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1 Main theorem

Theorem 1 (Erdős-Rényi). Let G(n, p = λ
n) be an Erdős-Rényi random graph.

For v ∈ [n] letC(v) denote the component containing v. LetL1 = maxv∈[n] |C(v)|
be the size of the largest component of G and let L2 be the size of the second
largest component. Then

λ < 1⇒ L1 = Θ(log(n)) (Sub critical)

λ > 1⇒ L1 ∼ cλn, L2 = Θ(log(n)) (Super critical)

where cλ > 0 satisfies 1− c = e−cλ.

An idea of the proof of this theorem is given towards the end.

2 Coupling of stochastic processes

Definition 1 (Coupling). Random variables (X̂1, X̂2, ..., X̂n) defined on same

probability space, is a coupling of the random variables X1, X2, ..., Xn if X̂i
d
=

Xi, i ∈ [n].
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Note that the original variables do not need to be defined on the same prob-
ability space.

2.1 Examples

1. LetX ∼ Ber(p) and Y ∼ Ber(q) with q > p. Let U ∼ Unif[0, 1]. Define

X̂ = 1U≤p and Ŷ = 1U≤q. Clearly X̂ d
= X and Ŷ d

= Y . Also

P(X̂ ≤ Ŷ ) = 1.

This is called ”Monotone coupling”.

2. For i ∈ N, let Xi ∼ Ber(p), Yi ∼ Ber(q) be iid random variables such
that (Xi, Yi) are coupled as in the previous example with q > p. Let
S
(p)
n =

∑n
i=1(2Xi−1) and S(q)

n =
∑n

i=1(2Yi−1). With S(p)
0 = 0 = Sq0 ,

the two random walks are such that

S(p)
n ≤ S(q)

n a.s ∀n

3 A special coupling and Strassen’s theorem

Given two random variables X and Y , our goal is to maximize P[X = Y ]. Let
P[X = x] = px and P[Y = x] = qx. Let dTV (X,Y ) = supA∈F (P[X ∈
A] − P[Y ∈ A]) be the total variation distance between X and Y . We have the
following theorem.

Theorem 2 (Strassen). P[X 6= Y ] ≥ dTV (X,Y ) for any coupling (X,Y ).
Further, there exists a coupling (X,Y ) such that P[X 6= Y ] = dTV (X,Y ).

Proof. For any A ∈ F , we have

P[X ∈ A]− P[Y ∈ A] =

P[X ∈ A,X = Y ] + P[X ∈ A,X 6= Y ]

− P[Y ∈ A,X = Y ]− P[Y ∈ A,X 6= Y ]

≤ P[X ∈ A,X 6= Y ]

≤ P[X 6= Y ].

Taking supremum over A ∈ F proves the first part of the theorem. We know
that, for discrete random variables X and Y , dTV (X,Y ) = 1

2

∑
x |px− qx|. Let

A = {x : px > qx}. Then dTV (X,Y ) = P[X ∈ A] − P[Y ∈ A]. To prove
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the second part, it is enough to show that P[X ∈ A]− P[Y ∈ A] = P[X 6= Y ].
That is

P[X ∈ A,X 6= Y ]− P[Y ∈ A,X 6= Y ] = P[X 6= Y ].

So it suffices to find a coupling such that

X /∈ A⇒ X = Y

Y ∈ A⇒ X = Y.

One can verify that the following joint distribution on (X,Y ) is a valid coupling
and has the above required property

P[X = x, Y = y] =

{
min{px, qx} x = y
max{px−qx,0}·max{qy−py ,0}

dTV (X,Y ) x 6= y

4 Poisson approximation

Lemma 3. If X ∼ Ber(p), Y ∼ Poisson(p) then dTV (X,Y ) ≤ p2

Proof. We use the optimal coupling to prove this lemma. Let

X = Y = 0 w.p. p

X = Y = 1 w.p. pe−p

X 6= Y w.p. (1− p− pe−p).

So
P [X 6= Y ] = 1− (1− p)− pe−p = p(1− e−p) ≤ p2

since 1− e−p ≤ p.

Theorem 4. Let Xi ∼ Ber(pi), Sn =
∑n

i=1Xi. Let Zn ∼ Poisson(
∑n

i=1 pi).
Then

dTV (Sn, Zn) ≤
n∑
i=1

p2i .

Hence

dTV (Binom(n,
λ

n
),Poisson(λ)) ≤ λ2

n
.
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Proof. Let Yi = Poisson(pi). Then Zn
d
=

∑n
i=1 Yi. Couple Xi and Yi opti-

mally as in lemma 3 for every i. Therefore

dTV (Sn, Zn) ≤ P[Sn 6= Zn]

≤
n∑
i=1

P[Xi 6= Yi] ≤
n∑
i=1

p2i .

5 Stochastic domination

Definition 2 (Stochastic domination). Given two random variables X and Y ,
X is said to have stochastic dominance over Y , denotedX � Y , if P[X ≥ x] ≥
P[Y ≥ x],∀x

Example : For µ ≥ λ, we have Poisson(µ) � Poisson(λ). To see this,
let X ∼ Poisson(λ) and Z ∼ Poisson(µ − λ). Let Y = X + Z. Then
Y ∼ Poisson(µ). Hence

P[Y ≥ x] = P[X + Z ≥ x] ≥ P[X ≥ x].

Theorem 5. X � Y iff there exists a coupling (X,Y ) such that P (X ≥ Y ) =
1.

Proof. If there exists such a coupling, then

P[Y ≥ x] = P[X ≥ Y ≥ x] ≤ P[X ≥ x].

For the converse the idea is similar to monotone coupling using the generalized
inverse CDF on Unif[0, 1] random variable.

Example : Let m ≥ n and p ≥ q. Then Binom(m, p) � Binom(n, q).
To prove this one think of binomial random variable as a sum of independent
Bernoulli random variables. Use monotone coupling to couple n Ber(p) vari-
ables (corresponding to Binom(m, p)) to n Ber(q) variables. Then we are just
adding more non-negative stuff in Binom(m, p) compared to Binom(n, q).
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6 Proof idea of the main theorem

There are four key steps to proving the main theorem:

1. Define the graph exploration process

2. Relate to a branching process

3. Analyze the Poisson branching process

4. Apply to the random graph in the theorem

6.1 Graph exploration process

In a given graph G, we can define a procedure to find the component C(v)
containing the vertex v. Similar to the random walk representation of branching
processes, we classify the vertices as active, explored or neutral. Start from v.
It is active and all other vertices are neutral at t = 0. Y0 = 1. At each time t,
take an active vertex and make all its neutral neighbours active. Set that vertex
as explored. Let Yt denote the new number of active vertices (just after time t).
The process terminates when there are no more active vertices. Hence C(v) is
the set of explored vertices. If Zt denotes the number of neutral neighbours of
an active vertex that is chosen to be explored, then

Yt = Yt−1 + Zt − 1

with Y0 = 1.
In G = G(n, p), each neutral w has independent probability p of becoming

active. Let Nt = n − t − Yt denote the number of neutral vertices at time t.
Then it can be seen that

Zt ∼ Binom(Nt−1, p).

If T = inf{t : Yt = 0}, then T = |C(v)|. Since Nt = Nt−1 −Zt it follows that
Nt ∼ Binom(Nt−1, 1− p). By induction, we have

Nt ∼ Binom(n− 1, (1− p)t).

The random quantities Yt, Zt and Nt can be compared to the corresponding
quantities of the Poisson branching process.

The next step is to prove the following inequalities:

P[T grn,p ≥ t] ≤ P[TBinom
n,p ≥ t] (Stochastic domination)

P[T grn,p ≥ t] ≥ P[TBinom
n−1,p ≥ t]
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where T grn,p is the component size in the graph exploration process and TBinom
n,p is

the total progeny is the branching process with offspring distribution Binom(n, p).
These binomial quantities are compared to Poisson to yield various estimates.
Further details can be found in [Alon-Spencer].
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