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Solution 1.

(a) The Cauchy–Schwarz inequality states

|⟨x, y⟩| ≤ ∥x∥ · ∥y∥

with equality if and only if x = αy for some scalar α. For our problem, we can write

|⟨w, ϕ⟩|2 ≤ ∥w∥2 · ∥ϕ∥2 = ∥w∥2

with equality if and only if ϕ = αw for some scalar α. Thus, the maximizing ϕ(t) is
simply a scaled version of w(t).

Remark. In two dimensions, we have |⟨x, y⟩| = ∥x∥ · ∥y∥ cosα, where α is the angle
between the two vectors. It is clear that the maximum is achieved when cosα = 1 ⇔
α = 0 (or α = k2π). Thus, x and y are colinear.

(b) The problem is
max
ϕ1,ϕ2

(c1ϕ1 + c2ϕ2) subject to ϕ2
1 + ϕ2

2 = 1

Thus, we can reduce by setting ϕ2 =
√

1− ϕ2
1 to obtain

max
ϕ1

(
c1ϕ1 + c2

√
1− ϕ2

1

)
This maximum is found by taking the derivative:

d

dϕ1

(
c1ϕ1 + c2

√
1− ϕ2

1

)
= c1 − c2

ϕ1√
1− ϕ2

1

Setting this equal to zero yields c1 = c2
ϕ1√
1−ϕ2

1

, i.e,

c21 = c22
ϕ2
1

1− ϕ2
1

This immediately gives ϕ1 = c1√
c21+c22

and thus ϕ2 = c2√
c21+c22

, which are colinear to c1

and c2 respectively.

Note: the goal of this exercise was to display yet another way to derive the matched
filter.

(c) Passing an input w(t) through a filter with impulse response h(t) generates output
waveform y(t) =

∫
w(τ)h(t − τ)dτ . If this waveform y(t) is sampled at time t = T ,

then the output sample is

y(T ) =

∫
w(τ)h(T − τ)dτ (1)



An example signal w(τ) is shown below (top left). The filter is then the waveform
shown on the top right, and the convolution term of the filter on the bottom left.
Finally, the filter term h(T − τ) of Equation (1) is shown on the bottom right. One
can see that h(T − τ) = w(τ), so indeed

y(T ) =

∫
w(τ)h(T − τ)dτ =

∫
w2(τ)dτ =

∫ T

0

w2(τ)dτ

0 T
τ

w(τ)

0 T
τ

h(τ) = w(T − τ)

0 t
τ

h(t− τ)

0 T
τ

h(T − τ)

Solution 2.

(a) The binary hypothesis testing problem may be written as:

H = 0 : R(t) = w1(t) +N(t)

H = 1 : R(t) = w2(t) +N(t)

The impulse response of a matched filter is

h(t) =
w1(T − t)

∥w1(t)∥
and is shown below. We have normalized the impulse response of the matched filter to
have unit norm. Note that this does not affect the probability of error.

h(t)

t

√
3/T

T

The output of the matched filter sampled at t = T and t = T + Td is Y1 = ⟨R(t), w1(t)
∥w1∥ ⟩

and Y2 = ⟨R(t), w2(t)
∥w2∥ ⟩ respectively. The decision rule is

Y1
Ĥ=0

⋛
Ĥ=1

Y2

The block diagram of the system is shown below.
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R(t) h(t)

t = T

Y1

t = T + Td

Y2

(b) For Td ≥ T , the signals w1(t) and w2(t) are orthogonal to each other. Let

Es = ∥w1∥2 =
A2T

3

(The signal space representation of the constellation can be seen below.)

Y2

Y1√
Es

√
Es

The noise Z1, Z2 ∼ N
(
0, N0

2

)
and Z1 is independent of Z2. The probability of error

can be readily calculated as

Pe = Q

( √
2Es

2
√
N0/2

)
= Q

(√
Es
N0

)
Given that Td < T , the basis functions are no longer orthogonal and the noises Z1, Z2

are no longer uncorrelated. But this is an excellent time to introduce the use of or-
thonormal basis as an isometric transformation. First, let us denote a pair of orthonor-
mal basis functions w̃1(t), w̃2(t) and a parameter matrix a :

w1(t) = a1,1w̃1(t) + a1,2w̃2(t)

w2(t) = a2,1w̃1(t) + a2,2w̃2(t).

Please note that we do not need to know the actual value of w̃1(t),w̃2(t) and a. By the
usual change of basis argument, we have for every signals f(t) :[

⟨f(t), w1(t)⟩
⟨f(t), w2(t)⟩

]
=

[
a1,1 ⟨f(t), w̃1(t)⟩+ a1,2 ⟨f(t), w̃2(t)⟩
a2,1 ⟨f(t), w̃1(t)⟩+ a2,2 ⟨f(t), w̃2(t)⟩

]
.

Given the observation of our receiver in point (a) and the hypothesis H, we can apply
the following linear transformation (invertible linear transformation on observed values
does not change the error probability) :[

Ỹ1
Ỹ2

]
=a−1

[
Y1
Y2

]
=a−1

([
⟨wH+1(t), w1(t)⟩
⟨wH+1(t), w2(t)⟩

]
+

[
⟨N(t), w1(t)⟩
⟨N(t), w2(t)⟩

])
=a−1

(
a

[
⟨wH+1(t), w̃1(t)⟩
⟨wH+1(t), w̃2(t)⟩

]
+ a

[
⟨N(t), w̃1(t)⟩
⟨N(t), w̃2(t)⟩

])
=

[
⟨wH+1(t), w̃1(t)⟩
⟨wH+1(t), w̃2(t)⟩

]
+

[
⟨N(t), w̃1(t)⟩
⟨N(t), w̃2(t)⟩ .

]
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In this new basis, the noise terms ⟨N(t), w̃1(t)⟩ and ⟨N(t), w̃2(t)⟩ are independent to
each other with the variance of N0/2. Therefore the error probability for this binary
hypothesis testing problem is equal to :

Pe = Q

(
d

2
√
N0/2

)
,

where d is the distance between signal points under the orthonormal basis. Now we use
the fact that orthonormal basis define an isometry with the waveform channel, consider
a signal f(t) = bw̃1(t) + cw̃2(t), the norm of this signal is preserved in the orthonormal
basis :

⟨f(t), f(t)⟩ = ⟨bw̃1(t) + cw̃2(t), bw̃1(t) + cw̃2(t)⟩ = b2+c2 = ⟨f(t), w̃1(t)⟩2+⟨f(t), w̃2(t)⟩2 .

Such that the distance d can be calculated as :

d2 =

∥∥∥∥[⟨w1(t), w̃1(t)⟩
⟨w1(t), w̃2(t)⟩

]
−
[
⟨w2(t), w̃1(t)⟩
⟨w2(t), w̃2(t)⟩

]∥∥∥∥2 = ∥∥∥∥[⟨w1(t)− w2(t), w̃1(t)⟩
⟨w1(t)− w2(t), w̃2(t)⟩

]∥∥∥∥2
=||w1(t)− w2(t)||2.

The take home message is the actual observation basis for binary hypothesis testing
on waveform channel is inconsequential, as long as it can be transformed into an or-
thonormal basis. In our problem, the distance is equal to:

∥w1(t)− w2(t)∥2 =
∫

(w1(t)− w2(t))
2dt

=

∫ Td

0

(
A

T

)2

t2dt+

∫ T

Td

(
Td
A

T

)2

dt+

∫ T+Td

T

(
A

T

)2

(t− Td)
2dt

=

(
A

T

)2 [
T 3
d

3
+ T 2

d (T − Td) +
T 3 − (T − Td)

3

3

]
(⋆)
=

(
A

T

)2
1

3
T 3δ(3− δ2)

= Esδ(3− δ2)

where in (⋆) we have defined δ = Td

T
. Given this, we can compute

Pe = Q

(√
Es
N0

√
δ(3− δ2)

2

)

0 0.2 0.4 0.6 0.8 1

δ

Q

( √
E s N
0

√ δ
(3
−
δ
2
)

2

)
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Solution 3.

(a) The matched filter is the filter whose impulse response is a delayed, time-reversed
version of wj(t), i.e.

hj(t) = wj(T − t) =

√
2

T
cos

(
2πnj(T − t)

T

)
1[0,T ](T − t)

=

√
2

T
cos

(
2πnjt

T

)
1[0,T ](t)

As an example, h5(t) is shown below.

h5(t)√
2/T

0

−
√
2/T

t
T

The receiver then processes the received signal R(t) through the matched filter hj(t)
to obtain (R ⋆ hj)(t). This signal is sampled at time T to yield the value needed for
the MAP decision.

(b) We need m matched filters, one for each signal.

R(t) h0(t)

h1(t)

...

hm−1(t)

argmax
j

(R ⋆ hj)(T ) j

(c) The following matlab program computes the output of the matched filter h5(t).

T = 1;

Resolution = 1e-3;

t = 0:Resolution:T;

nj = 5;

wj = sqrt(2/T) * cos ( (2*pi*nj*t)/T );

hj = sqrt(2/T) * cos ( (2*pi*nj*t)/T );

output = conv(wj, hj);
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(h5 ⋆ w5)(t)

1

0

−1

t
T 2T

Note that the resulting signal is zero for t ≤ 0 and also for t ≥ 2T . The figure also
reveals why sampling at time t = T is a good idea: the value of the matched filter
output signal is maximal.

Solution 4.

(a) In this case all components of Y except the first will contain only WGN:

Y1 =
√
E + Z1

∀j = 2, . . . ,m, Yj = Zj, Zj ∼ N (0, σ2).

(b) This is the event that the receiver declares Ĥ = 1, since only Y1 is larger than the
threshold.

(c)

Pe = Pr{(E1 ∩ Ec
2 ∩ Ec

3 ∩ . . . ∩ Ec
m)

c} = Pr{Ec
1 ∪ E2 ∪ E3 ∪ . . . ∪ Em}

≤ Q

(
(1− α)

√
E

σ

)
+ (m− 1)Q

(
α
√
E

σ

)
,

where the inequality follows from the union bound.

(d) Taking the hints given in the problem, the above expression can be written as:

Pe ≤
1

2

(
e−

(1−α)2E
2σ2 + elnme−

α2E
2σ2

)
=

1

2

(
e−

(1−α)2E
2σ2 + elnm(1− Eb

2σ2 α
2 log2 e)

)
.

The first term in the sum goes to zero as E grows, but the second term only diminishes
if 1− Eb

2σ2α
2 log2 e < 0, i.e., if

Eb
σ2

>
2 ln 2

α2
.
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Solution 5. (Signal translation)

(a) Notice that

∥w0(t)∥2 = ∥w1(t)∥2 =
∫ 2T

0

w2
0(t)dt = 2T

We first apply the Gram–Schmidt algorithm. We get the first basis vector from the
first signal:

ψ0(t) =
w0(t)

∥w0(t)∥
=

{
1√
2T

t ∈ [0, 2T ]

0 otherwise

It is clear that ψ0(t) and w1(t) are orthogonal. Thus we obtain the second basis vector
by normalizing w1(t):

ψ1(t) =
w1(t)

∥w1(t)∥
=


1√
2T

t ∈ [0, T ]

− 1√
2T

t ∈ [T, 2T ]

0 otherwise

In the {ψ0(t), ψ1(t)} basis, it is straightforward to see that c0 = (
√
2T , 0)T and c1 =

(0,
√
2T )T.

The other basis is the following:

ψ′
0(t) =

{
1√
T

t ∈ [0, T ]

0 otherwise
ψ′
1(t) =

{
1√
T

t ∈ [T, 2T ]

0 otherwise

Observe that ψ′
1(t) = ψ′

0(t − T ). Hence, one matched filter at the receiver sampled
twice suffices to project the received signal onto ψ′

0(t) and ψ
′
1(t).

In the {ψ′
0(t), ψ

′
1(t)} basis, the codewords are c0 = (

√
T ,

√
T )T and c1 = (

√
T ,−

√
T )T.

(b) The ML receiver is shown below.

R(t) ψ′
0(T − t)

t = T

t = 2T Y1
Ĥ=0
≷

Ĥ=1

0 Ĥ

Y0

Y1

Notice that Y0 is not used. This is not surprising when we look at the signals: For
t ∈ [0, T ], the two signals are identical.

(c) We calculate

∥w0(t)− w1(t)∥ = 2
√
T ,

hence

Pe = Q

( √
T√

N0/2

)
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(d) Translating the signal points by any vector will not influence the error probabil-
ity. However, if the translation vector is the center of mass of the original signal
constellation, then the resulting signals will have minimum energy. We compute
v(t) = 1

2
w0(t) +

1
2
w1(t), thus

w̃0(t) = w0(t)− v(t) =

{
1 for t ∈ [T, 2T ]

0 otherwise

w̃1(t) = w1(t)− v(t) =

{
−1 for t ∈ [T, 2T ]

0 otherwise

The resulting signal waveforms are shown below:

t

w̃0(t)

1

−1

2T
t

w̃1(t)

1

−1

2T

(e) The new signal constellation is antipodal. One can see that

w̃0(t) = w0(t)− v(t) =
1

2
w0(t)−

1

2
w1(t)

w̃1(t) = w1(t)− v(t) =
1

2
w1(t)−

1

2
w0(t) = −w̃0(t)

This shows that we obtain an antipodal signal constellation regardless of the initial
waveforms.

Solution 6. (Orthogonal signal sets)

(a) We first compute the centroid of the signal set:

a(t) =
m−1∑
j=0

PH(j)wj(t) =
1

m

m−1∑
j=0

wj(t)

The minimum-energy signal set is then obtained by translation:

w̃j(t) = wj(t)− a(t) = wj(t)−
1

m

m−1∑
i=0

wi(t)

=
m− 1

m
wj(t)−

1

m

∑
i ̸=j

wi(t)
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(b)

∥w̃j(t)∥2 = ⟨w̃j(t), w̃j(t)⟩

= ⟨m− 1

m
wj(t)−

1

m

∑
i ̸=j

wj(t),
m− 1

m
wj(t)−

1

m

∑
k ̸=j

wk(t)⟩

=

(
m− 1

m

)2

E +
1

m2

∑
i ̸=j

∑
k ̸=j

⟨wi(t), wk(t)⟩

=

(
m− 1

m

)2

E +
m− 1

m2
E =

(
1− 1

m

)
E ,

and since all signals in W̃ are equiprobable, we obtain Ẽ =
(
1− 1

m

)
E . The energy

saving is therefore E − Ẽ = 1
m
E . Alternatively, we could use E − Ẽ = ∥a(t)∥2 = 1

m
E .

(c) Notice that
∑m−1

j=0 w̃j(t) = 0 by the definition of w̃j(t), j = 0, 1, . . . ,m− 1. Hence the
m signals {w̃0(t), . . . , w̃m−1(t)} are linearly dependent. This means that their space has
dimensionality less thanm. We show that any collection ofm−1 or less is linearly inde-
pendent. That would prove that the dimensionality of the space {w̃0(t), . . . , w̃m−1(t)}
is m− 1. Without loss of essential generality we consider w̃0(t), . . . , w̃m−2(t). Assume
that

∑m−2
j=0 αjw̃j(t) = 0. Using the definition of w̃j(t), we may write

m−2∑
j=0

αj

(
wj(t)−

1

m

m−1∑
i=0

wi(t)

)
= 0,

(
m−2∑
j=0

αjwj(t)

)
−

(
1

m

m−2∑
j=0

αj

)
m−1∑
i=0

wi(t) = 0,

(
m−2∑
j=0

αjwj(t)

)
−

(
β

m−1∑
i=0

wi(t)

)
= 0,

where β = 1
m

∑m−2
j=0 αj. Therefore,

m−2∑
j=0

(αj − β)wj(t)− βwm−1(t) = 0.

But w0(t), w1(t), . . . , wm−1(t) is an orthogonal set and this implies β = 0 and αj = β =
0, j = 0, 1, . . . ,m− 2. Hence w̃j(t), j = 0, 1, . . . ,m− 2 are linearly independent. We
have proved that the new set spans a space of dimension m− 1.
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