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1 Summary from last time

There are several distances that we consider.

Definition 1.
d(t) = sup

x∈X
dTV (Pt(x, ·), π)

Definition 2.

d(t) = supx, y ∈ X = dTV (Pt(x, ·), Pt(y, ·))

Definition 3.
d(2)(t) = sup

x∈X
∥qt(x, ·)− 1∥2

where

qt(x, y) =
Pt(x, y)

π(y)

is the relative density.

1



Aside: The distance d(t) typically falls sharply at a cutoff point while d(2)(t)
falls exponentially.

Also recall the definition for mixing time:

Definition 4.
tmix = inf

{
t : d(t) ≤ 1

4

}
Review of some proofs from last time:

1. For an irreducible, aperiodic Markov chain,

d(t) ↘ 0.

The proof was through a coupling induction via Dobrushin extension.

2. Mixing time for lazy random walks on the circle and hypercube.

a) On the circle Cn, the tmix = Θ(n2). The coupling was done by only
moving one chain at a time, which reduces to a simple random walk
on [0, n2 ]. Additionally, we learned from homework that the cover time
for the simple random walk on Cn is Θ(n2).

b) For the lazy random walk on the hypercube Hn, tmix = Θ(n log n).
At each time step, one coordinate of the chains would be chosen at
random and a new sample would be generated. This coupling reduces
to the Coupon Collector Problem.

Remark: Coupling two chains by moving them in the same direction is not
always a good idea (think of symmetric random walk on [−n, n]). In some
situations, like for diffusion processes, reflection coupling gives faster mixing.

Example: Symmetric random walk on Kn (clique of size n). For example, this
is K4:

• The symmetric random walk on Kn is irreducible, and aperiodic for
n ≥ 3.
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• The stationary distribution is uniform over the n states. Wherever the
chain starts, P1(x, ·) will be a permutation of

(
0, 1

n−1 ,
1

n−1 , ...,
1

n−1

)
,

which means d(1) = 1
n , and so tmix = 1.

• Similarly, P1(y, ·) will be a permutation of
(
0, 1

n−1 ,
1

n−1 , ...,
1

n−1

)
, so

d(1) =
1

n− 1

.

Now let’s consider Kn∨Kn, which is two cliques of size n that share one point.
For example, this is K4 ∨K4:

Let’s work on finding an upper bound for tmix. Let Xt and Yt be two sym-
metric random walks on Kn ∨ Kn starting at x0 and y0 respectively, where
x0 ̸= y0. Let’s assume x0 and y0 are in opposite cliques and not equal to the
joining vertex, which we call ρ. For the coupling, let Xt and Yt advance to
Xt+1 and Yt+1 independently if they are in opposite cliques. Otherwise use the
optimal coupling that we had for Kn, which gives

P (Xt+1 ̸= Yt+1|Ft) ≤
1

n− 1
.

• Now let

τi = inf {t ≥ 0 : Xt ̸= ρ, Yt ̸= ρ,Xt and Ytare in the same clique} .

Then we have P(Xτi+1 ̸= Yτi+1) ≤ 1
n−1 .

• If we prove that E[τi] ≤ 4n then P(Xt+1 ̸= Yt+1) ≤ 4n
t + 1

n−1 by
Chebyshev.

• Let τρ = inf{t > 0 : Xt = ρ}. At time τρ + 1, with probabil-

ity 1
2

(
1− 1

n−1

)
≥ 1

4 , X and Y will be in the same clique. Then we
have E[τi] ≤ E[τρ + 1] · 4 by the property of geometric trials. Now
τρ is a geometric random variable with parameter 1

n−1 , which means
E[τρ + 1] · 4 = 4n, and tmix ≤ 16n.

3



Now let’s work on finding a lower bound for tmix. Let Sc be the set of vertices
in one of the Kn cliques, including ρ. Then clearly π(Sc) ≥ 1

2 . Let’s put x0 in
S. We have

P(Xt ∈ Sc) ≤ P(τρ ≤ t)

≤ t

n− 1
Union Bound

≤ 1

4
if t <

n

4

Therefore tmix > n
4 . Combining with the upper bound, tmix = Θ(n).

2 Lower bounds on mixing time: Cheeger constant

We will begin by defining the Cheeger constant and related quantities for a
Markov chain, working with the graph representation of the chain.

Definition 5 (Edge weights). For a directed edge e⃗ from x to y in the graph
representation of the chain, let C(e⃗) = π(x)P (x, y). This quantity is often
called the capacity or conductance.

Definition 6 (Cheeger constant for a set). For any set S of vertices, define

φ(S) =
C(S, SC)

π(S)
=

∑
x∈S,y∈Sc C(x, y)

π(S)
.

Definition 7 (Cheeger constant of a Markov chain).

φ⋆ = min
S:0<π(s)≤ 1

2

φ(S)

Proposition 1.
φ(S) = Pπ (X1 /∈ S|X0 ∈ S) .

In this way φ(S) can be thought of an escape probability.

Proof. The proof follows from the definition.

Proposition 2. Let

φ̃⋆ = min
S

C(S, Sc)

π(S)π(Sc)
.

Proof. Follows from C(S, Sc) = C(Sc, S).
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Proposition 3. Consider a simple random walk on a graph G. Let E(S, Sc)
be the set of edges from S to Sc. Similarly, let E(S, S) be the set of edges
connecting vertices within S. Also, let deg(x) be the degree of a vertex x and let
δe(S) be the set of edges on the boundary of S. Then

φ(S) =
|E(S, Sc)|∑
x∈S deg(x)

=
|δe(S)|

|E(S, S)|+ |E(S, Sc)|
.

For a lazy random walk on G,

φ(S) =
1

2

|E(S, Sc)|∑
x deg(x)

Proof. (Sketch) Recall that C(e) = 1
2|E| for a simple random walk.

Theorem 4 (Relating Cheeger constant to mixing).

1. For any Markov chain,

tmix ≥ 1

4φ⋆
.

Note that this also means

tmix ≥ 1

4φ(S)

for any set S.

2. For a reversible Markov chain, d(t) ≥ (1− φ⋆)
t − 1

2 .

Proof. Let

ν(x) =
π(x)

π(S)
1x∈S ,

which is a valid probability distribution on X . Take X0 ∼ ν. Then

P(X1 /∈ S) = φ(S).

Also

P (X1 = a) =
∑
x∈S

ν(x)P (X, a)

=
1

π(S)

∑
x∈S

π(x)P (x, a)

≤ 1

π(S)

∑
x∈X

π(x)P (x, a)

≤ π(a)

π(S)
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By induction, P(Xt = a) ≤ π(a)
π(S) , ∀t. Then we have

P(Xt ∈ Sc) ≤ P(∃v : 0 ≤ v < t,Xv ∈ S,Xv+1 /∈ S)

≤
∑
v

P(Xv ∈, Xv+1 /∈ S) Union Bound

=
∑
v

∑
a∈S

P(Xv = a)P (a, Sc)

≤
∑
v

∑
a∈S

π(a)

π(S)
P (a, Sc)

=
∑
v

φ(S)

= tφ(S)

which means that tmix ≥ 1
4φ⋆

. Now for a reversible chain,

P(τSc > t) ≥ (1− φ(S))t ,

from which it follows that

d(t) ≥ (1− φ⋆)
t − 1

2
.

3 Sampling

Given a distribution π on a state space X , our goal is to generate a sample
X0 ∼ π. There are several complications that can arise. For example, the
state space could be very large. Another issue is that sometimes distributions
are unnormalized, i.e. π is specified as π(x) = 1

Zπ
⋆(x) where Z is unknown.

Another difficulty arises when π is a complicated function, e.g.

π(x) =
1

Z
exp(−x2 + x3 − x4 + x5 − x6)

because sampling from π is equivalent in difficulty to sampling a point under
the graph of this function.

Motivation for sampling

1. Sampling corresponds to counting or computing volumes
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2. Sampling has applications in statistical physics. There are many situations
in statistical physics where we wish to sample from π(x) = 1

Z e
−f(x).

3. In combinatorics, we may wish to sample uniformly from some set of
objects. For example, π could be uniform over the set of 5-colorable
graphs.

4. In inference, we may have conditional probabilities to sample from. For
example, the cell phone signal reconstruction model is of the form

Y ∼ 1

z
e−βdH(y,x)π(x),

and we wish to sample from PX|Y=y.

4 Metropolis Algorithm

The first approach to sampling that we will discuss is called the Metropolis Al-
gorithm. The underlying idea is given some reversible Markov chain governed
by P̃ (x, y) with stationary distribution π̃(x), modify it so that the new Markov
chain is governed by P (x, y) and has π(x) as its stationary distribution. We
need to define a function f(x, y) that defines the relationship between P (x, y)
and P̃ (x, y):

P (x, y) = P̃ (x, y)f(x, y), ∀x ̸= y

and
P (x, x) = 1−

∑
y ̸=x

P (x, y).

The function must satisfy

1. f > 0

2. f is such that P (x, x) ≥ 0.

3. f is such that π(x)P (x, y) = π(y)P (y, x).

For example,

f(x, y) = c

√
π(y)

π̃(y)
· π̃(x)
π(x)

satisfies the requirements, for c small enough so that the second requirement
holds.

7



The Metropolis algorithm uses

f(x, y) = min

{
1,

π(y)

π̃(y)
· π̃(x)
π(x)

}
(M).

This function is sometimes called the “Metropolis filter.”

Theorem 5. f(x, y) as defined in (M) defines a reversible Markov chain P with
reversing measure π.

Remarks

1. The resulting chain is not necessarily irreducible.

2. The resulting chain is aperiodic if P̃ (x, x) > 0.

3. The algorithm doesn’t depend on Z, because it cancels in the expression
for f(x, y).

Aside: Suppose π(x) = 1
Z e

−βf(x). Then if β is large, a random sample
from π is a global minimizer of f . This is related to simulated annealing.

5 Glauber Dynamics

We consider a special case where X = An, i.e. X is a product space. Given
πXn , a distribution on X , define

P (i)(an, bn) =

{
0 if a∼i ̸= b∼i

πXi|X∼i
(bi|a∼i) otherwise

Theorem 6.

Pn

n∑
i=1

P (i)

is reversible and has πXn as its stationary (reversing) measure.

Proof. Proof omitted.

Examples

1. As an example of Glauber dynamics, consider a graph with vertices la-
belled in {0, 1}. The dynamics are: sample i ∈ [n] uniformly at random,
then resample the ith coordinate via πXi|X i

. Note that the normalizing
constant Z cancels when sampling from the conditional distribution.
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2. For sampling independent sets on a graph G, Glauber dynamics arrive
at a sample as fast as the Metropolis algorithm would. The dynamics
are to sample v ∈ V (G) and include or exclude v from the independent
set with probability 1

2 each unless a neighbor of v already belongs to the
independent set.

3. Graph coloring. Let

qCol(G) = {Xi : V (G) → [q], Xi ̸= Xj∀i ↔ j}.

For this example Glauber dynamics arrive at a sample faster than the
Metropolis algorithm. The dynamics are to pick a vertex v uniformly
at random and recolor it among the available colors. As q increases, the
dependence between coordinates decreases.

Proposition 7. For any fixed q and with G a star on n vertices,

tmix ≥ 2Cqn

where Cq is a constant that depends on q. The reason is that transitions
between subsets of the state space where the central color is fixed are rare.
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