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Eigenvalues

1

Recall that P (x, y) is X × X matrix with properties:

1. P is irreducible⇔ the eigenvalue λ = 1 has multiplicity 1.

2. P is aperiodic ⇔ the spectrum sp(P ) does not have (γa > 0) roots of
unity

3. P is reversible⇒ all eigenvalues are real

Definition 1. Absolute spectral gap γa = 1−maxλ 6=1 |λ|

Theorem 1. d(t) = (1− γa)t+o(t)

This bound is typically useless. We want more explicit bounds.

Proof. Define ||A||∞→∞ = maxx 6=0
||Ax||∞
||x||∞ and let Eπ = the matrix whose

rows are π.

d(t) =
1

2
||Pt − Eπ||∞→∞

dTV (P,Q) = sup
||f ||∞≤1

EP f − EQf

P and Eπ commute, that is PE = EP , and

(P − Eπ)t = Pt − Eπ

which we can show by induction using

(P − Eπ)2 = P 2 − EπP − PEπ + Eπ = P 2 − Eπ
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Thus

d(t) =
1

2
||(P − Eπ)2||∞→∞

We have for every matrix norm, ρ(A) = limt→∞ ||At||1/t. Since

ρ(P − E) = 1− γa

then

(d(t))1/t → ρ(P − Eπ) = 1− γa

The issue with Thm 1 is that the constant hides the behavior for small values
of t.

Definition 2. The inner product is defined as (f, g) =
∑

x π(x)f(x)g(x).

1.1 Reversible chains

Proposition 2. 1. P is reversible⇔ (Pf, g) = (f, Pg), ∀f, g

2. There exists orthonormal eigenbasis where

1 = λ1 ↔ f1 = 1λj ↔ fj

and

• (fi, fj) = I{i = j}
• Pfi = λfi

• fi is real valued

• ||fi||2 = 1

3. Ptg =
∑

j λ
t
j(fj , g)fj

Proof. 1) SinceP is reversible,
∑
π(x)P (x, y)f(y)g(x) =

∑
π(y)P (y, s)f(y)g(x)

2) Use linear algebra
3) Ptg =

∑
λtjfi(fj , g) and let δx0(x) = I{x = x0}, then

(δx0 , fj) = π(x0)fj(x0)∑
j

fj(x0)fj(x) =
1

π(x0)
I{x = x0}
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2 χ2 distance

Definition 3. χ2(P ||Q) =
∑

xQ(x)(P (X)
Q(X) − 1)2 =

∑
x
P 2(x)
Q(x) − 1

Proposition 3. dTV (P,Q) ≤ 1
2

√
χ2(P ||Q)

Proof. 1
2

∑
xQ(x)(P (x)

Q(x) − 1) ≤ 1
2

√∑
xQ(x)(P (x)

Q(x) − 1)2

Theorem 4. 1. χ2(Pt(x, ·)||π) =
∑

j 6=1 λ
2t
j f

2
j (x)

2. If the markov chain is transitive χ2(Pt(x, ·)||π) =
∑

j 6=1 λ
2t
j

3. χ2(νP ||π) ≤ (1− γa)2χ2(ν||π)
d2(t) = supx

√
χ2(Pt(x, ·)||π)

4. d2(t) ≤ (1− γa)t
√

1
πmin
− 1

Proof. 1) Suppose ν is a distribution on X , ν(x) = h(x)π(x) (ν has density h).

νPt(x) =
∑
y

ν(y)Pt(y, x)

=
∑
y

h(y)Pt(x, y)π(x)

= π(x)(Pth)(x)

Pt(x0, ·) has density Pthx0(·)

hx0(x) =
1

π(X0)
I{x = x0} =

∑
j

fj(x0)fj(x)

Pthx0 =
n∑
j=1

fj(x0)λ
t
jfj(x)

χ2(Pt(x0, ·)||π) = ||Pthx0 − 1||22 = (Pthx0 , Pthx0)− 1

=
∑
j 6=1

λ2tj f
2
i (x0)

Definition 4. Permutation g : X → X is a sym of P if P (x, y) = P (g(x), g(y))
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P is transitive if ∀x 6= y,∃g− sym such that g(x) = y (“All points are born
equal”).

2) Ex0∼π ⇒ Efj(x0)2 = 1 by orthonormal basis
3) Let h be density of ν

χ2(νP ||π)
χ2(ν||π)

=

∑
j 6=1 λ

2
j (h, fj)

2∑
j 6=1(h, fj)

2
≤ (1− γa)2

Taking supν will give (1− γa)2. Inequality is sharp when ν is close to π.
4) Notice that χ2(δx0 ||π) = 1

π(x0)
− 1. Then iterate 3.

Theorem 5. (ln 1
ε ) · (

1
γa
− 1) ≤ tmix(ε) ≤ 1

γa
(ln 1

2ε +
1
2 ln

1
πmin

)

Proof. Upper bound:

dTV (t) ≤
1

2
d2(t) ≤ (1− γa)t

√
1

πmin
= ε

⇒ t =
ln 1

2ε + ln 1√
πmin

ln 1
1−γa

Lower bound: If d(t) ≤ ε, then ∀f such that Eπf = 0

||Ptf ||∞ ≤ ε||f ||∞

and

EP f − EQf ≤ dTV ||f ||∞

Take f = fj such that |λj | = 1− γa,

Ptfj = λtjfj ⇒ λtj ||fj ||∞ ≤ ε||fj ||∞

t ln(1− γa) ≤ ln ε

tmix(ε) ≥
ln 1

ε

ln 1
1−γa

≥ (
1

γa
− 1) ln

1

ε

Definition 5. trel = 1
γa
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3 Mu Fa Chen

Theorem 6 (Mu Fa Chen). Suppose that for some metric ρ,

Wρ, (P (x, ·), , P (y, ·) ≤ e−αρ(x, y)

then
γ≥1− e−α

Shows Wρ contradiction implies absolute spectral gap.

Proof. Note that ∀f , ||Pf ||Lip ≤ ||f ||Lipρ(x, y). We want to prove

Pf(x)− Pf(y) ≤ e−α||f ||Lipρ(x, y)

Let X ∼ P (x, ·) and Y ∼ P (y, ·).

Ef(X1)− Ef(Y1) = E[f(X1)− f(Y1)]
≤ E[||f ||Lipρ(X1, Y1)]

= ||f ||LipE(ρ(X1, Y1))

≤ e−αρ(x, y)||f ||Lip

Let f in above be eigenbasis f∗j ↔ |λ∗j | = 1− γa.

4 Examples

1. Lazy random walk (LRW) on n-cycle Cn. (Let n be even.)

P =


1
2

1
4 0 . . . 0 1

4
1
4

1
2

1
4 . . . 0 0

0 1
4

1
2 . . . 0 0

...
...

...
. . .

...
...

1
4 0 0 . . . 1

4
1
2


Eigenfunctions are cos 2πx(j−1)

n and sin 2πx(j−1)
n for j = 1, . . . , n2 + 1.

The eigenvalues are 1
2(1 + cos 2π(j−1)

n ).

γa = 1− λ2 ≈
c

n2
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2. Lazy random walk on path Pk−1.

Project Markov chain of Cn where n = 2k − 2.

sp(projP ) ⊂ sp(P )
γa(projP ) ≥ γa(P )

γa(Pk−1) ≥
c

k2

3. Product Chains. Let P be a Markov Chain on X , then we define a new
Markov Chain on X n

P (n) =
1

n
(P ⊗ I ⊗ · · · ⊗ I + I ⊗ P ⊗ · · · ⊗ I + . . . )

Theorem 7. sp(P (n)) = { 1n
∑n

i=1 µi : µi ∈ sp(P )}

γa(P
(n)) =

1

n
γa(P )

Proof. Eigenfunctions of P (n) are fi1(x1), . . . , fin(xn).

LRW on Hn (hypercube) is a n-product of LRW on P1 (path) where

P =

[
1
2

1
2

1
2

1
2

]
and sp(P ) = {0, 1}.

sp(LRW Hn) =



0
n multiplicity 1
1
n multiplicity n
...

...
k
n multiplicity

(
n
k

)
...

...
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Consequence: γa(LRW Hn) =
1
n .

d(t) ≤ 1

2
d2(t)

=
1

2

√∑
j 6=1

λ2tj

=
1

2

√√√√n−1∑
k=0

(
n

k

)(
k

n

)2t

=
1

2

√√√√n−1∑
m=1

(
n

m

)(
1− m

n

)2t
1

2
≤

√√√√ ∞∑
m=1

e−m( 2t
n
−lnn)

≤ ε

if t = 1
2n log n+ cεn

LRW Cycle LRW Hypercube
Upper bound tmix(ε) ≤ cεn2 tmix(ε) ≤ n log n+ cεn
Lower bound tmix(ε) ≥ cεn2 tmix(ε) ≥ 1

2n log n+ cεn
trel = cn2 trel = n

All Markovian couplings only achieve n log n.
For the hypercube, d(t) has a cutoff point. The rule of thumb (not entirely

true) is if trel is not tight, there is a cutoff.
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