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1 Coupling Markov Processes

Today we will write Xt and Yt to denote two Markov chains with the same
transition kernel P , but possibly different initial distributions PX0 6= PY0 .

We review several equivalent definitions of total variational distance. We
have

dTV(P,Q) =
1

2

∑
x

|P (x)−Q(X)|

= sup
E
P (E)−Q(E)

= inf
X∼P
Y∼Q

P[X 6= Y ]

The supremum characterization makes it easy to prove lower bounds on varia-
tional distance, while the infimum characterization allows for upper bounds. We
note two basic properties of variational distance.

(a) dTV(PA,B, QA,B) ≥ dTV(PA, QA)

(b) If {Xt} and {Yt} are Markov chains with the same transition kernel P , then

dTV(PX∞t , PY∞t ) = dTV(PXt , PYt).
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Proof. (a) Follows from the sup definition of dTV.

(b) We know from (a) that dTV(PX∞t , PY∞t ) ≥ dTV(PXt , PYt), so we just need
to prove dTV(PX∞t , PY∞t ) ≤ dTV(PXt , PYt). We will use the following
fact.

Fact Every Markov chain {Xt} can be represented asXt+1 = f(Xt, Ut+1)

for some function f : X × [0, 1]→ X and {Ut}
i.i.d.∼ U([0, 1]).

Now take a coupling such that P [Xt 6= Yt] = dTV(PXt , PYt). We extend
this to a coupling of X∞t and Y∞t by defining Xj+1 = f(Xj , Uj+1) and
Yj+1 = f(Yj , Uj+1) for each j ∈ {t, . . . ,∞}. Notably we use the same
randomness for both Xj+1 and Yj+1. This is a coupling because it is clear
that X∞t ∼ PX∞t and Y∞t ∼ PY∞t .

But we have

1− dTV(PX∞t , PYt∞ ) ≥ P [Xs = Ys ∀s ≥ t] = P [Xt = Yt] ,

so

2 Dobrushin Extension

Proposition 1. For any probability laws PAB , PA′B′ , and PAA′ , suppose that
dTV(PB|A=a, PB′|A′=a′) ≤ r(a, a′) for some function r. Then there is a cou-
pling of (A,B) to (A′, B′) such that P[B 6= B′] ≤ E[r(A,A′)].

Proof. For every Q and Q′, let PB,B′|A=a,A′=a′ be a coupling such that

P[B 6= B′|A = a,A′ = a′] ≤ r(a, a′).

Now we construct the desired coupling by defining

PA,B,A′B′(a, b, a
′, b′) = PAA′(a, a

′) · PB,B′|A=a,A′=a′(b, b
′)

Theorem 1. If P is an aperiodic and irreducible Markov transition kernel (on
a finite state space), then

dTV(Pt(x, ·), π) ≤ Cαt

for some α < 1 and C > 0.
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Proof. First consider the special case in which P (x, y) > ε for all x, y. Then
dTV(P (x, ·), P (y, ·)) ≤ (1 − ε) · 1x 6=y for all x, y. Now apply Dobrushin
extension. Let X0 = a0 and Y0 ∼ π. Consider an independent coupling of X0

to Y0. By Dobrushin, there is some coupling PX0,X1,Y0,Y1 under which

P [X1 6= Y1] ≤ (1− ε)P[X0 6= Y0].

Repeating this argument,
In the general case, there is some t0 > 0 for which Pt0(x, y) > 0 for all x,

y. Since the state space is finite, it is in fact the case that Pt0(x, y) > ε for some
ε > 0 and all x, y. Thus applying the previous bound, we get

dTV(PXt0·m
, PYt0·m

) ≤ (1− ε)m,

and so dTV(PXt , PYt) ≤ (1− ε)b
t
t0
c.

3 Mixing Times

We now study the mixing time of Markov chains. To do so, we introduce several
definitions of a distance from the stationary distribution π at time t for a Markov
transition kernel P .

• d(t)
def
= supx∈X dTV(Pt(x, ·), π).

• d̄(t)
def
= supx,y∈X dTV(Pt(x, ·), Pt(y, ·)).

• tmix(ε)
def
= inf {t : d(t) ≤ ε}.

• tmix
def
= tmix(14).

• d(p)(t) = supx∈X ‖qt(x, ·)− 1‖p, where

qt(x, y)
def
=
pt(x, y)

π(y)

and

‖f‖p
def
=

(∑
x

π(x)|f(x)|p
)1/p

.

For example, d(2)(t) is just supx∈X χ
2(pt(x, ·)‖π), where χ2 is the chi-

squared divergence.
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These metrics are all essentially equivalent and sub-multiplicative, as described
in the following proposition.

Proposition 2. We have

1. d(t) ≤ d̄(t) ≤ 2d(t).

2. d̄(t+ s) ≤ d̄(t)d̄(s).

3. d(t) = 1
2d

(1)(t).

4. d(p)(t) ≤ d(q)(t) for p ≤ q and furthermore, d(p)(t+s) ≤ d(1)(t)d(p)(s) ≤
d(p)(t)d(p)(s).

5. For a reversible Markov chain,

d(2)(t) = sup
x

(q2t(x, x)− 1)1/2

= (d(∞)(2t))1/2.

Proof. 1. This is straight-forward; it follows from the convexity of dTV and
the triangle inequality.

2. This follows from Dobrushin.

3. This follows from the definition of dTV.

4. The claim that d(p)(t) ≤ d(q)(t) is just Minkowski’s inequality.

To prove the second part, let (f, g) denote the inner product on the state
space of the Markov chain with respect to the stationary distribution π.
That is, define

(f, g)
def
=
∑
x

π(x)f(x)ḡ(x).

Then we have

‖qt(x, ·)− 1‖p = sup
f :‖f‖p′≤1
p′= p

p−1

‖Ptf − E[f ]‖∞ by Holder

= sup
f :‖f‖p′=1

E[f ]=0

‖Ptf‖∞,

which implies ‖Pt+sf‖∞ = ‖PtPsf‖∞ ≤ d(1)(t)d(p)(s).
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5. By definition, Ptf(x) = (qt(x, ·), f), so

q2t(x, y) = PtPt(x, y)/π(y)

= (qt(x, ·), qt(·, y))

= (qt(x, ·), qt(y, ·)) by reversibility

≤ sup
x
‖qt(x, ·)‖22

with equality iff x = y.

Now by 4, it suffices to bound d(2)(2t), and indeed we have

d(2)(2t) = sup
x
‖qt(x, ·)‖22 − 1 because (qt(x, ·), 1) = 1

= sup
x

(qt(x, ·), qt(·, x))

= sup
x
q2t(x, x)− 1.

To get the second equality, we observe that

d(∞)(2t) = sup
x,y

q2t(x, y)− 1 = sup
x
q2t(x, x)− 1.

4 The Cycle and the Hypercube

Proposition 3. We have the following general coupling facts.

I. If {Xt, Yt}∞t=1 is an arbitrary coupling and τcouple
def
= inf{t ≥ 0 : X∞t =

Y∞t } (i.e. the first time at whichXt and Yt agree forever), then dTV(PXt , PYt) ≤
P[τcouple > t].

II. If Xt, Yt are Markov chains with the same transition kernel, and if Xt is
Markov with respect to the filtration Ft = σ(Xt

0, Y
t
0 ) (i.e. if Xt+1 ⊥⊥

Ft|Xt) then
dTV(PXt , PYt) ≤ P[τmeet > t],

where τmeet
def
= inf{t ≥ 0 : Xt = Yt}.

Now we study mixing times for two examples of Markov chains: the lazy
random walk on the n-cycle Cn and the boolean hypercubeHn. We will see that
even though |Cn| � |Hn| and Cn and Hn have roughly the same diameter, Cn

has a much larger mixing time than Hn (Θ(n2) compared to Θ(n log n)). We
will develop a better understanding of this phenomenon in future lectures.
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4.1 The mixing time for Cn

To upper bound the mixing time, we use a coupling of two lazy random walks
{Xt} and {Yt} on Cn. Because the random walks are lazy, we can define a
coupling in which Xt moves with probability 1/2 and otherwise Yt moves. If
Xt = Yt, then they move together. Now define Zt = d(Xt, Yt). Then

Pn/2[τ0 > t] = P[ max
0≤s≤t

SZ < n/2] = P[|St| ≤ n/2] ≤ cn√
t

which implies that tmix = O(n2).
For a lower bound, fix some point p on the cycle, and defineAn = {d(·, p) <

n/4}. Now clearly under the stationary distribution, P[A] = 1
2 . But if X0 = p,

then by reduction to the symmetric walk, P[d(Xt, p) < n/4] > 1 − Ct/n2,
which implies that the mixing time is Ω(n2).

4.2 The mixing time for Hn

There is also a natural coupling for two hypercube lazy random walks {Xt} and
{Yt}. At every time step, we pick a uniformly random index i ∈ {1, . . . , n},
and a uniform bit b ∈ {0, 1}. Define Xt+1 and Yt+1 by changing both of their

ith bits to b. Now we can observe that Zt
def
= dH(Xt, Yt) is also a Markov chain

(corresponding to the coupon collector problem).
So

Pn[Zt 6= 0] ≤ n(1− 1

n
)t ≤ ne−t/n ≤ e−C

if t > n lnn+ nC.
To lower bound the mixing time, define f(Xt)

def
= ‖Xt‖H . Now π({f >

n/2}) = 1/2. But if X0 = 0n, we can use concentration of measure to show
that

P [f(Xt) > n/2]

is much smaller than 1/2 if t = o(n lnn).

6


