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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal
publications. They are posted to serve class purposes.

Topics for upcoming three lectures on boolean analysis:

e Influences and isoperimetry (this lecture)
e Influences and Fourier analysis

e Influences and Noise Stability
The ultimate goal of this lecture is to prove the following theorem of Margulis:

Goal Theorem: (Margulis, '74): Let G be a graph with edge connectivity \(G) >t (i.e.
at least t edges must be deleted from G to disconnect it) and set

U(p) = Pr [G' = (V,E\ X) is disconnected]
X~({0,1}7,75F)

For e € (0,1/2), let pe = U~ Y(e), p1—e = U 1(1 —€). Then

for a constant c. independent of G!

1 Preliminary definitions

e All functions considered today will be {0,1}" — R. A boolean function has range

{0,1}.

e The influence of coordinate i at level p on a boolean function f is

B() = Pr [f@) # f@@e)

The total influence is the sum of all the coordinate influences, i.e.

°(f) =Y _IP(f)
=1



e We can define discrete derivatives for functions f : {0,1}" — R:

if(z) = f(z) - f(z @ e)
V*f() (f(z) = flz ®ei))+

Vi@ = IVif(x
=1
IVFf(x) Vi f(x)
=1

2 An analytic approach to edge/vertex isoperimetry

Recall from Lecture 9 that for sets A C {0,1}" with |A| > 62", the internal boundary
|0A] ;== {x € A:dg(x,A°) =1} = ANT1(A°)
is at least as large as for Hamming balls, i.e.

10A| > f (1)

Indeed, for the Hamming ball B = B(0,n/2 — ¢\/n) with § = ®(—c¢) := NormalCDF(—c), we
have |B| = §2" and

|0B| = 2" Pr[|z| = n/2 — cv/n] = 2"(®(—c) — ®(—c — \})) ~ 72”

while for the subcube C' = {x : z; = 0}, we have |C| = 52" and |0C| = |C|. However, when
looking at the edge boundary

E(A, A% =Y |N(x) N A°|
€A
we see a different picture. Here, subcubes actually do the best: |[A] > 28 — |E(A, A°)| >
(n — k)2¥, and more generally, |A| > §2" = |E(A, A°)| > §log(1/6)2". Our goal in
this section will be to prove (1) analytically (i.e. without horrible combinatorics), as well as

characterize the tension between the internal and edge boundaries of a set. More specifically,
we'll prove (a generalization of)

Theorem: For A € {0,1}", we have
1
Al/2" > —(|A]/2™)(|AC| /2"
[0A|/ _\/ﬁ(| 1/2"7)(1A%1/2")

and if |A| > 62", then
o 1E(A A% - 2 10A] > 81— )



These results will follow from Bobkov’s Inequality:

Theorem (Bobkov): Let X; be independent 0-1 valued random wvariables, and set ¢(t) :=
t(1 —t). Then for any f:{0,1}" — [0, 1], we have

S(E[f(X)]) < E[V@(f(X)) +[VHF(X)?].

Proof: In the n =1 case, this amounts to checking that for any a,b,p € [0, 1], we have

H((1 = pa+pb) < (1= p)y/62(a) + (a = D)3 +py/62(0) + (b — )2

Expanding this for any 0 < a < b < 1 (wlog) and subtracting the left from the right, we obtain
a quadratic polynomial in p with leading coefficient a?, one root at p = 0 and the other at

—Va2 —2ab+ b* — 263 + 202 +a% — 2ab+ b
a? — 2ab + b2

and hence it suffices to show this root is non-positive. After some mild algebraic manipulation,
this is equivalent to proving
(b—1)2+2ab—a*>0

which is easy enough to verify. To extend to higher dimensions, we’ll use the following generally
useful tensorization lemma:

Tensorization lemma: Fiz o : [0,1] — RY, and suppose that for all i € [n] and all f :
{0,1}" — [0, 1], we have a(Ey, f) < Ey\/2(f) + |V f|2. Then

O‘(Exh---,xnf) <Eu,.z. \/QZ(f) + ’V+f’2

Proof: We proceed by induction on n — suppose for any g : {0,1}*~ — [0,1] that

a(Bp-19) < Epo1v/a2(g) + [Vg]?

where E(,_y) is shorthand for the operator E, 4, ,. Then since for f : {0,1}" — [0, 1], E,, f
maps {0,1}"~! — [0, 1], we have

n—1

a(Ef) = a(Bp1)(Be, f) < Epoygy| 02 (EBa, f) + D [V Ey, fI2
=1

First observe by convexity that V; (E,, f) < E,, (V] f) and so

n—1
A(Ef) < Epoy)y| 0%(Ea, f) + Y B, Vi f2
=1

Now using our original assumption for ¢ = n, this is at most

2 n—1
-1y (Eeu/a2) 4 IVES) + X B2, V7P
=1



Ignoring the Ej,,_;; on the outside, this looks like an L? norm (in the n-point counting measure)
of an L' norm (in dx,) — by Minkowski’s inequality', we can switch the order of the norms
and obtain the upper bound

Efy—11Ee, V02 (f) + [V 2
as desired. O
By taking f to be the indicator of a set A, we obtain
Corollary: For A C {0, 1}, X; independent Bernoullis,

E|VT14] > Pr[X € A] - Pr[X ¢ A]

In other words, if we set

#{y € A¢:d(z,y) =1} ifxecdA

— 2 _
ha(@) = [V La(@)l" = {0 ifx g 0A

then E[\/ha| > Var(14). Note that E[h4] = u(0A), and since ha(x) < n-1pa, we have

p(0A4) = (A)p(A9)

1
v
Also since 5 E(A, A°) = 1E|V f|?, Cauchy-Schwarz gives us

Var(ly) < Ev/hy < (]EhA)/L(aA),

that is,
51— 67 < S B(A, A - (04|

No combinatorics necessary!

3 Total influence and threshold width

Proposition: For f =14 boolean, we have
I(f) = EIVif[?

and so in particular, if p = 1/2, we have I'/2(f) = 2|E(A, A°)|. Moreover, if f (i.e. A)is
also monotone, then

Ip(f) — %Exwﬂ;‘?"hA(x)u if f increasing
TE ?"hA(x)a if [ decreasing

1—-p~z~m

"Minkowski’s inequality says that for ¢ > p > 1 and o-finite measure spaces X,Y, we have
[ (@, 9)llpy lle.x < @ y)llq.xllpy-



For non-monotone f, we still have

1 1

— EBhs<IP(f)<——— _Eh
max(p,1—p) = () min(p, 1 —p)

with either equality iff f is monotone® in the corresponding direction.

Proof: The first part is obvious from the definitions. For the second, suppose f is increasing.
Then each edge between A and A¢ — say (z,2%") — contributes Pr(z_;) to IP(f) and but
only pPr(z_;) to Ehs. If f is decreasing, the contribution is (1 — p) Pr(z_;), which settles
the monotone case. Finally, for general boolean f, each edge contributes either p Pr(z_;) or
(1 — p)Pr(z;) to Ehy, depending on whether f is “going up” or “going down” at that point,
and so we have the above inequalities, which are tight iff this coefficient is the same for all
such edges. ]

As we've seen in the case of Erdos-Renyi random graphs, it is natural to consider how
Prxmr,é@" [f(z) = 1] varies with p. For monotone f, it turns out that the rate of change of
this probability is exactly captured by the total influence:

Lemma (Margulis-Russo): For any increasing set A C {0,1}",

d

@up(A) = I"(14)

(and hence by taking complements, the same formula holds for decreasing sets with a minus
sign.)
Proof: Set g(p1,...,pn) = Pr[(Xy,...,Xy) € A], where X; are independent Bernoulli(p;) vari-

ables, so that 1,(A) = g(p,...,p). By the chain rule, %Mp(A) =>", a%ig(pl, ... ,pn)|(p7__7p).
We can compute each partial derivative explicitly:

lim SPEEP o) = 9P ) :%(Pr[(X{,...,Xn) € Al - Pr[(Xy,..., X,) € A])

e—0 €

where X| ~ Ber(p + €) and X; ~ Ber(p). We can couple Xi, X| as follows:

Pr((X1,X1) = (0,0)) =1—-p—e
Pr((X1, X1) = (1,0)) =0
Pr((X1,X]) = (0,1)) =
Pr((X1,X1) = (1,1)) =p

and so the difference quotient becomes

1
—Pr[X] =1, X; = 0] Pr[1 is pivotal for Xo,..., X,,]
€

€ (5

which proves the lemma after summing over . O

We are now ready to prove our main theorem, restated below:

2unless p = 1/2, in which case both equalities always hold.



Theorem: (Margulis, '74): Let G be a graph with edge connectivity \(G) >t (i.e. at least t
edges must be deleted from G to disconnect it) and set

U(p) = Pr [G' = (V,E\ X) is disconnected]
X~({0,13E,m5 ")

For e € (0,1/2), let p. = V~1(e), p1_e = ¥1(1 —€). Then

C
Pl1—e — DPe S ﬁ

Proof: Let Q = {x : G’ = (V, E(G)\z) is disconnected}, which is clearly a monotone increasing
set. Then the Margulis-Russo lemma and the previous proposition imply

1
W'(p) = I"(lo) = Byho

A direct combinatorial argument® shows that hq(z) >t for all x € 99, and hence

Var,(1o) < Eyv/hg = V- E,, \/hTQ <Vt EphTQ =L 1ra1g)

— \/i
>1

Thus,
V' (p) =17(1g) > \/ZVarp(lg) > \/ie(l —¢€) for p € [pe, p1—¢]

and since f}il’é U'(p)dp = 1 — 2¢, we conclude

1—2e
e(1— eVt

as desired. ]

Pl—e — Pe <

3Let z € 9. Then removing the edges in = from G creates a graph G’ with two connected components
G} and G5 (since there is a way to add back a single edge and connect the whole graph.) The number hq(z)
counts exactly F(G',G5) in G, since adding any one of these edges back in to G’ yields a connected Hamming
neighbor of x and vice versa. Note that starting from G and removing all of these edges yields a disconnected
graph, so there must be at least ¢ of them.
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