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1 KKL theorem and some implications

Recall from last time:

1. Ii(p) := Pµp [f(x) 6= f(x⊕ ei)].

2. For a monotone set Ω, d
dpµp(Ω) = ±Ip(1Ω), where Ip(f) :=

∑n
i=1 I

p
i (f).

We consider some implications and corollaries of the following Theorem.

Theorem 1 (Khan-Kalai-Linial). There exists a constant c > 0 such that for
any p ∈ (0, 1), n ∈ N, and f : {0, 1}n → {0, 1},

Ip(f) ≥ c · varµp(f) log

(
1

τp

)
,

where τp := maxi∈[n] I
p
i (f).

The proof of the theorem is given in the next lecture. Note that in Section 2
we show it sufficient to consider the case when p = 1

2 .

Corollary 2. There exists a constant c > 0 such that for all p ∈ (0, 1) and
f : {0, 1}n → {0, 1}, there exists i∗ ∈ [n] such that

Ipi∗(f) ≥ c log n

n
varµp(f).
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Proof. From the KKL theorem (Theorem 1),

nτp ≥ c′ · varµp(f) log

(
1

τp

)
,

which is equivalent to the condition (for some constant c > 0),

τp ≥ c · varµp(f)
log n

n
,

and the desired result follows.

Implications:

1. The following result is a corollary of the KKL theorem for boolean func-
tions that are monotone and symmetric. See section 9.6 in the book
(Boucheron, Lugosi, and Massart) for further similar results.

Corollary 3. Let Ω ⊆ {0, 1}n be monotone, Ψ(p) := µp(Ω), and pε =
Ψ−1(ε) and p1−ε = Ψ−1(1 − ε). Suppose that Ipi (1Ω) = Ipj (1Ω) for all
i, j ∈ [n]. Then, there exists a constant cε such that,

p1−ε − pε ≤
cε

log n
.

Proof. Take p ∈ (p1−ε, pε). Then, varµp(1Ω) ∈ (δε, 1 − δε) for some
δε > 0. By the KKL theorem, there exists i∗ ∈ [n] and cε > 0 such that
Ipi∗(f) ≥ cε logn

n . So by symmetry hypothesis,

d

dp
µp(1Ω) = Ip(1Ω) ≥ cε log n.

The desired result follows from the fact the above inequality holds for all
p ∈ (pε, 1− pε).

Example : Consider Tribes (see page 269 in the book). Take Xi ∼
Ber (p). Let Ω = {No open path in G between end vertices}. By Corol-
lary 3, p1−ε − pε ≤ cε

logn . Note Tribe’s function implies KKL is tight (up
to constants). We tried to compare with Mergulis’ Theorem but realized
that we did not satisfy the edge connectivity requirement. Nonetheless,
Tribes shows Corollary 2 is tight up to constant factors (see the discussion
in the book).
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2. We use the KKL theorem (and some other results) to show that the critical
threshold for Z2-edge-perculation is pc = 1

2 . Recall Θ(p) = Pµp [0 ∈
infinite component]. Let An,m ⊂ Z2 be an n×m “block” of Z2. Define

Ψn,m(p) := Pµp [∃ open path from left to right side of An,m].

Theorem 4 (Russo-Seymour-Welsh). For all a, b > 0, there exists ε(a, b) >
0 such that for all n ∈ N,

ε(a, b) ≤ Ψan,bn(
1

2
) ≤ 1− ε(a, b).

Corollary 5. Θ
(

1
2

)
= 0.

Proof sketch. Recall that 0 is in the infinite component if and only if we
cannot construct a cycle (with open edges) surrounding 0 in the dual lat-
tice. Consider “surrounding” zero with four 4n×n rectangular grids. The
RSW theorem implies each of these events occurs with at least constant
probability for all n. The FKG inequality implies the intersection of the
events occurs with at least constant probability. We can construct such
“box enclosures” for all n such that they are disjoint. So with probability
one at least one event happens. Thus, with probability one, 0 is not in the
infinite component.

Proposition 6. If Ψn0,2n0(p) ≥ .98, then Ψ2kn0,2k+1n0
(p) ≥ 1− 0.02

2k
and

Θ(p) > 0.

Proof sketch. The proof of the first claim follows by an appropriate “tiling”
of blocks and various applications of the union bound. The second claim
follows from an appropriate assembly of the 2kn0 × 2k+1n0 blocks.

We get to use the KKL theorem in the proof of the following theorem.

Theorem 7 (Kesten). pc = 1
2 .

Proof. By Corollary 5, pc ≥ 1
2 . Suppose pc > 1

2 . Take 1
2 < p < pc. For

all n ∈ N,

ε ≤ Ψn0,2n0(
1

2
) ≤ Ψn0,2n0(p) ≤ 0.98.
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where the first inequality follows from RSW, the second from monotonic-
ity and the third from Proposition 6. Let µp(Ωn) = Ψn0,2n0(p), where
n = 2n2

0. The KKL theorem implies,

d

dp
µp(Ωn) = Ip(Ωn) ≥ c log

(
1

τ

)
.

But τ → 0 as n → ∞, which implies d
dpµp(Ωn) → ∞ as n → ∞. This

yields a contradiction.

2 Reduction of KKL theorem to p = 1
2

We briefly show is sufficient to prove Theorem 1 for p = 1
2 . Let X̃i ∼ Ber(p)

and consider f(X̃1, ..., X̃n). Assume p has a finite decimal expansion. Then,
there exist m and N such that

Xi = 1{∑m
j=1 2−jXi,j≥ N

2m } =: h(Xi,1, ..., Xi,m).

Define g(X1,1, ..., Xn,m) = f(h(X1, 1, ..., X1,m), ..., h(Xn,1, ..., Xn,m)). Note
that varµ 1

2

(g) = varµ(f), I
1
2 (g) ≤ 2Ip(f), and Imax(g) ≤ 1

2Imax(f). Thus, it

is sufficient to consider p = 1
2 .

3 Fourier decomposition and hypercontractivity

We will use the topics in this section in the proof of the KKL theorem. We first
consider the Fourier decomposition for a boolean function f : {0, 1}n → {0, 1},

f(x1, ..., xn) =
∑
S⊆[n]

f̂(S)uS(x1, ..., xn),

where uS are orthogonal functions under µ 1
2

defined by uS(x) =
∏
i∈S(−1)Xi .

Note we can derive with the Efron-Stein decomposition. Some properties of the
Fourier decomposition are as follows:

1. Ef2 =
∑

S f̂
2(S).

2. var(f) =
∑

S 6=Ø f̂2(S)

3. I
1
2
i (f) = E|∇if |2 = E

(∑
S f̂

2(S)∇iuS
)2

= 4
∑

S:i∈S f̂
2(S).

4. µS(x) =
∏
i∈S(−1)xi =

∏
i∈S(1− 2xi).
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5. I(f) = 4
∑

S |S|f̂2(S) ≥ 4
∑

S 6=Ø f̂2(S) = 4var(f)

6. ∇iuS(x) =

{
0, i /∈ S
2uS , i ∈ S.

We will also need the following hyperconstractivity inequality, which we will
prove next time. For all t ≥ 0,∑

S

e−2t|S|f̂2(S) ≤ (E|f |q)
2
q ,

where q = 1 + e−2t.
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