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The 2D Ising model

Content.

1. Magnetization phase transition and Peierl’s argument

2. Spatial and temporal mixing

1 Magnetization Phase Transition

Recall that the Ising model on a graph G = (V,E) with inverse temperature β
and no external field has distribution

µ(x) =
1

Z
exp

β ∑
(i,j)∈E

xixj


=

1

Z
exp (β ·#agreements− β ·#disagreements)

for each x ∈ {−1, 1}n where n = |V |. In this lecture, we will consider the 2D
Ising model on the graph L2 ∩ [0,

√
n]

2 which is a
√
n×
√
n unit lattice where

two vertices are adjacent if and only if they are at distance exactly one. We also
in general assume no external field i.e. h = 0. Recall that the magnetization of
an Ising model is

x =
1

n

n∑
i=1

xi

Let βc denote the critical temperature for this 2D Ising model. Our goal in this
section is to establish the following phase transition for magnetization.

Theorem 1. Consider the Ising model on L2 ∩ [0,
√
n]

2 on n vertices with no
external field. Then
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1. E|x| ≥ δ(β) > 0 for β > βc

2. limn→∞ P [|x| ≤ δ]→ 1 for β < βc

The proof of this result will use Peierl’s method of contours. We only will
prove (1) in lecture for some β sufficiently close to 1. In particular, we will not
show this holds for all β down to the critical temperature.

2 Contour Models

Recall that the dual lattice G∗ = (V ∗, E∗) of L2 ∩ [0,
√
n]2 is the unit lattice on

vertices in (Z+ 1
2)

2 such that there is exactly one dual edge crossing each edge
of L2 ∩ [0,

√
n]

2. The vertices of G∗ lie in [−1/2,
√
n + 1/2]2 excluding the

four corners of this box and thus

|V ∗| =
(√
n+ 1

)2 − 4

A contour configuration C = {C1, C2, . . . , Ck} is a set of directed paths in the
dual lattice of L2 ∩ [0,

√
n]2 satisfying that:

1. Each path is closed or has two endpoints on the boundary of [0,
√
n]2

2. No two paths cross

3. Two paths sharing a vertex bend to the right at that vertex

4. Pairs of contours such that one contains the other have opposite directions

The purpose of these conditions is to ensure that the contours partition L2 ∩
[0,
√
n]2 into regions each of which can be assigned either a + or − such that

any path has + on its left and − on its right i.e. + ↑ −. These conditions
ensure that assigning +’s and −’s to regions in this way is consistent. It is also
important to ensure that the region outside all of the contours can be assigned a
+ or − in a consistent way. One way to do this is to assume the boundary also
has a direction and to take paths p connecting two points on the boundary to be
closed paths which are the union of p and a portion of the boundary consistent
with the direction of p. A contour model is a distribution on contours given by

µ∗(C ) =
1

Z∗

∏
c∈C

e−2β|c|

We now establish several properties of contour models that will be essential to
the proof of Theorem 1.
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Lemma 2. Contour configurations are in bijection with Ising model configura-
tions and this bijection maps the contour measure to the Ising measure.

Proof. The bijection is given by assigning + and − to the regions of L2 ∩
[0,
√
n]2 defined by a contour configuration C , as described above. The number

of disagreeing interactions is

#disagreements =
∑
c∈C

2|c|

which implies that the Ising measure of the resulting spin configuration is pro-
portional to

∏
c∈C e

−2β|c| and therefore given by µ∗(C ).

Lemma 3. The number of contours of length ` is

N(`) ≤ n · 3`+1

Proof. There are |V ∗| options for the starting vertex, at most 4 options for the
first edge and at most 3 options for each remaining edge. Therefore

N(`) ≤ |V ∗| · 4 · 3`−1 ≤ n · 3`+1

proving the lemma.

Lemma 4. µ∗(c ∈ C ) ≤ e−2β|c|.

Proof. Given a contour configuration C with contour c, let C − c be the contour
configuration formed by removing the contour c. In the context of Ising config-
urations, this corresponds to reversing the signs of all vertices inside the contour
c. Now observe that

µ∗(C ) =
∑

C :c∈C

µ∗(C )

= e−2β|c|
∑

C :c∈C

1

Z∗

∏
c′∈C−c

e−2β|c
′|

= e−2β|c|
∑

C :c∈C

µ∗(C − c)

≤ e−2β|c|

because
∑

C :c∈C µ∗(C − c) is a probability and at most 1.
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3 Proof of Theorem 1 and Peierl’s Argument

Let P (+) be the set of all contour configurations x such that all i ∈ V are
inside a contour if xi = −1. Similarly define P (−) to be the set of all contour
configurations such that i ∈ V is inside some contour if xi = 1. In other words
P (+) is the set of contour configurations with a “sea” of +. Now observe that

E|x| = E
[
|x| · 1P (+)

]
+ E

[
|x| · 1P (−)

]
= 2 · E

[
|x|1P (+)

]
≥ 2 · E

[
x · 1P (+)

]
= 1− 2

n
· E
[
#(−) · 1P (+)

]
≥ 1− 2

n
· E

[∑
c∈C

|c|2
]

= 1− 2

n
·
∑
c∈C

|c|2 · µ∗(c ∈ C )

≥ 1− 2

n
·
∑
`≥2

N(`)e−2β``2 (Lemma 4)

≥ 1− 2

n
·
∑
`≥2

n · 3`+1e−2β``2 (Lemma 3)

≥ 1

2

for sufficiently large β. Similar ideas work to prove part (2) of Theorem 1.

4 Spatial and Temporal Mixing in the 2D Ising Model

The remainder of the lecture will be devoted to showing that spatial mixing and
temporal mixing are equivalent for the 2D Ising model. Here, spatial mixing
refers to exponential decay of correlations and temporal mixing refers to fast
mixing of the Glauber dynamics.

Let ∂n denote the exterior vertex boundary of Vn where

Vn = L2 ∩
[
−
√
n

2
,

√
n

2

]
∂n =

{
v ∈ L2 : dist(v, Vn) = 1

}
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Let π+(·) and π−(·) be the distributions of the Ising model on Vn conditioned
on all + and all − boundary conditions, respectively, i.e.

π+(·) = P(·|x∂n = +)

π−(·) = P(·|x∂n = −)

Let ω denote the origin. Decay of correlations refers to the difference between
π+(xω = +) and π+(xω = −) tending to zero as n→∞.

Theorem 5 (Temporal Mixing⇒ Spatial Mixing). Suppose that for any bound-
ary conditions, the Glauber dynamics on the resulting 2D Ising model on Vn
mixes in O(n log n) time. Then∣∣π+(xω = +)− π−(xω = +)

∣∣→ 0

as n→∞.

Proof. The idea is to instantiate two instances of Glauber dynamics from a com-
mon initial state and the all + and all− boundary conditions, respectively. More
precisely, letX(t) and Y (t) be Glauber dynamics for the two distributions π+(·)
and π−(·) coupled as follows:

1. X(0) = Y (0) is an arbitrary common initial configuration

2. Choose the same random vertex u for both chains at each step

3. If u is the random vertex chosen in a step of Glauber dynamics, make the
same update to X(t)u and Y (t)u if X(t)N(u) = Y (t)N(u)

4. Make independent updates to X(t)u and Y (t)u if X(t)N(u) 6= Y (t)N(u)

Observe that by triangle inequality,∣∣π+(xω = +)− π−(xω = +)
∣∣ ≤ ∣∣π+(xω = +)− P[X(t)ω = +]

∣∣
+ |P[X(t)ω = +]− P[Y (t)ω = +]|
+
∣∣P[Y (t)ω = +]− π−(xω = +)

∣∣
= I + II + III

Let tmix ≤ cn log n for both X(t) and Y (t). Then setting t = cn log2 n implies

I, III ≤ 1

n
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It now suffices to bound term II. We claim that Xu(s) 6= Yu(s) can happen only
if v ∈ N(u) was updated at a time r ≤ s or X(0)v 6= Y (0)v for v ∈ N(u).
However, since X(0) = Y (0) the second condition never occurs. Define a
plausible path of disagreement to be a path i1, . . . , i` of vertices such that ik is
updated after ik−1, i1 ∈ ∂n and i` = ω. It follows that for X(t)ω 6= Y (t)ω to
occur, there must be a plausible path of disagreement. Now,

II ≤ P [∃ plausible path of disagreement by time t]

≤ 4
√
n
∑
k≥

√
n
2

3k
(
t

k

)(
1

n

)k

≤ 4
√
n
∑
k≥

√
n
2

(
4et

kn

)k

= 4
√
n
∑
k≥

√
n
2

(
4e log2 n

k

)k
→ 0 as n→∞

The second inequality holds since any plausible path must have length k ≥
√
n2,

there are
(
t
k

)
options for the times at which the path grew, the probability of the

path growing at these times exactly is n−k and there are at most 4 · 3k ·
√
n

plausible paths of disagreement. Note that there are at most 4·3k ·
√
n such paths

because |∂n| = 4
√
n and there are at most 3 options at each step for the next

edge. The third inequality follows from the bound
(
t
k

)
≤ (te/k)k. Combining

this with the bounds on I and III proves decay of correlations.

Theorem 6 (Spatial Mixing⇒ Temporal Mixing). Suppose that

|πi=+(Xj = +)− πi=−(Xj = +)| ≤ e−αd(i,j)

for all i, j ∈ Vn and all n where α > 0 is independent of n. Then the Glauber
dynamics on the 2D Ising model on Vn mixes inO(n log n) time for all boundary
conditions.

The proof will be shown next lecture and will involve Block dynamics.

Definition 1 (Block Dynamics). Fix some size L. Block dynamics is a Markov
chain on 2D Ising models such that at each step, an L × L block is chosen
uniformly at random and updated conditional on the boundary.
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