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1 Introduction

Theorem 1 (Isoperimetric inequality in the plane). In R2, the circle encloses
the maximum area among all curves of given length.

One proof uses Steiner symmetrization. The proof roughly consists of the
following steps.

Step 1: Without loss of generality, the region enclosed by the curve under
consideration is convex. If not, we can always make it convex and decrease the
length and increase the area enclosed.

Step 2: Given any convex set, we may pick a point in the enclosed region
and a line passing through it. We divide the enclosed region into slices. From
Minkowski’s inequality, it can be shown that centering all slices around the line
increases the area of the enclosed region.

Step 3: We repeatedly apply step 2. The only curve that is fixed under such
symmetrization is a circle.

However, this proof breaks down if there exists no optimal closed curve.
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2 Harper’s Theorem

In this section, we consider the Hamming space X n = {0, 1}n with the Ham-
ming distance dH .

Definition 1 (Blow up). For A ⊆ X n, the r-blow up of A is the set

ΓrA = {x : dH(x,A) ≤ r}.

And as a reminder, dH(x,A) = miny∈A dH(x, y).

Definition 2 (Hamming ball). The Hamming ball centered at c with radius m
is given by B(c,m) = {x : dH(x, c) ≤ m}. A set C is called a quasiball if
B(c,m) ⊆ C ( B(c,m+ 1).

Theorem 2 (Harper’s theorem). ForA ⊆ X n, if |A| ≥
∑m

k=0

(
n
k

)
, then |ΓrA| ≥∑m+r

k=0

(
n
k

)
. Hamming ball of radius k shows this is the best possible.

This theorem follows trivially follows (by taking B = (ΓrA)c) from the
following result:

Theorem 3. For any given A,B ∈ X n there exists a pair of quasiballs A′ and
B′ centered at 0n and 1n respectively, such that |A| = |A′|, |B| = |B′| and
dH(A′, B′) ≤ dH(A,B).

Proof (Part 1). We first introduce the idea of shifting. We define

S+
i (B) =

⋃
b∈B
{b′ = (1i, b∼i) if bi = 0 and b′ /∈ B, otherwise b′ = b}

And similarly, define

S−i (A) =
⋃
a∈A
{a′ = (1i, a∼i) if ai = 1 and a′ /∈ A, otherwise a′ = a}

To illustrate the notion of shifting, consider the following example.

If B =

(
[0, 0]
[1, 1]

)
, then, S+

1 B =

(
[1, 0]
[1, 1]

)
, S+

2 B =

(
[0, 1]
[1, 1]

)
Observe that in the above example, S+

2 S
+
1 B = S+

1 B, and in general S+
2 S

+
1 B 6=

S+
1 S

+
2 B. Thus, the shifting operation is not commutative. Also note that shift-

ing does not change the size of a set. That is, we have |B| = |S+
i B|, |A| =

|S−i A|.
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We take two sets A,B, and claim that dH(S+
i B,S

−
i A) ≥ dH(A,B). Sup-

pose not, denote A1 = S−i A,B1 = S+
i B. Suppose there exist a ∈ A1, b ∈ B1,

such that dH(a, b) < dH(A,B). Since a, b are either obtained by shifting or
remain unshifted, without loss of generality, we discuss the following cases.

Case 1: a and b are both shifted. We have aoldi = 1, anewi = 0, boldi =
0, bnewi = 1. Thus, we observe that dH(aold, bold) = dH(anew, bnew). Thus,
this case cannot happen.

Case 2: a is shifted, b is not shifted. We have aoldi = 1, anewi = 0. If
bi = 1, then we are even increasing the distance, which in ruled out. If bi = 0,
then there exists some b′ which prevents b’s move. In particular, b′i = 1 and
b′∼i = b∼i. Thus, we have dH(anew, b) = dH(aold, b′). This also invalidates the
assumption.

We will now prove a few lemmas and return to the proof of Theorem 3 later.

Lemma 4. If C is such that C = S+
i C,∀i, then C is monotone increasing

(up-set). That is, if x ∈ C, y ≥ x coordinate-wise, then y ∈ C.

Proof. Take x ∈ C. Suppose we have y > x coordinate-wise. Then, x and y
must be of the following form

y = (1, 1, 1, . . . , same)

x = (0, 0, 0, . . . , same)

In S+
i C, x can be moved to (1, 0, 0, . . . , same). But since C = S+

i C, we know
(1, 0, 0, . . . , same) ∈ C. Continue with this argument, all points on the shifting
path from x to y must be in C. Thus, y ∈ C.

We define a more general version of the shifting.

Definition 3. Given U, V ⊆ [n], |U | < |V |, U ∩ V = Ø, we define

S+
U,V (B) =

⋃
b∈B
{b′ = (1V , 0U , bW ) if bV = 0V , bU = 1U , otherwise b′ = b}

S−U,V (B) =
⋃
b∈B
{b′ = (1U , 0V , bW ) if bU = 0U , bV = 1V , otherwise b′ = b}

where W = [n]− U − V .

We illustrate what this operation does below

S+
U,V U V W

b (1, 1 0, 0, 0, 0 Stuff)
b′ (0, 0 1, 1, 1, 1 Same Stuff)
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S−U,V U V W

b (0, 0 1, 1, 1, 1 Stuff)
b′ (1, 1 0, 0, 0, 0 Same Stuff)

We state but not prove the following 2 lemmas.

Lemma 5. If C is such that S+
U,V C = C,∀U, V , then C is a quasi-ball centered

at 1n (all-one vector).

Proof. Indeed, if C is not a quasi-ball, then there must exist a pair x ∈ C and
y 6∈ C such that |x|H < |y|H . Then take U = {i : xi = 1, yi = 0} and
V = {i : xi = 0, yi = 0}. Then S+

U,V C 6= C, a contradiction.

Lemma 6. Given U, V , ifA,B are fixed under S±U ′,V ′ , ∀|U
′|+ |V ′| < |U |+ |V |,

then we have dH(A1, B1) ≥ dH(A,B), where A1 = S−U,VA,B1 = S+
U,VB.

Proof. The proof resembles the case-work in part 1 of the proof for Theorem
3. Namely, assume for contradiction that dH(A1, B1) < dH(A,B) and let
a ∈ A1, b ∈ B1 be the distance-minimizing pair. It is clear that only one of
them could have been a “moved” point (moved by the transformation). Then,
we again can show that if (e.g.) a moved, then there must exist b′ ∈ B such that
dH(aold, b′) ≤ dH(a, b) – a contradiction.

We now finish the proof of Theorem 3.

Proof of Theorem 3 (Part 2). Without loss of generality, we assumeA is a down-
set and B is an up-set. We apply S±U,V until A, B do not change. By Lemma 5,
we have A = B(0,m1) ∪ S1 and B = B(1,m2) ∪ S2. Then by Lemma 6, we
have

DH(A,B) ≤ dH(A1, B1) = n−m1 −m2 − k ≤ n−m1 −m2

where k = 0, 1, or 2 depending on S1 and S2.

3 The blow-up lemma

Definition 4. For any measure metric space (X , µ, d),

α(r, λ) = max(1− µ(ΓrA) : µ(A) ≥ λ)

is the concentration function.

We state the following theorem.
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Theorem 7. For the measure metric space ({0, 1}n,Ber(12)∂n, dH), we have

α(r, λ) = 1− Fn(F−1n (λ) + r),

where Fn is the CDF of Bino(n, 1/2).

This theorem has the following corollary.

Corollary 8. For any A ⊆ {0, 1}n such that µ(A) ≤ 1/2, we have

µ(ΓrA) ≥ 1− e−r2/n 1

µ(A)
.

Equivalently, we have α(r, λ) ≤ 1
λe
−r2/n.

Proof. Take m such that µ(A) = P(Bino(n, 12) ≤ m). Let m = n
2 − δ and λ =

µ(A). Using the corollary to Hoeffding lemma, we have µ(A) ≤ e−2δ2/n. From
Harper’s Theorem, we know that 1−µ(ΓrA) ≤ P(Bino(n, 1/2) ≥ n/2+r−δ).
When r − δ > 0, we can apply Hoeffding and get 1 − µ(ΓrA) ≤ e−2(r−δ)

2/n.
Since |r − δ|2+ ≥ 1

2r
2 − δ2, we have

1− µ(ΓrA) ≤ e−
2
n
( 1
2
r2−δ2) ≤ e−

r2

n e
2δ2

n ≤ 1

λ
e−

r2

n

.

Theorem 9 (Blow-up lemma, Margulis ’74, Ahlswede, Gacs and Korner ’76).
For any (X n, µ =

∏
µi, dH), we have

µ(ΓrA) ≥ 1− 4

µ(A)
e−

r2

4n .

Instead of proving this, we state and prove the following theorem, which
implies the blow-up lemma through the bounded difference method.

Theorem 10. (1) If (X , µ, dH) is such that every 1-Lipschitz function is (b, ν)-
subgaussian, then

α(r, λ) ≤ b2

λ
e−

r2

4ν .

(2) If

α(r,
1

2
) ≤ b′e−

r2

2ν ,

then every 1-Lipschitz function is (b′eb
′
, 2ν)-subgaussian.
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Proof. (1) We take a set A and let f(x) = dH(x,A), which is 1-Lipschitz. We
have

Pµ(f − Ef ≤ −Ef) = P(f = 0) = µ(A).

Since f is (b, ν)-subgaussian, we have

Pµ(f − Ef ≤ −Ef) ≤ be−
E2f
2ν .

This gives us

Ef ≤

√
2ν log

b

µ(A)
.

Also, we have

µ(ΓrA) = P(f ≤ r) = 1− P(f − Ef > r − Ef)

≥ 1− be−
(r−E)2+

2ν ≥ 1− be−
1
4ν
r2+E2f

2ν

≥ 1− b2

µ(A)
e−

r2

4ν

(2) By definition on concentration function, ∀µ(A) = 1
2 , we have µ(ΓrA) ≥

1− b′e−
r2

2ν . Now, let f be 1-Lipschitz and consider A = {x : f(x) ≥ med(F )},
we have P(A) = 1

2 . Since f is 1-Lipschitz, we have {f ≥ med(f) + r} ⊆
(ΓrA)c.

4 Gaussian concentration of measure

Theorem 11. If f is 1-Lipschitz in l2, then

P(|f(X)− Ef(X)| > t) ≤ 2e−
t2

2 , X ∼ N (0, In)

This follows from the following stronger result:

Theorem 12. For (Rn,N (0, In), l2), we have

αn(r, λ) = Φ(Φ−1(λ) + r),

where Φ is the CDF of N(0, 1).

Proof. For Xn ∼ N (0, In), take N � n. Let Y ∼ Unif(SN−1). Then, we

have
√
N(Y1, . . . , Yn)

d→ Xn as N → ∞. The set with minimal blow-up (and
consequently minimal surface area) on the sphere is a spherical cap (Levy’s
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theorem). When projected to Rn the cap becomes a half-space {X1 ≤ a}, thus
the set that minimizes

min
S
{P[d`2(Xn, S) ≤ r] : P[Xn ∈ S] ≥ λ}

is given by {X1 ≤ Φ−1(λ)}.
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