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1 Martingales

A martingale is a sequence of random variables M0,M1, . . . whose expected
value “tends to stay the same.” That is, if we know that the value of Mn−1 is
mn−1, then E [Mn|Mn−1 = mn−1] = mn−1. They are often used to describe a
process evolving over time, e.g. a random walk. Here is a formal definition:

Definition. Let X1, X2, . . . be a sequence of independent random variables.
A martingale is a sequence of random variables M0,M1, . . . with finite mean
satisfying:

(1) Each Mn is a function of X1, . . . , Xn (in particular M0 is constant), and
(2) E [Mn|X1, . . . , Xn−1] = Mn−1. (In case you are unfamiliar with this

notation, it is explained in the appendix.)

In general one may have M0 with some starting distribution but you might
as well just start your martingale at time index 1 in that case.

A submartingale has the same definition as a martingale, except that the
equality in (2) is replaced by E [Mn|X1, . . . , Xn−1] ≥ Mn−1. Similarly a su-
permartingale replaces (2) by E [Mn|X1, . . . , Xn−1] ≤ Mn−1. Notice that the
terms of a submartingale tend to increase, while the terms of a supermartingale
tend to decrease. This is annoyingly backwards.
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If you understand a martingale as “a sequence of random variables that, on
average, stays the same,” it gives intuition for the proofs in these scribe notes.

Fact. If (Mn) is a martingale, then E [M0] = E [M1] = · · · .

Proof. For any n, we have E [Mn] = E [E [Mn|X1, . . . , Xn−1]]E [Mn−1]. The
first step is by tower property of conditional expectation (see appendix).

Similarly, for supermartingales, E [M0] ≥ E [M1] ≥ E [M2] ≥ · · · . The
proof is identical. And for submartingales, replace ≥ by ≤.

The following theorem is useful for analyzing martingales. We will prove it
soon.

Theorem. (Martingale convergence theorem) Let (Mn) be a submartingale
with supn {E [max(Mn, 0)]} < +∞. Then almost surely, (Mn) converges, and
E [| limn→∞Mn|] <∞.

2 Examples of martingales

1. A simple random walk on Z. HereM0 = 0, andMn+1 =

{
Mn + 1 w.p. 1/2
Mn − 1 w.p. 1/2

.

2. Let M0 be any constant, and define Mn = Xn ·Mn−1, where the Xi are
independent and E [Xn] = 1.

3. Let Y andX1, X2, . . . be random variables.1 ThenMn = E [Y |X1, X2, . . . ]
is a martingale. Why? Because the variables X1, X2 . . . slowly reveal
information about Y . A recent real-world example should cement your
intuition:

Y =

{
1 Patriots win
0 Falcons win

, Xi = everything that happens in ith minute of game

This kind of martingale is called a Doob martingale.

4. Percolation on the infinite d-ary tree, where percolation occurs with prob-
ability p. Let Xn be the number of nodes on the nth level of the tree that
are percolated. Then Mn = Xn

(dp)n is a martingale.
1Technical constraint: E [|Y | < ∞] .
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3 Martingale transforms

Setting: You are investing in a certain stock, and can choose how much to
sell/buy each day.

A sequence (Hn) is predictable if eachHn is a function ofX1, X2, . . . , Xn−1.
Imagine that you are investing in a stock, and after day n−1, set your investment
amount to Hn. Then your total income after day n is

H1(M1 −M0) +H2(M2 −M1) + · · ·+Hn(Mn −Mn−1).

We will denote the above quantity by (H ·M)n. This is called a martingale
transform.

Fact. If (Mn) is a martingale, then so is (H ·M)n.

Proof. We have

E [(H ·M)n|X1, . . . , Xn−1] = E [(H ·M)n−1 +Hn(Mn −Mn−1)|X1, . . . , Xn−1]

= (H ·M)n−1 +HnE [Mn −Mn−1|X1, . . . , Xn−1]

= (H ·M)n−1

as desired.

A similar proof shows that if (Mn) is a (super/sub)martingale and Hn ≥,
then (H ·M) is a (super/sub)martingale.

As a consequence, we have the following “theorem”:
Let (Mn) be a supermartingale. Then in finite time, in expectation, you

cannot make money by buying stock in (Mn), even if you can change your
investment amount every step.

4 Doob’s Upcrossing Inequality

In a variety of contexts, it is impossible to make money by betting on a (su-
per)martingale. This is unfortunate for gamblers, but we can use it to generate
theorems. Just propose a gambling strategy, write down the fact “it can’t win on
average,” and then translate that into a theorem.

Let’s do that with “buy-low-sell-high.” Suppose the value of a stock follows
a supermartingale (Mn). When the stock value gets less than a certain number
a, the gambler buys (i.e. sets her investment to 1.) When the stock value gets
more than another number b, the gambler sells (i.e. sets her investment to 0.)
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How much money does the gambler make? Whenever the stock crosses the
interval (a, b) upward, she makes at least (b − a) money. Apart from these
’upcrossings,’ you can check that the gambler earns

max(0, a−M0)−max(0, a−Mn).

But since (Mn) is a supermartingale, the gambler can’t make money on aver-
age. This implies the following result, known as Doob’s Upcrossing Inequality.

Theorem. Let (Mn) be a supermartingale and (a, b) be an interval. Let Un

be the number of times that M0, . . . ,Mn crosses over the interval (a, b) going
upward. Then

(b− a)E [Un] + E [max(0, a−M0)]− E [max(0, a−Mn)] ≤ 0.

4.1 Proof of the Martingale Convergence Theorem

The Upcrossing Inequality allows a beautiful proof of the Martingale Conver-
gence Theorem. Recall the theorem:

Theorem. (Martingale convergence theorem) Let (Mn) be a submartingale
with supn {E [max(Mn, 0)]} < +∞. Then almost surely, (Mn) converges, and
E [| limn→∞Mn|] <∞.

Proof. What does it mean for (Mn) not to converge? It means that lim supMn 6=
lim infMn. In which case, for any a, bwith lim infMn < a < b < lim supMn,
the sequence (Mn) makes infinitely many upcrossings of the interval (a, b).

Doob’s upcrossing inequality tells us that since supn {E [max(Mn, 0)]} <
+∞, the expected number of upcrossings of any interval is finite. Whence
any particular interval almost surely has finitely many upcrossings. Take the
union over all intervals with rational endpoints: we deduce that almost surely,
every such interval has finitely many upcrossings. Therefore, almost surely
lim infMn = lim supMn, so almost surely (Mn) converges!

Let M = limMn. Now we only need to prove the second part of the theo-
rem, E [|M |] <∞. This follows from E [max(M, 0)] <∞ and E [max(−M, 0)] <
∞, both of which follow from Fatou’s lemma.

5 Stopping Times

Setting: A gambler bets $1 on a coin toss, pledging to stop once he has either
gained $10 or lost $100 overall.

4



Let X1, X2, . . . be a sequence of random variables. A stopping time N (not
a constant!) is a random variable such that the event [N ≤ k] is a deterministic
function of X1, X2, . . . , Xk. That is to say, after seeing X1, X2, . . . , Xk, we
must deterministically decide to either stop and set N = k, or keep going on to
Xk+1.

Fact. Let (Mn) be a martingale and N a stopping time. Then (Mn∧N ) is a
martingale. (Here n ∧N means min(n,N).)

Proof. Set

Hn =

{
1 if we have not stopped at time n
0 if we have stopped at time n

.

Then (Mn∧N ) is the martingale transformation (H ·M).

Of course, the above proof works with “martingale” replaced by “super-
martingale” or “submartingale.”

It follows that in expectation, a gambler can’t make money in finite time by
cleverly deciding when to stop betting. This is a special case of the result in
section 3, but it is worth singling out.

6 Appendix: the notation E [X|Y ]

The notation E [X|Y ] is the expectation of X , conditioned on the random vari-
able Y . It is a function of Y . If Y is discrete, it has the definition

y 7→ E [X|Y = y] .

If Y is a continuous random variable, then the above definition doesn’t work
because Pr [Y = y] = 0. This is fixable by instead conditioning on [Y ∈ (y −
ε, y + ε)] and taking ε → 0. If you know about σ-fields, then you can write
E [X|Y ] = E [X|F ] where F is the σ-field σ(Y ).

Conditional expectation has some useful properties:
• E [f(Y )X|Y ] = f(Y )E [X|Y ]
• E [X] = EY [E [X|Y ]] (sometimes called the Tower property)
• E [φ(X)|Y ] = φ (E [X|Y ]) if φ is convex. (This is analogous to Jensen’s

inequality.)
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