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Hardcore-model (independent sets)

Content.
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1 Review of the model

1.1 Independent set model

Let graph G = (V,E) and we have Pλ(I) = 1
2λ
|I| where I is an independent

set and λ > 0 is the ”activity”.

1.2 Glauber dynamics

• Pick uniformly at random a node v ∈ V

• Update: include v if none of its neighbors are in the independent set with
probability λ

1+λ

2 Facts

Focusing on λ = 1.

1. (a) There can be no polynomial time sampling algorithm unless
NP = RP.

(b) Same holds for graphs of max degree ∆ = 6 [Sly, 2010]

2. Glauber dynamics mixes fast if ∆ ≤ 5
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Proof. We will first prove part 1(a). Assume we have a black box for sampling
uniformly at random independent sets. Take G = (V,E) with |V | = n. We
will show how to answer in polynomial time with probability ≥ 3

4 ”is there an
independent set of size ≥ k in G?” Produce a new graph G′ on nr vertices:

1. Replace u ∈ V (G) with r nodes Ru

2. If (u, v) ∈ E(G) then Ru ×Ru ∈ E(G′)

Claim: Can choose r = cn such that we get an independent set of size ≥ k
if and only if it exists in G.
Consider an independent set ≥ k in G. This corresponds to (2r − 1)k indepen-
dent sets in G′ of size ≥ k. The number of independent sets of size < k in G
correspond to ≤ 2n(2r − 1)k−1 independent sets in G′.
So Pr[independent set ≥ k in G′] ≥ (2r−1)k

(2r−1)k+2n(2r−1)k−1 .

3 Slow mixing for any local Markov chain (∆ = 6)

Definition 1. A Markov chain with Ω = independent sets γ - local if at each
step it changes at most γn nodes.

Theorem 1 (Dyer-Freize-Jerrum). There exists some γ and a sequence of graphs
with max degree ∆ = 6, such that any γ-local Markov chain with stationary
distribution π = Unif(Ω) has tmix ≥ ecn.

Theorem 2 (Conductance). For any Markov chain and all S ⊆ Ω with π(S) ≤ 1
2 ,

tmix ≥ 1
4Φ(S) , where Φ(S) = C(S,S̄)

π(S) and C(S, S̄) =
∑

x∈S,y∈S̄ π(x)P (x, y).

Corollary 3. Assuming π is uniform on the allowable states, tmix ≥ |S|
4|δS| where

δS is the states in S connected to S̄.

Proof. Want to show Φ(S) ≤ |δS||S| . π(S) = |S|
|Ω| .

C(S, S̄) =
∑
x∈S

∑
y∈S̄

π(x)P (x, y)

=
∑
x∈δS

π(x)
∑
y∈S̄

P (x, y)

≤ π(δS) =
|δS|
|Ω|
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Proof. (Theorem 1) Let G = (L,R,E) where L is the set of left nodes and R is
the set of right nodes and |L| = |R| = n. Add a random perfect matching to E
and do this ∆ = 6 times. Now define (α, β) independent set where αn = |I∩L|
and βn = |I ∩R|. Then let:
Ileft = {(α, β) ind. sets with α > β}
Iright = {(α, β) ind. sets with α < β}
Imid = {(α, β) ind. sets in strip} where the strip is of width γ around the line
α = β in the α vs. β plot.
We will apply the corollary with S = smaller of Ileft and Iright and δS ⊆ Imid.

Let ε(α, β) = expected # of (α, β) independent sets. So ε(α, β) =
(
n
αn

)(
n
βn

)
[
((1−β)n

αn )
( nαn)

]∆.(
n
αn

)
= [ 1

αα(1−α)(1−α) ]n Θ( 1√
n

)

ε(α, β) = [ (1−β)(∆−1)(1−β)(1−α)(∆−1)(1−α)

ααββ(1−α−β)∆(1−α−β) ]n+o(n) = exp(f(α, β)(n+o(n)))

Properties of f:

• f is symmetric in (α, β) and has no local maximum other than the global

• If ∆ ≤ 5, then there is a unique global maximum at α = β

• If ∆ ≥ 6, then there are two symmetric global maxima

(α∗, β∗) is one of the local maxima in ∆ = 6 with α∗ = 0.035, β∗ = 0.408
and f(α∗, β∗) > c = 0.71⇒ ε(α∗, β∗) ≥ ecn for sufficiently large n. γ = 0.35
f(α, β) ≤ c− 4δ, δ = 0.0001 when in the γ-strip.

E[|Imid|] ≤
∑

α,βin strip

ε(α, β) ≤ n2e(c−4δ)n ≤ e(c−3δ)n

Pr[|Imid| ≥ e(c−2δ)n] ≤ e−δn

Deterministically |{(α, β) indep. sets with I∩L = αn}| ≥
(
n
αn

)
2(1−∆α)n ≥

e(c−2δ)α where the last inequality comes from Stirling’s approximation and op-
timizing over α. Let α0 be the value where the bound above is obtained (and
similarly define β0). Let:
A = {(α, β) : α ≥ α0, β ≤ β0},
B = {(α, β) : α ≥ α0, β ≥ β0, α ≤ β},
C = {(α, β) : α ≤ α0, β ≥ β0},
D = {(α, β) : α0 ≤ α, β0 ≤ β, α ≤ β}.
Then Ileft ⊇ A ∪ D and Iright ⊇ C ∪ B. So using the corollary we get
|S|

4|δS| ≥ e
δn.
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4 Tree recursions

We are looking at π∆ tree rooted at ρ.
Claim: For any set A ⊆ δn,

Pr[ρ ∈ I|δn ∩ I = A] ∈ [Pr[ρ ∈ I|δn ⊆ I],Pr[ρ ∈ I|δn ∩ I = Ø]]
(Note: flipped when the level is even or odd).

Let q(v) = Pr[v ∈ I|p(v) 6∈ I] where p(v) is the parent of v. Let the
children of v be w1, w2, ..., w∆−1. Rv→p(v) = q(v)

1−q(v) .
Claim: Rv→p(v) = λ

∏
w∈N(v)\p(v)

1
1+Rw→v

.
Note: add a fictitious parent for ρ and condition on p(ρ) 6∈ I .
The claim is true by 1

1+Rw→v
= 1− q(w) = Pr(w 6∈ I|v 6∈ I).

q(v) = Pr[v ∈ I|p(v) 6∈ I] = Pr[v ∈ I|p(v) 6∈ I;w1, ..., w∆−1 6∈ I] Pr[w1, ...w∆−1 6∈ I|p(v) 6∈ I]

=
1

2
[Pr[w1, ..., w∆−1 6∈ I|v 6∈ I] Pr[v 6∈ I|p(v) 6∈ I]

+ Pr[w1, ..., w∆−1 6∈ I|v ∈ I] Pr[v ∈ I|p(v) 6∈ I]]

=
1

2
[
∏ 1

1 +R
(1− q(v))q(v)]

Then rearrange to get the recursion in the claim.
Think of Rv→p(v) as f(x) = λ( 1

1+x)∆−1, f ◦ f(x).
The discussion will be finished at the beginning of next lecture.
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