
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
6.265/15.070J Lecture 17 Apr 19, SP17
Lecturer: Guy Bresler Scribe notes by Chulhee Yun

Disclaimer: These notes have not been subjected to the usual scrutiny reserved
for formal publications. They are posted to serve class purposes.

Counting Problems

Content.

1. Counting problems

2. Counting colorings via sampling

3. Approximate counting and sampling

4. “All or nothing” theorem

The lecture is based on [Jerrum-Sinclair ’89], [Jerrum-Valiant-Vazirani ’86].

1 Correction from the last lecture

Theorem 1 (Continuous-time M.C. Mixing). Let {Xk} be a (discrete-time)
Markov chain with transition matrix P , Nt be a Poisson process of rate 1.
Continuous-time chain is defined as Wt , XNt , and heat kernel Ht of Wt is
defined as Ht(x, y) , Pr[Wt = y |W0 = x].

1. If dTV(Pk(x, ·), π) ≤ ε, then dTV(Ht(x, ·), π) ≤ ε, for t ≥ k +Oε(
√
k).

2. IfP (y, y) ≥ δ > 0 for all y, dTV(Ht0(x, ·), π) ≤ ε⇒ dTV(Pk(x, ·), π) ≤
ε+ ε′(δ, t0) where k = bt0/δc.

2 Counting problems

Definition 1 (#P). #P is the class of functions f : Σ∗ → N such that there
exists polynomial-time non-deterministic Turing machine M which has f(x)
accepting computation paths on input x.

Informally speaking, #P problems are counting problems associated with
NP problems.

1

Examples. For the following NP problems,

• Does there exist a Hamiltonian cycle on G?

• Is there a SAT assignment for a conjunctive normal form (CNF) formula?

the corresponding #P problems are:

• How many Hamiltonian cycles are there on G?

• How many SAT assignments are there for a CNF formula?

It is known that #P problems are super hard. Toda’s theorem says that #P
problems are at least as hard as any problem in the entire polynomial hierarchy.

Definition 2 (fpras). Let f ∈ #P , meaning that f(x) is the number of solu-
tions associated with x. A fully-polynomial randomized approximation scheme
(fpras) for f is a randomized algorithm such that, on input (x, ε), outputs Z sat-
isfying

Pr[f(x)(1 + ε)−1 ≤ Z ≤ f(x)(1 + ε)] ≥ 3

4
,

and runs in time poly(|x|, ε−1).

Claim 1. If there exists an fpras for f , then we can boost confidence to 1− δ by
running the algorithm log δ−1 times and taking median.

3 Counting colorings via sampling

We now consider the example of counting the number of q-coloring of graph via
sampling. The input if the graph G = (V,E) and the number of colors q. Let
n = |V |, and m = |E|. The maximal degree of G is denoted ∆, and we assume
that q > 2∆ + 1. We learned from previous lectures that given a graph G, we
can produce a uniformly random sample over all feasible q-colorings on G (e.g.
Glauber dynamics).

Let us consider a sequence of graphs

G0 = (V,E0), G1 = (V,E1), . . . , Gm = (V,Em)

with increasing edge sets

E0 = Ø, Ei = Ei−1 ∪ {ei} for i = 1, . . . ,m, and Em = E.

Note that any q-coloring on Gi is also valid for Gi−1 because there are less
restrictions in Gi−1.

2

Let Ω(G) denote the number of q-colorings on G. Then we have the follow-
ing equality:

|Ω(G)| = |Ω(G0)| ×
m∏
i=1

|Ω(Gi)|
|Ω(Gi−1)|

,

where we have |Ω(G0)| = qn because there is no edge in G0.
The ratio |Ω(Gi)|

|Ω(Gi−1)| can be estimated by sampling. We sample uniformly at
random over q-colorings on Gi−1, and compute the portion of the samples that
are also valid in Gi.

Claim 2. |Ω(Gi)|
|Ω(Gi−1)| ≥

∆+1
∆+2 ≥

3
4 , for ∆ ≥ 2.

Proof. Consider a coloring in Ω(Gi−1) \ Ω(Gi). It is valid in Gi−1 but not in
Gi because there is a color conflict in the newly introduced edge ei = (k, l). If
we change the color of k to a valid one, we can get a coloring in Ω(Gi). Since
the maximal degree of G is ∆, there are at least q −∆ colors that k can choose.
So,

|Ω(Gi)| ≥ (q −∆)|Ω(Gi−1) \ Ω(Gi)| ≥ (∆ + 1)(|Ω(Gi−1)| − |Ω(Gi)|).

Arranging the inequality proves the claim.

Now, we want to estimate each ratio |Ω(Gi)|
|Ω(Gi−1)| within factor 1± ε

2m , so as to
make sure that the total error is at most (1± ε

2m)m ∈ (1− ε, 1 + ε).
Define iid samples Yj = 1{random q-coloring of Gi−1 is valid for Gi}. How

many samples do we need? We use a Chebyshev inequality:

Pr

∣∣∣∣∣∣1t
t∑

j=1

Yj − E[Y1]

∣∣∣∣∣∣ ≥ ε

2m
E[Y1]

 ≤ var(Y1)

E[Y1]2
4m2

tε2
≤ 1

E[Y1]

4m2

tε2
≤ 16m2

3tε2
.

We take t = cm3

ε2
for an appropriate constant c, then we can make the RHS of

above inequality become ≤ 1
4m , so as to make sure that the total probability of

error of all m estimates be less than or equal to m · 1
4m = 1

4 .
Finally the total run time is O(m4ε−2n log n), where O(n log n) are for

computing each sample, O(m3ε−2) comes from t, and we have m ratio to es-
timate. If we sample one coloring from G0 and continue by updating this for
subsequent graphs in the sequence, then we can save a factor of m, and the total
run time becomes O(m3ε−2n log n).

3

4 Approximate sampling and counting

Theorem 2. For all self-reducible NP problems, there exists an fpras for cor-
responding counting problem if and only if there exists a polynomial-time algo-
rithm for approximate uniform sampling.

This theorem states that (approximate) uniform sampling and (approximate)
counting are exactly equivalent.

To see what a self-reducible NP problem is, consider an example of a SAT
problem:

(x̄1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x3)

Self-reducibility in SAP problem refers to the property that if we fix a variable,
then we get a new SAT formula. For example, if we fix the values of x1, we get

(1 ∨ x2) ∧ (0 ∨ x2) ∧ (0 ∨ x3) = x2 ∧ x3 if x1 = 0

(0 ∨ x2) ∧ (1 ∨ x2) ∧ (1 ∨ x3) = x2 if x1 = 1

which are again SAT formulas.
Using this property, we can draw a “self-reducibility tree” representing fea-

sible assignments to the SAT formula. In this example, here is how the tree looks
like:

x1 = 0

x2 = 1

x3 = 1

x1 = 1

x2 = 1

x3 = 0 x3 = 1

Note that each leaf corresponds to a possible assignment for SAT formula,
and each internal node is another SAT formula, where a subtree rooted at level i
has variables x1, . . . , xi fixed.

Proof of Theorem. We now prove the theorem in the context of this tree. We do
this by proving implications in each direction.

(Sampling⇒ fpras) In proving this, we make two simplifications:

• Exact sampling from uniform, rather than approximately uniform.

• Tree has branching factor of 2.

4

Let N be the number of solutions, which is equal to the number of leaves. Let
N1 be the number of leaves in the left subtree. Then define

r =
leaves in left subtree

total # of leaves
=
N1

N
.

Without loss of generality, we assume that r ≥ 1
2 . Then we have N = N1

r , so
our estimate N̂ for N is

N̂ =
N̂1

r̂
.

Here, r̂ is a thing we can estimate by sampling (take sample and count the num-
ber of samples in left subtree), and note that the left subtree is a smaller instance
of a SAT problem, so we can calculate the estimate N̂1 by repeating similar steps
down the tree.

For each level i subtree, we estimate r using sampling, where we assume
again without loss of generality that r ≥ 1

2 all the time. From Chebyshev in-
equality we can get accurate estimates of r by using t = O(m3/ε2) samples for
each level, we can get approximate estimate of N with total O(m4/ε2) samples,
which is polynomial in tree depth m and ε−1.

Therefore, we have an fpras.

(fpras⇒ sampling) For this part, assume that δ = 0 in fpras; that is, we get
an approximately close solution with probability 1.

Consider a tree with left and right subtrees. The total number of leaves are
N , the number of leaves in left and right subtrees are Nl and Nr, respectively.
To get a uniformly random sample, we want go down the tree until we reach a
leaf. So what we would want to do is to move to left subtree with probability
Nl

Nl+Nr
and right with probability Nr

Nl+Nr
. As we repeat this recursively we will

get to a leaf at the end of the day.
Unfortunately we can’t get exact numbers Nl and Nr. Instead we have fpras

to give us estimates N̂l and N̂r. Then, we move to the left with probability
N̂l

N̂l+N̂r
or to the right otherwise, and repeat this until we hit a leaf. If we control

the relative error of each estimates to (1± ε
4m), at the end of the day the error of

probability of sampling a leaf will be(
1± ε

4m

)2m
∈ (1± ε),

where 2m in the exponent comes from the fact that we estimate two things at
each level.

In conclusion, we have an approximate uniform sampling algorithm.

5

5 “All or nothing” theorem

Theorem 3. For a self-reducible problem, if there exists a polynomial-time ran-
domized algorithm with approximation ratio [poly(|x|)]±1, then there exists an
fpras.

The ratio [poly(|x|)]±1 refers to any giant polynomial, for example |x|1010 .
Surprisingly, even if we start with this terrible algorithm, we can approximate as
well as we want.

Corollary 4 (“All or nothing”). For a self-reducible problem, either one of the
following holds:

1. There exists an fpras.

2. There is no polynomial-time approximation algorithm to within any poly-
nomial factor.

It is indeed a very interesting dichotomy which we can’t usually see in other
types of problems.

Proof. The proof is by “boosting” the given algorithm to produce a random sam-
ple. Then by the theorem in the previous section this gives an fpras.

· · ·

y

z

· · · · · ·

u

· · · · · ·
What we are going to do is to look at our self-reducibility tree and assign a

weight to each edge by the estimate of the number of leaves in a subtree rooted
at the down node of the edge. For example, the weight given to the edge between
y and z is w(y, z) = N̂z , which is an approximate number of leaves in a subtree
rooted at z. Similarly, w(y, u) = N̂u.

We now have an edge-weighted tree, and recall that the estimates may be
terribly wrong. Instead of only moving downwards, here we do a weighted ran-
dom walk on this tree, where the probability of choosing an edge is proportional
to the weight. The intuition behind this is that when we encounter an edge with
a giantic weight, we are likely to travel down the edge, but are also very likely to

6

move back up through the same edge. Turns out that this cancels the huge errors
in the estimates.

The algorithm runs like this:

1. Run weighted random walk on the tree.

2. Take random node v from the stationary distribution π.

3. If the node v is a leaf, return v and terminate. If not, run again.

Let Nz be the number of leaves in the subtree rooted at z, and assume that
α−1Nz ≤ N̂z ≤ αNz where α = poly(|x|). Also assume that the weights
on leaf edges are 1. Then, we finish the proof by proving the following three
claims.

Claim 3. The following are true:

1. The stationary distribution π is uniform over the leaves.

2. The total sum of probability assigned to leaves in the tree is large enough:
it satisfies

π({leaves}) ≥ cl
αm

where cl is a constant.

3. The random walk on the tree mixes fast: tmix = O(m2α2 log(αm)).

Before proving the claims, let us see why these finish the proof of our the-
orem. If we run this random walk for tmix, we get close to the stationary dis-
tribution π, which will give us distribution over nodes, and sample a node from
that distribution. Part 2 tells us that we get a leaf with probability bigger than
1/poly(|x|), so we can get a leaf in polynomial time. Once we get a leaf, Part
1 says we are uniform over the leaves. So we get a (approximately) uniform
sample over leaves in polynomial time.

Proof of Claims. We prove each part of the Claim.

1. The stationary probability π of weighted random walk is given by

π(x) =
d(x)

d
where d(x) =

∑
y∼x

w(y, x), and d =
∑
x

d(x).

Note that for all leaf nodes, d(x) = 1. Then π(x) is constant for all leaf
nodes x.

7

2. We have
d =

∑
x

d(x) =
∑
x∼y

w(x, y) ≤ 2αmN,

where the factor 2 comes from the fact that we count each edge twice.
Using this inequality,∑

x:leaves

π(x) =
∑
x:leaves

d(x)

d
=
N

d
≥ 1

2αm
.

3. We provide upper bound on the mixing time using multi-commodity flow.
Consider two nodes x and y. Since the graph is a tree, there exists a unique
path between x and y. The flow between x and y is equal to the demand:
π(x)π(y). Let l be the maximum length of path between two nodes, so
l ≤ 2m in this case. For an edge e = (u, v),

f(e) , total flw on edge e,

c(e) , π(u)P (u, v),

ρ , max
e

f(e)

c(e)
.

Then, we have an upper bound on the mixing time:

tmix = O
(
ρl log π−1

min

)
.

Now, we actually compute the quantities f(e) and c(e) to get an upper
bound on ρ. Consider e = (z, y), where z is lower the vertex, and let Tz
denote the subtree rooted at z. Recall that the edge e is assigned weight
N̂z .

f(e) =
∑

u∈Tz ,v /∈Tz

π(u)π(v) = π(Tz)π(T cz) ≤ π(Tz)

=
∑
u∈Tz

d(u)

d
≤ 2αmNz

d
.

c(e) =
d(u)

d
· N̂z

d(u)
=
N̂z

d
≥ Nz

αd
.

Thus we can bound above f(e)
c(e) . This holds for any e, so

ρ ≤ 2α2m.

8

Now, π(root) = d(root)
d is essentially the smallest among all nodes in the

tree, and we have

d(root) ≥ α−1N, d ≤ 2αmN ⇒ 1

2α2m
.

Plugging these inequalities on the multi-commodity flow bound, we get

tmix = O
(
α2m2 logαm

)
.

9

