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Topics for upcoming three lectures on boolean analysis:

• Influences and isoperimetry (this lecture)

• Influences and Fourier analysis

• Influences and Noise Stability

The ultimate goal of this lecture is to prove the following theorem of Margulis:

Goal Theorem: (Margulis, ’74): Let G be a graph with edge connectivity λ(G) ≥ t (i.e.
at least t edges must be deleted from G to disconnect it) and set

Ψ(p) = Pr
X∼({0,1}E ,π⊗Ep )

[G′ = (V,E \X) is disconnected]

For ε ∈ (0, 1/2), let pε = Ψ−1(ε), p1−ε = Ψ−1(1− ε). Then

p1−ε − pε ≤
cε√
t

for a constant cε independent of G!

1 Preliminary definitions

• All functions considered today will be {0, 1}n → R. A boolean function has range
{0, 1}.

• The influence of coordinate i at level p on a boolean function f is

Ipi (f) := Pr
x∼π⊗np

[f(x) 6= f(x⊕ ej)]

The total influence is the sum of all the coordinate influences, i.e.

Ip(f) :=
n∑
i=1

Ipi (f)
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• We can define discrete derivatives for functions f : {0, 1}n → R:

∇if(x) := f(x)− f(x⊕ ei)

∇+
i f(x) := (f(x)− f(x⊕ ei))+

|∇f(x)|2 :=
n∑
i=1

|∇if(x)|2

|∇+f(x)|2 :=
n∑
i=1

|∇+
i f(x)|2

2 An analytic approach to edge/vertex isoperimetry

Recall from Lecture 9 that for sets A ⊆ {0, 1}n with |A| ≥ δ2n, the internal boundary

|∂A| := {x ∈ A : dH(x,Ac) = 1} = A ∩ Γ1(Ac)

is at least as large as for Hamming balls, i.e.

|∂A| ≥ cδ√
n

2n (1)

Indeed, for the Hamming ball B = B(0, n/2 − c
√
n) with δ = Φ(−c) := NormalCDF(−c), we

have |B| = δ2n and

|∂B| = 2n Pr[|x| = n/2− c
√
n] ≈ 2n(Φ(−c)− Φ(−c− 1√

n
)) ≈ cδ√

n
2n,

while for the subcube C = {x : x1 = 0}, we have |C| = 1
22n and |∂C| = |C|. However, when

looking at the edge boundary

|E(A,Ac)| :=
∑
x∈A
|N(x) ∩Ac|

we see a different picture. Here, subcubes actually do the best: |A| ≥ 2k =⇒ |E(A,Ac)| ≥
(n − k)2k, and more generally, |A| ≥ δ2n =⇒ |E(A,Ac)| & δ log(1/δ)2n. Our goal in
this section will be to prove (1) analytically (i.e. without horrible combinatorics), as well as
characterize the tension between the internal and edge boundaries of a set. More specifically,
we’ll prove (a generalization of)

Theorem: For A ∈ {0, 1}n, we have

|∂A|/2n ≥ 1√
n

(|A|/2n)(|Ac|/2n)

and if |A| ≥ δ2n, then
1

2n
|E(A,Ac)| · 1

2n
|∂A| ≥ δ2(1− δ)2

2



These results will follow from Bobkov’s Inequality:

Theorem (Bobkov): Let Xi be independent 0-1 valued random variables, and set φ(t) :=
t(1− t). Then for any f : {0, 1}n → [0, 1], we have

φ(E[f(X)]) ≤ E[
√
φ2(f(X)) + |∇+f(X)|2].

Proof: In the n = 1 case, this amounts to checking that for any a, b, p ∈ [0, 1], we have

φ((1− p)a+ pb) ≤ (1− p)
√
φ2(a) + (a− b)2

+ + p
√
φ2(b) + (b− a)2

+

Expanding this for any 0 ≤ a ≤ b ≤ 1 (wlog) and subtracting the left from the right, we obtain
a quadratic polynomial in p with leading coefficient a2, one root at p = 0 and the other at

−
√
a2 − 2ab+ b4 − 2b3 + 2b2 + a2 − 2ab+ b

a2 − 2ab+ b2

and hence it suffices to show this root is non-positive. After some mild algebraic manipulation,
this is equivalent to proving

(b− 1)2 + 2ab− a2 ≥ 0

which is easy enough to verify. To extend to higher dimensions, we’ll use the following generally
useful tensorization lemma:

Tensorization lemma: Fix α : [0, 1] → R+, and suppose that for all i ∈ [n] and all f :

{0, 1}n → [0, 1], we have α(Exif) ≤ Exi
√
α2(f) + |∇+

i f |2. Then

α(Ex1,...,xnf) ≤ Ex1,...,xn

√
α2(f) + |∇+f |2

Proof: We proceed by induction on n – suppose for any g : {0, 1}n−1 → [0, 1] that

α(E[n−1]g) ≤ E[n−1]

√
α2(g) + |∇+g|2

where E[n−1] is shorthand for the operator Ex1,...,xn−1 . Then since for f : {0, 1}n → [0, 1], Exnf
maps {0, 1}n−1 → [0, 1], we have

α(Ef) = α(E[n−1](Exnf)) ≤ E[n−1]

√√√√α2(Exnf) +
n−1∑
i=1

|∇+
i Exnf |2

First observe by convexity that ∇+
i (Exnf) ≤ Exn(∇+

i f) and so

α(Ef) ≤ E[n−1]

√√√√α2(Exnf) +

n−1∑
i=1

|Exn∇+
i f |2

Now using our original assumption for i = n, this is at most

E[n−1]

√√√√(Exn√α2(f) + |∇+
n f |2

)2

+

n−1∑
i=1

|Exn∇+
i f |2
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Ignoring the E[n−1] on the outside, this looks like an L2 norm (in the n-point counting measure)
of an L1 norm (in dxn) – by Minkowski’s inequality1, we can switch the order of the norms
and obtain the upper bound

E[n−1]Exn
√
α2(f) + |∇+f |2

as desired.

By taking f to be the indicator of a set A, we obtain

Corollary: For A ⊆ {0, 1}, Xi independent Bernoullis,

E|∇+1A| ≥ Pr[X ∈ A] · Pr[X 6∈ A]

In other words, if we set

hA(x) := |∇+1A(x)|2 =

{
#{y ∈ Ac : d(x, y) = 1} if x ∈ ∂A
0 if x 6∈ ∂A

then E[
√
hA] ≥ Var(1A). Note that E[hA] = µ(∂A), and since hA(x) ≤ n · 1∂A, we have

µ(∂A) ≥ 1√
n
µ(A)µ(Ac)

Also since 1
2nE(A,Ac) = 1

2E|∇f |
2, Cauchy-Schwarz gives us

Var(1A) ≤ E
√
hA ≤

√
(EhA)µ(∂A),

that is,

δ2(1− δ)2 ≤ 1

2n
|E(A,Ac)| · 1

2n
|∂A|

No combinatorics necessary!

3 Total influence and threshold width

Proposition: For f = 1A boolean, we have

Ipi (f) = E|∇if |2

and so in particular, if p = 1/2, we have I1/2(f) = 2
2n |E(A,Ac)|. Moreover, if f (i.e. A) is

also monotone, then

Ip(f) =

{
1
pEx∼π⊗np hA(x), if f increasing

1
1−pEx∼π⊗np hA(x), if f decreasing

1Minkowski’s inequality says that for q ≥ p ≥ 1 and σ-finite measure spaces X,Y, we have
‖ ‖F (x, y)‖p,Y ‖q,X ≤ ‖‖F (x, y)‖q,X‖p,Y .
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For non-monotone f , we still have

1

max(p, 1− p)
EhA ≤ Ip(f) ≤ 1

min(p, 1− p)
EhA,

with either equality iff f is monotone2 in the corresponding direction.

Proof: The first part is obvious from the definitions. For the second, suppose f is increasing.
Then each edge between A and Ac – say (x, x⊕i) – contributes Pr(x−i) to Ip(f) and but
only pPr(x−i) to EhA. If f is decreasing, the contribution is (1 − p) Pr(x−i), which settles
the monotone case. Finally, for general boolean f , each edge contributes either pPr(x−i) or
(1 − p) Pr(xi) to EhA, depending on whether f is “going up” or “going down” at that point,
and so we have the above inequalities, which are tight iff this coefficient is the same for all
such edges.

As we’ve seen in the case of Erdos-Renyi random graphs, it is natural to consider how
Prx∼π⊗np [f(x) = 1] varies with p. For monotone f , it turns out that the rate of change of

this probability is exactly captured by the total influence:

Lemma (Margulis-Russo): For any increasing set A ⊆ {0, 1}n,

d

dp
µp(A) = Ip(1A)

(and hence by taking complements, the same formula holds for decreasing sets with a minus
sign.)

Proof: Set g(p1, . . . , pn) := Pr[(X1, . . . , Xn) ∈ A], where Xi are independent Bernoulli(pi) vari-
ables, so that µp(A) = g(p, . . . , p). By the chain rule, d

dpµp(A) =
∑n

i=1
∂
∂pi
g(p1, . . . , pn)|(p,...,p).

We can compute each partial derivative explicitly:

lim
ε→0

g(p+ ε, p, . . . , p)− g(p, . . . , p)

ε
=

1

ε

(
Pr[(X ′1, . . . , Xn) ∈ A]− Pr[(X1, . . . , Xn) ∈ A]

)
where X ′1 ∼ Ber(p+ ε) and X1 ∼ Ber(p). We can couple X1, X

′
1 as follows:

Pr((X1, X
′
1) = (0, 0)) = 1− p− ε

Pr((X1, X
′
1) = (1, 0)) = 0

Pr((X1, X
′
1) = (0, 1)) = ε

Pr((X1, X
′
1) = (1, 1)) = p

and so the difference quotient becomes

1

ε
Pr[X ′1 = 1, X1 = 0]︸ ︷︷ ︸

ε

Pr[1 is pivotal for X2, . . . , Xn]︸ ︷︷ ︸
Ip1 (f)

which proves the lemma after summing over i.

We are now ready to prove our main theorem, restated below:

2unless p = 1/2, in which case both equalities always hold.
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Theorem: (Margulis, ’74): Let G be a graph with edge connectivity λ(G) ≥ t (i.e. at least t
edges must be deleted from G to disconnect it) and set

Ψ(p) = Pr
X∼({0,1}E ,π⊗Ep )

[G′ = (V,E \X) is disconnected]

For ε ∈ (0, 1/2), let pε = Ψ−1(ε), p1−ε = Ψ−1(1− ε). Then

p1−ε − pε ≤
cε√
t
.

Proof: Let Ω = {x : G′ = (V,E(G)\x) is disconnected}, which is clearly a monotone increasing
set. Then the Margulis-Russo lemma and the previous proposition imply

Ψ′(p) = Ip(1Ω) =
1

p
EphΩ

A direct combinatorial argument3 shows that hΩ(x) ≥ t for all x ∈ ∂Ω, and hence

Varp(1Ω) ≤ Ep
√
hΩ =

√
t · Ep

√
hΩ

t︸ ︷︷ ︸
≥1

≤
√
t · Ep

hΩ

t
=

p√
t
Ip(1Ω)

Thus,
Ψ′(p) = Ip(1Ω) ≥

√
tVarp(1Ω) ≥

√
tε(1− ε) for p ∈ [pε, p1−ε]

and since
∫ p1−ε
pε

Ψ′(p) dp = 1− 2ε, we conclude

p1−ε − pε ≤
1− 2ε

ε(1− ε)
√
t

as desired.

3Let x ∈ ∂Ω. Then removing the edges in x from G creates a graph G′ with two connected components
G′1 and G′2 (since there is a way to add back a single edge and connect the whole graph.) The number hΩ(x)
counts exactly E(G′1, G

′
2) in G, since adding any one of these edges back in to G′ yields a connected Hamming

neighbor of x and vice versa. Note that starting from G and removing all of these edges yields a disconnected
graph, so there must be at least t of them.
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