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Path Coupling
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Reminder:

Theorem 1. If P is irreducible and aperiodic, then

dTV (Pt(x, ·), π) ≤ ce−αt (1)

for some c, α > 0.

Proof. Special case when dTV (Pt(x, ·), Pt(y, ·)) ≤ eα ≤ 1,∀x 6= y.
⇔ ∀x 6= y∃ a coupling (∗) of X1 ∼ P (x, ·) and Y1 ∼ P (y, ·) where

P[X1 6= Y1] ≤ e−α.
Start Xt from x0 and Yt from y0, and at each step couple them using (∗)

(This gets Markovian coupling).

P[X1 6= Y1] = e−αI{x0 6= y0}
P[Xt 6= Yt] = e−αtI{x0 6= y0}

⇒ d̄(t) ≤ e−αt

⇔ d̄(t+ s) ≤ d̄(t)d̄(s) The assumption is just saying d̄(1) ≤ e−α

The bad news is that most markov chains have d̄(1) = 1. Consider the cycle.
If the supports of P (x0, ·) and P (y0, ·) are disjoint, then the total variation is 1.
The resolution is to consider contraction of other distances.

Definition 1. (Ω, ρ) is a (finite) metric space. The 1-Wasserstein distance is

Wρ(P,Q) = inf
X∼P,Y∼Q

Eρ(X,Y )
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How do we think about Wρ?

Proposition 2. (a) dTV is Wρ for ρ(x, y) = I{x0, y0}

(b) (Kantorovich duality) Wρ(P,Q) = supf :1−Lip(ρ) EP f − EQf

(c) (Roughly, not exactly true) Wρ(Pn, P ) → 0 ⇔ Pn → P weakly (which
implies Eρ(xn, v0)→ Eρ(x, v0))

Theorem 3 (Dobrushin’s contraction theorem). Suppose that ∀x 6= y:

1. Wρ(P (x, ·), P (y, ·)) ≤ e−αρ(x, y)

2. minx 6=y ρ(x, y) ≥ 1

then,

d̄(t) ≤ e−αt · diam(X )

tmix ≤
1

α
ln 4 · diam(X )

Proof. Start two chains Xt, Yt from x0, y0.
Sufficient to prove: Px0,y0 [Xt 6= Yt] ≤ e−αtρ(x0, y0)
Indeed,

d̄(t) = sup
x0 6=y0

dTV (Pt(x0), Pt(y0)) ≤ e−αtdiam (2)

Recall tmix(1
4) ≤ inf{t : d(t) < 1

4}. We couple Xt+1, Yt+1 via optimal cou-
pling of P (Xt, ·) to P (Yt, ·) minimizing

E[ρ(Xt+1, Yt+1)|Xt, Yt] ≤ e−αρ(Xt, Yt)E[ρ(Xt, Yt)] ≤ e−αtρ(x0, y0)

Finally notice,

I{Xt 6= Yt} ≤ ρ(Xt, Yt)

⇒
P[Xt 6= Yt] ≤ e−αtρ(x0, y0)

Theorem 4 (Path Coupling). Let P be a markov chain on X ∈ Ω and let P̃ be
the extension of P to Ω. Suppose that

1. G is a connected graph on Ω with `(e) ≥ 1 being length function on edges
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2. Let

ρ(x, y) = min
paths:x=x0→x1→...→xm

m∑
j=0

`(xj , xj+1)

3. Suppose for any x ∼ y (x and y are neighbors in G)

Wρ(P̃ (x, ·), P̃ (y, ·)) ≤ e−αρ(x, y)

then,

d̄(t) ≤ e−αt · diam(X )

tmix ≤
1

α
ln 4 · diam(X )

Caveat: Never assume ρ(x, y) = `(x, y) for x ∼ y

Proof of Thm 4. Observe that Wρ(P1, P3) ≤ Wρ(P1, P2) + Wρ(P1, P2). Sup-
pose that (X,Y ) ∼ πXY which is the optimal coupling of P1 and P2 and πY Z
is the optimal coupling of P2 to P3. Define PXY Z = πXY πZ|Y .

Eρ(X,Z) ≤ Eρ(X,Y ) + Eρ(Y,Z)

Consider x0, y0 and let x0−x1− ...−xn− y0 be the minimum path. Then,

ρ(x0, y0) =
∑

`(xj , xj+1)

Wρ(P (x0, ·), P (y0, ·)) ≤
∑

Wρ(P (xj , ·), P (xj+1, ·))

≤ e−α
∑

ρ(xj , xj+1)

= e−αρ(x0, y0)

⇒ Thm 3’s assumptions are satisfied.

2 Application I: Glauber dynamics on q-coloring of G

Given an undirected graph G:

• Ω = {X : V (G)→ [q]} = [q]V (G) and X = {X : χ(v) 6= χ(v′),∀v, v′}

• π(x) = 1
Z I{x ∈ X} for x ∈ Ω
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• πxv |x∼v
= Unif on C(x, v) where

C(x, v) = set of permitted colors for v in configurationt x

= [q]\λ(N (0))

Theorem 5. If q > 2∆, then tmix ≤ Cq,∆n log n.

This shows fast mixing for q colors.

Proof. Let ρ(x, y) = dH(x, y) = #{v : X(v) 6= y(v)}. Consider two color-
ings x0 and y0 which differ at vertex v0.

The coupling will update synchronously. Choose v ∈ V (G) uniformly at
random. If

• v /∈ N (v0) then choose X1(v) = Y1(v)

• v ∈ N (v0), generate X1(v) ∼ Unif on C(x0, v) and Y1(v) = X1(v) or
X1(v0).

Given that ρ(x0, y0), we want to prove Eρ(X1, Y1) < 1.
Cases:

• With probability 1− deg(v0)+1
n , ρnew = 1

• With probability 1
n , ρnew = 0 (v = v0 case)

• With probability ≥ deg v0
n

(
1− 1

C(x0,v)

)
, ρnew = 1

• With probability≤ deg v0
n

1
C(x0,v) , ρnew = 2 (color of y prohibited by color

of v0 in y0)

Eρ(X1, Y1) = 1− 1

n
+

deg(v0)

n

1

C(x, v)

≤ 1− 1

n
+

∆

n

1

q −∆

= 1− 1

n

(
1− ∆

q −∆

)
= 1− 1

n

q − 2∆

q −∆

≤ e−c/n
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By path coupling,

tmix ≤
n

c
log(4 · diam)

≤ n

c
log(4n)

Last time we showed tmix ≥ 1
4Φ∗

.
For q-coloring of a star, let q be small and n >> 1.

Φ∗ ≤
(
n− 1

q − 1

)n
=

(
1− 1

q − 1

)n
tmix ≥

1

4Φ∗
≥ eCn·n

3 At the critical value

What if q = 2∆? At the critical value, tmix ≤ 4qn3.

Theorem 6. Suppose we have a family of couplings for all x 6= y, P (x, ·) to
P (y, ·) with the property that

1. Wρ(P (x, ·), P (y, ·)) ≤ ρ(x, y)

2. Ex0,y0(ρ(X1, Y1)− ρ(x0, y0))2 ≥ β,∀x0 6= y0

then

tmix ≤ 4
diam(X )2

β

Proof of 6. Run Xt, Yt via markov coupling of P (xt+1, ·) to P (Yt+1, ·) at each
step let Zt = diam− ρ(Xt, Yt). We have 0 ≤ Zt ≤ diam.

E[Zt|Xt−1, Yt−1] ≥ Zt−1

from property 1. This forms a submartingale. We know that submartingales
cannot oscillate, so eventually, it will hit diam.

E[Z2
t |Ft−1] = E[(Zt−1 + Zt− Zt−1)2|Ft−1]

≥ Z2
t−1 + βI{Xt−1 6= Yt−1}

= Z2
t−1 + βI{τ > t− 1}
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where τ = inf{s : Zs = diam}. This gives

EZ2
t ≥ EZ2

t−1 + βP[τ > t− 1]

diam2 ≥ z2
0 + β

t−1∑
s=0

P[τ > s]

As t→∞,

βEτ ≤ diam2

tmix ≤
4 · diam2

β

where the last expression is given by Chebychev’s.

We will apply this to q-coloring. The coupling of X1 to Y1 for arbitrary
x0 6= y0 is the following:

1. Update synchronously v uniformly at random from V (G)

2. At v, generate random permutation of [q], (q1, q2, ..., qn).

3. SetX(v) to the first color in the permutation permitted byX and set Y (v)
to the first color in the permutation permitted by Y .

Eρ(X1, Y1) ≤ ρ(X0, Y0)

if q = 2∆. Since there exists v such that X0(v) 6= Y0(v), we must have
C(x0, v) ∩ C(y0, v) 6= Ø, so

E(ρ(X,Y )− ρ(X0, Y0))2 ≥ 1

nq

Theorem 7. For the hardcore model: π(x) = 1
Zλ

#{X(v)=1} (whereX : V (G)→
{0, 1} and the location of all 1’s must be an independent set) we have that
Glauber dynamics

λ <
1

∆− 1
⇒ tmix ≤ cn log n

λ =
1

∆− 1
⇒ tmix ≤ cn3

6


