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Many absolute constants are not consistent in the results below. But order of
magnitudes are accurate.

1 McDiarmid Theorem

Theorem 1. Let f(x1, ..., xn) be such that |f(x1, .., xi, .., xn)−f(x1, .., x
′
i, .., xn)| ≤

ci, ∀x, x′i, i. Then, for independent random variables, X1, ..Xn,

P(|f(X)− Ef(X)| > t) ≤ exp
−t2∑n
k=1

c2
k

Proof. Define Sk = E[f(X)|X1, .., Xk]. This is clearly a Doob martingale. We
need to show that |Sk − Sk−1| = |E[f |X1, .., Xk] − E[f |X1, ..., Xk−1]| ≤ ck.
We check for k = 1 and then generalize the argument.

|S1 − S0| = |
∑

X2,..Xn

P(X2, .., Xn|X1)f(X1, .., Xn)−
∑

X′1,X2,...,Xn

P (X ′1, X2, ..., Xn)f(X ′1, X2, .., Xn)|

≤
∑

X′1,X2,...,Xn

P (X ′1, X2, ..., Xn)
[
f(X1, X2, .., Xn)− f(X ′1, X2, .., Xn)

]
≤ c1

Therefore, Sk is a bounded difference martingale. We apply Azuma-Hoeffding
Theorem to conclude the result.

1



2 Metric Measure Spaces

Definition 1. (χ, µ, d) is called a metric measure space if χ is a metric space
with distance d and µ is the borel measure with respect to metric topology of d.

Definition 2. A function f : χ→ R is called c-Lipschitz if ∀x, x′ ∈ χ,

|f(x)− f(x′)| ≤ cd(x, x′)

Lemma 2. f is c-lipschitz in dH if and only if |f(Xi, X∼i) − f(X ′i, X∼i)| ≤ c
for every i,X,X ′i. Similarly, a function is c-Lipschitz in `1 iff it is c-Lipschitz in
each coordinate.

Proof. Only if condition is trivial. For the sufficiency part : Consider X and X ′

to be arbitrary.

|f(X)− f(X ′)| ≤ |f(X)− f(X ′1, X∼1)|+ |f(X ′1, X∼1)− f(X ′)|
≤ c1X1 6=X′1 + |f(X ′1, X ∼1)− f(X ′)|

Continuing recursively, we conclude the result.

Example :

1. χn, dH(Xn, Y n)
∆
=
∑n

i=1 1Xi 6=Yi , called the Hamming distance.

2. Rn, l1(X,Y ) =
∑n

i=1 |Xi − Yi|

3. Rn with euclidean distance (also called l2 metric)

Exercise 1. Plot the curves l1(X, 0) = 1, dH(X, 0) = 1 and l2(X, 0) = 1 over
R2

Example : Consider f(Xn) =
∑n

i=1Xi. This is 1-Lipschitz with l1 metric
and
√
n-Lipschitz with l2 metric.

Corollary 3. Any 1−Lipschitz function with Hamming distance over any prod-
uct measure µ =

∏n
i=1 µi on X n satisfies the following concentration inequal-

ity.

µ(|f − Ef | > t) ≤ 2e−
t2

2n (1)

Proof. Use McDiarmid’s theorem.

Corollary 4. Any 1-Lip function (`1) on [0, 1]n with product measure over X n
satisfies equation 1
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Definition 3. (χ, µ, d) is said to have (b, ν) conc. if every 1-Lipschitz function
(b, ν) - sub-gaussian.

We prove the following useful lemma to check for c Lipschizness with re-
spect to Hamming distance.

3 Applications

3.1 Application 1

[Learning Theorem] Let Xi
iid
= PX on R. Define ˆFn(t) = 1

n

∑n
i=1 1Xi≤t (em-

pirical CDF). Let Z = supt |F̂n(t)− FX(t)| := f(X1, .., Xn) where FX is the
CDF of X .

|f(X∼i, Xi)− f(Xi, X
′
i)| ≤ 2supt

1

n

n∑
i=1

|1Xi≤t − 1X′i≤t| ≤
2

n

Therefore f is a 2
n - Lipschitz. Using McDiarmid’s theorem, we conclude Z =

EZ ± Op( 1√
n

) Therefore, we conclude that the empirical distribution function
converges to the distribution function uniformly.

This is a stronger version of Glivenko Cantelli Theorem.

3.2 Application 2

We consider throwing n balls into m bins at random. Consider i.i.d random
variables Xi ∈ [m] be uniformly distributed, i ∈ {1, 2, ..., n}. i-th ball goes
into the Xith bin. Define

Mj = fj(X) = number of bins with j -balls.
M0 = number of empty bins.
Clearly, fj is 2-Lipschitz with respect to dH . Applying McDiarmid’s theo-

rem, we show that
P[|Mi − E(Mi)| > t] ≤ et28n

Therefore, M0 = EM0 ±Op(
√
n).

3.3 Application 3

Consider the problem of longest common subsequence of independent random
binary sequences - LCS(Xn, Y n). Clearly, by our co-ordinate wise character-
ization of Lipschitz functions, this is a 1-Lipschitz function with respect to the
Hamming distance. Therefore, by McDiarmid’s theorem, LCS = ELCS ±
Op(
√
n). This is a very useful result since ELCS = θ(n)
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3.4 Application 4: Chromatic number concentrates within O(
√
n)

Note: This method is what introduced bounded-differences method to analysis
of Lipschitz functions. In particular, it predateds McDiarmid’s theorem.

Consider G = G(n, p). Define χ(G) to be chromatic number of G. Let
e ∈

(
[n]
2

)
and Xe = 1 if e is present in G and X = 0 otherwise. Clearly,

χ(G) = f(Xe, e ∈
(

[n]
2

)
). Clearly, f is a 1- Lipschitz function since addition

or deletion of one edge can change the chromatic number by at most 1. But
since there are n(n−1)

2 = θ(n2) edges. Therefore, McDiarmid’s theorem implies

P(|χ− Eχ| > t) ≤ 2e−
t2

n2 . ⇒ χ = Eχ± Op(n). This is a useless result since
χ = O(n) a.s.

We get a better result using Shamir-Spencer method. Y1 = Ø, Y2 ∈ {0, 1},
... , Yi ∈ {0, 1}i. The random i-tuple Yi describe the existence/ non-existence of
edges from vertex i to vertices {1, ..., i − 1} with Yi(k) = 0 if there is no edge
between i and k and Yi(k) = 1 otherwise. This is the same description as Xe,
but we have bunched together edges emanating from a given vertex to vertices
with lower index. Therefore, χ = f(Y1, ..., Yn). We use “vertex exposure”
process to show that χ is 1-Lipschitz.

Consider any arbitrary change in Yi i.e, addition or removal of edges from
vertex i to a vertex of index lesser than i. The neighborhood of every other vertex
remains the same except for addition or subtraction of vertex i. Therefore, for
the next minimal coloring, we might need to add a completely new color to i
or change the color of i to one existing before because it was removed from a
neighborhood with that pre existing color. Therefore, χ can change by utmost
1. By our characterization of c− Lipschitz function with respect to Hamming
distance, we show that χ is 1− Lipschitz with respect to Y . Clearly, Yi are all
independent. We can use McDiarmid’s theorem to show that χ = Eχ±Op(

√
n).

Every vertex which is part of a clique ofGmust have a distinct color. There-
fore, to study the chromatic number, we study the appearance of cliques of dif-
ferent sizes in G.

3.5 Application 5: all log n-subsets of G(n, p) are not triangle-free

Let k3(G) denote the number of triangles in G. Clearly, Ek3(G) =
(
n
3

)
p3 ∼

n3p3

6 . k3(G) = f(Xe) where Xe are edge indicator functions as defined before.
Any edge can be part of at most n distinct triangles. Therefore we conclude that
k3(G) is n-Lipschitz with respect to dH . We apply McDiarmid’s theorem to
conclude

P(k3(G) = 0) ≤ P(|k3 − Ek3| ≥ Ek3) ≤ 2e−
(Ek3)

2

2n4 ∼ e−n2p6 . (2)
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(Note: Janson’s inequality (see homework) gives better estimate e−n
2p.)

Proposition 5. Anym-vertex induced subgraph ofG(n, p) withm ≥ dcp log ne
contains a triangle with high probability for some constant cp dependent only
on p.

Proof. Let S be any set of vertices andG[S] be the subgraph induced by the ver-
tices in S. Clearly, P(∃S : |S| = m,G[S] is triangle free) ≤

(
n
m

)
P(G(m, p) is triangle free) ≈

em logn−m2p6 = e(logn)2cp(p6−cp). The RHS → 0 as n → ∞ if cp ≥ p6, con-
cluding our proof.

3.6 Application 6: Chromatic number of dense random graphs

Our main theorem is one due to Bollobas. Let G = G(n, p) with p ∈ (0, 1)
fixed.

Theorem 6 (Bollobas). Fix p ∈ (0, 1) and let n → ∞. Then χ(G(n, p)) =
(1 + o(1)) n

2 logn log 1
1−p with high probability.

Let kr(G) denote the number of r-cliques inG. Then, E(kr(G)) =
(
n
r

)
p(
r
2) ∆

=
E(n, r). The function r 7→ E(n, r) is unimodal. It increases until abour
r ≈ log 1

pn and then monotonically decreases. Let r0 be such that E(n, r0) <
1 < E(n, r0 − 1), then from tedious Stirling’s approximations we can get:

• r0 = 2 log 1
p
n− 2 log log n+O(1).

• Around r0 the decay of E(n, r) is polynomial: E(n, r0 + δ) ∼ n−δ and
E(n, r0 − δ) ∼ nδ

• For all 1.01 log 1
p
n < r < 2.99 log 1

p
n we have:

var(kr(G)) ≤ ∆ ∼ E(n, r)2(
1

n2
+

1

E(n, r)
)

Let ω(G) denote the size of the largest clique in G (the clique number). For
r = r0 + δ,

P(ω(G) ≥ r) = P(kr(G) ≥ 1) ≤ E(n, r) ≤ 1

nδ

For r = r0 − δ,

P(ω(G) < r) = P(kr = 0) ≤ var(kr)

E(n, r)2
∼ 1

nmin(δ,2)

Therefore, we conclude that w.h.p, ω(G) = r0 ∼ 2 log 1
p
n.
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Lemma 7. χ(G)ω(Ḡ) ≥ n, where Ḡ is the complement of graph G.

Proof. For any valid coloring ofG, vertices of the same color must form a clique
in Ḡ. Thus χ(G)ω(Ḡ) ≥ n.

Lemma 8. If r1 is such that E(n, r1) ∼ nα for α ∈ (1
2 , 2) then

P(kr(G) = 0) ≤ e−(1+o(1))
E(n,r1)

2

2n2 = e−O(n2α−2) .

Note: this a bound one would get had kr(G) been 1-Lipschitz with respect
to n2

2 edge variables.

Proof. The function kr(G) has a very large Lipschitz constant in edge variables,
so McDiarmid method does not apply directly. A clever workaround of Bollobas
was to consider a different random variable Ur equal to the number of r-cliques
that do not share edge with any other r-clique. Ur(G) is evidently 1-Lipschitz
in edge-variables and also kr(G) ≥ Ur(G). Furthermore, we have

E(n, r1) ≥ E(Ur1) ≥
(
n

r1

)
p(

n
r1

) −
r1∑
l=2

(
r1

l

)(
n

r1

)(
n− r1

r1 − l

)
p2(r12 )−(l12 )

& E(n, r1)− n2α−2r4
1

= E(n, r1)(1− nα−2r4
1)

= E(n, r1)(1 + o(1))

where we lower-bounded E[Ur1 ] by choosing all cliques and removing all pos-
sible overlapping r-cliques. We omitted some tedious Stirling-based computa-
tions. Similarly to (2) the Lemma follows after noticing P(kr1(G) = 0) =
P(Ur1(G) = 0).

We proceed with the proof of theorem 6

Proof. 1. Lower bound : When G ∼ G(n, p) we have Ḡ ∼ G(n, 1− p) and
hence

χ(G) ≥ n

ω(Ḡ)
=

n

ω(Ḡ)

w.h.p
=

n

2 log 1
1−p

n

2. Upper bound: Fix n1 and r1 such that n1 = n
logn2 and E(n1, r1) =

(1 + o(1))n
5
3 . Then we have r1 = 2 logn

log 1
1−p

+ O(log log n). By the

Lemma any n1-subset of vertices contains an independent set of size r1

with probability greater than 1 − e−Õ(n
4
3 ) and since there are at most 2n
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subsets of size n1, by the union bound w.h.p. every n1-subset has r1-
independent set.

Then proceed as follows. Pick an r1-sized independent set and color it
with a new color. Subtract it from the set of vertices. Proceed until no
r1-sized independent set is found. We must have left with fewer than
n1 � n

logn vertices and so can color those each with a unique color.
Thus, we proved that w.h.p. χ(G) ≤ n

r1
. This concludes our proof.

Remark: Bollobas notes that after these tight concentration results and in-
teresting question is to prove anti-concentration results. E.g. at present there is
no proof that χ(G(n, p)) is not w.h.p. in some O(1)-interval (the natural high-
probability range should be O(

√
n)).
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