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Path Coupling

1

Reminder:

Theorem 1. If P is irreducible and aperiodic, then
drv (Py(,-),m) < ce™® ey
for some c,a > 0.

Proof. Special case when dry (P(x, ), Pi(y,)) <e* < 1,Vx #y.

< Vx # y3 a coupling (%) of X3 ~ P(x,-) and Y1 ~ P(y,-) where
PX; # Y] <e @

Start X; from zo and Y; from yg, and at each step couple them using (x)
(This gets Markovian coupling).

P[X1 # V1] = e “T{xo # yo}
P[X: # Vi) = e ' I{xo # yo}
=d(t) <e ™

& d(t + s) < d(t)d(s) The assumption is just saying d(1) < e™ O

The bad news is that most markov chains have d(1) = 1. Consider the cycle.
If the supports of P(xo,-) and P(yo, -) are disjoint, then the total variation is 1.
The resolution is to consider contraction of other distances.

Definition 1. (2, p) is a (finite) metric space. The 1-Wasserstein distance is

WP(P7 Q) = XNg})f;'NQEp(X’Y)



How do we think about W,?
Proposition 2.  (a) dpy is W, for p(z,y) = I{zo, yo}
(b) (Kantorovich duality) W,(P, Q) = sups.i_ripp) Erf — Eqf

(c) (Roughly, not exactly true) W,(P,, P) — 0 & P, — P weakly (which
implies Ep(xy,,vo) — Ep(z,v9))

Theorem 3 (Dobrushin’s contraction theorem). Suppose that Vx # y:
1. WP(P(x7 )7P(y7 )) < €_a,0(.’L',y)
2. mingz, p(z,y) > 1

then,

d(t) < e . diam(X)

@

< —1In4 - diam(X)
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Proof. Start two chains X;, Y; from g, yg.
Sufficient to prove: P¥0:% [ X, £ V;] < e~ p(xo, o)
Indeed,

d(t) = sup drv(Py(z0), Pi(yo)) < e “diam 2)
T0#£Yo

Recall tmm(i) < inf{t : d(t) < i} We couple X1, Y11 via optimal cou-
pling of P(Xy,-) to P(Y;, -) minimizing

Elp(Xe11, Y1) Xe, Yi] < e7%p(Xy, VI)E[p( X, Y1)] < e p(o, yo)
Finally notice,

{X;: # Y} < p(Xt, Yz)
=
P[X;: # V3] < e *p(z0,v0)

O]

Theorem 4 (Path Coupling). Let P be a markov chain on X € () and let P be
the extension of P to ). Suppose that

1. G is a connected graph on Q with {(e) > 1 being length function on edges



2. Let

m

plw,y) = min DI
paths:x=x0—x1—>...—Tm <

3. Suppose for any x ~ y (x and y are neighbors in G)
WP(P(x7 ')7 p(ya )) < eiap(xﬂl/)

then,

Caveat: Never assume p(z,y) = {(z,y) forz ~ y

Proof of Thm 4. Observe that W, (P, P3) < W,(P1, P2) + W,(P1, P»). Sup-
pose that (X,Y) ~ mxy which is the optimal coupling of P, and P, and 7y »
is the optimal coupling of P» to Ps. Define Pxyz = 7 XYTZ|y-

Ep(X,Z) <E,(X,Y)+E,(Y, 2)

Consider xg, yo and let zg — x1 — ... — z,, — Yo be the minimum path. Then,

$0>Z/0 E K ':Ujax]—i-l

W,(P(x0,), P(yo,")) < W,(P(x),-), P(wjs1,-))
<e @ Zp xj,xjH
= e “p(z0,0)
= Thm 3’s assumptions are satisfied. O

2 Application I: Glauber dynamics on ¢-coloring of G

Given an undirected graph G:
¢ Q={X:V(G) = g} = [0V and X = {X : x(v) # x(v'), Yv, '}
o m(z) = tI{z € X} forz € O



® Ty, |z, = Unif on C(z,v) where

C(z,v) = set of permitted colors for v in configurationt =

= [d\AWN(0))

Theorem 5. If ¢ > 2A, then t,,,;, < Cyq anlogn.

This shows fast mixing for ¢ colors.

Proof. Let p(x,y) = dg(z,y) = #{v : X(v) # y(v)}. Consider two color-
ings xg and yg which differ at vertex vy.

The coupling will update synchronously. Choose v € V(G) uniformly at
random. If

e v ¢ N(vg) then choose X (v) = Yi(v)

e v € N(vp), generate X;(v) ~ Unif on C(zg,v) and Y1(v) = X;(v) or
Xl(’Uo).

Given that p(z0, yo), we want to prove Ep(X1,Y7) < 1.
Cases:

e With probability 1 — %800+t g

e With probability %, Pnew = 0 (v = v case)

e With probability > &% (1 - oG ) Prew = 1

Z0,V)

n

e With probability < 950 = (IIO 5> Pew = 2 (color of y prohibited by color

ofvoinyo)
1 deg(vg) 1
Ep(X1,Y1)=1——
P(X1, 1) n n  C(z,v)
1 A 1
<l--—t+=—
- n nqg—A
b
n qg—A
_,_la-2a
B nqg—A
< o—c/n



By path coupling,

IN

n log(4 - diam)
c

75mix

IN

n
—log(4
" log(4n)

Last time we showed %,,,55: > ﬁ.

For g-coloring of a star, let ¢ be small and n >> 1.

3 At the critical value

What if ¢ = 2A? At the critical value, £, < 4qn?>.

Theorem 6. Suppose we have a family of couplings for all x # vy, P(x,-) to
P(y, -) with the property that

1. W,(P(x,-), P(y,-)) < p(,y)
2. EP%(p(X1, Y1) — p(20,40))* = B, Vo # Yo
then
diam(X)?
g

Proof of 6. Run X4, Y; via markov coupling of P(z;41,-) to P(Y;41,-) at each
step let Zy = diam — p(X3,Y;). We have 0 < Z; < diam.

tmix S 4

E[Zi| Xi-1,Yi-1] > Z4

from property 1. This forms a submartingale. We know that submartingales
cannot oscillate, so eventually, it will hit diam.

E[Z2|Fi_1] = E[(Zi_1 + Zt — Z4_1)?|Fi_1]
> 72 4 B X1 # Vi1 }
=72 4+ Bl{r>t—1}



where 7 = inf{s : Zs = diam}. This gives

EZ} >EZE, + BP[r >t — 1]
t—1
diam?® > 22 + ﬁZ]P’[T > 5]
s=0

Ast — oo,

BET < diam?

4 - diam?

where the last expression is given by Chebychev’s. O

We will apply this to g-coloring. The coupling of X; to Y; for arbitrary
o # Yo is the following:

1. Update synchronously v uniformly at random from V' (G)
2. At v, generate random permutation of [q], (¢1, g2, ..., Gn)-

3. Set X (v) to the first color in the permutation permitted by X and set Y (v)
to the first color in the permutation permitted by Y.

Ep(X1,Y1) < p(Xo, Y0)

if ¢ = 2A. Since there exists v such that Xo(v) # Yp(v), we must have
C(zg,v) N C(yo,v) # D, so

1

nq

E(p(X,Y) — p(Xo, Yp))* =

Theorem 7. For the hardcore model: (x) = 2XHX W= (where X : V/(G) —
{0,1} and the location of all 1’s must be an independent set) we have that
Glauber dynamics

A<

A1 = tmiz < cnlogn
1 3
= tmiz < CN

A=A



