positive (resp. negative) paths both from LEFT − RIGHT and TOP − BOTTOM.
Consider an element x ∈ (S+∪S−)C . Then either x contains no monochromatic
path from LEFT − RIGHT (in which case the first part of Lemma 6 implies there
is a TOP − BOTTOM fault line) or from TOP − BOTTOM (in which case there
is a LEFT − RIGHT fault line). Therefore every configuration of (S+ ∪ S−)C
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contains a fault line, thus π((S+ ∪ S+)C) ≤ e−cn by Lemma 5, which implies
that π(S+) ≥ 1

2 −
1
2e
−cn.

Now, define the “external boundary” ∂S+ := {x ∈ {−1, 1}V : x /∈
S+, dH(S+, x) = 1}; By the bottleneck-ratio method:

tmix ≥
1

4

π(S+)

C(S+, SC+)
≥ 1

4

π(S+)

π(∂S+)

Therefore since we already showed that π(S+) is bounded below by roughly
1
2 , it suffices to show that π(∂S+) decays exponentially in n. By Lemma 5, it
suffices to show that every configuration x ∈ ∂S+ contains a fault line with at
most 3 defects. We do this is as follows.

First, the case when x 6∈ S−. Then by a nearly identical argument to what
we did in the first part of this proof, we have by the first part of Lemma 6 that x
contains a fault line. Next, the case where x ∈ S−, i.e. x ∈ ∂S+ ∩ S−. Then
by definition there exists some square v in the grid such that our configuration
would be in S+ if we flipped x(v). Therefore by the second part of Lemma 6
that there exists a fault line from (e.g.) LEFT to RIGHT that contains at most 3
edges of q which might be defects. This completes the proof.
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