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1 Hypercontractivity proof

Theorem 1. Let f:{0,1}" — R and let
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where Hpr = (Zx€{071}n ‘f(l') ’p2*n) 5.

Proof. Check for n =1 is routine and then we apply the induction lemma. O

Lemma 1. If A; ; > 0 and By > 0 are two matrices and for any f,g and 0 < ¢ < 2 we have
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where || fllp = (Cacrony 1fil?)”

Remark: Lemma also holds for weighted p-norms, i.e. || f||b =" ;)1 f(G)IP, but for simplicity
we only consider unweighted sums, which is sufficient for the theorem above.

Proof. WLOG, h;; > 0 and we have to prove
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Let ﬁkﬁj £ > 1 Brihji, then from statement about A we have for each k:
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Summing this over k and taking the square root we get

1 1
2\ 3 2\ 3

DA Aigha < DD 1wyl
K\ J

i,k J

We now recall that by Minkowski inequality we can interchange the order of ¢ and 2 norms to
get a larger quantity, so that we continue as
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Finally, from the statement about B we have for every j:
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and substituting into (2) we obtain
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which is (1). O
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