ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 34
Information Theory and Coding
Final exam
Jan. 25, 2024

4 problems, 54 points
180 minutes
2 sheets (4 pages) of notes allowed.
Good Luck!

Please write your name on each sheet of your answers.

Please write the solution of each problem on a separate page.
(All logarithms are taken to the base 2.)

Problem 1. (10 points)
Consider the following binary input channel: the input X is passed through two identical independent BSC's with crossover probability p to produce binary outputs Y_{1} and Y_{2}, as shown in the figure below. The channel's output is $Y=\left(Y_{1}, Y_{2}\right)$.

(a) (2 points) What is the capacity achieving input distribution?
(b) (4 points) What is the capacity C_{1} of this channel (from X to $\left.\left(Y_{1}, Y_{2}\right)\right)$?

Consider another channel whose input is (X_{1}, X_{2}) with binary X_{1} and X_{2}. X_{1} is passed through a $\operatorname{BSC}(p)$ to produce $Y_{1} ; X_{2}$ is passed through an independent $\operatorname{BSC}(p)$ to produce Y_{2}, as shown in the figure. The channel's output is again $Y=\left(Y_{1}, Y_{2}\right)$.

(c) (2 points) What is the capacity C_{2} of this channel (from $\left(X_{1}, X_{2}\right)$ to $\left(Y_{1}, Y_{2}\right)$)?
(d) (2 points) How do C_{1} and C_{2} compare?

Problem 2. (12 points)
Consider a sequence of binary block codes C_{1}, C_{2}, \ldots constructed as follows (with $[x, y]$ denoting the concatenation of x and y and $\mathbf{1}$ denoting the all- 1 codeword $1 \ldots 1$ of appropriate length):

- $C_{1}=\{0,1\}^{2}=\{00,01,10,11\}$,
- $C_{k+1}=\left\{[u, u]: u \in C_{k}\right\} \cup\left\{[u+\mathbf{1}, u]: u \in C_{k}\right\}$, for $k \geq 2$.

Note that C_{k} is a code of blocklength 2^{k}.
(a) (2 points) Show that C_{k} contains the all-1 codeword.

Hint: Use induction.
(b) (2 points) Show that C_{k} is linear.

Hint: Use induction.
(c) (2 points) Show that C_{k} has 2^{k+1} codewords, or equivalently, $\left|C_{k}\right|=2^{k+1}$.

Hint: Use induction.
The Plotkin bound says the blocklength n, number of codewords M and minimum distance d of a binary code C satisfy

$$
d \leq\left\lfloor\frac{n M}{2(M-1)}\right\rfloor
$$

(d) (2 points) Show that the minimum distance of $C_{k}, d_{\min }\left(C_{k}\right)$, satisfies $d_{\min }\left(C_{k}\right) \leq 2^{k-1}$. Hint: Use the Plotkin bound on C_{k}.
(e) (4 points) Show that $d_{\text {min }}\left(C_{k}\right) \geq 2^{k-1}$.

Hint: Show that $w_{\min }\left(C_{k}\right) \geq 2 w_{\min }\left(C_{k-1}\right)$, with $w_{\min }\left(C_{k}\right)$ denoting the minimum weight of the nonzero codewords in C_{k}.

Problem 3. (16 points)
Let $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ be disjoint subsets of \mathbb{Z} with $a_{i}=\left|\mathcal{A}_{i}\right|, i=1, \ldots, n$, and let $\mathcal{B}_{1}, \ldots, \mathcal{B}_{n}$ be disjoint subsets of \mathbb{Z} with $b_{i}=\left|\mathcal{B}_{i}\right|, i=1, \ldots, n$. Let $\mathcal{C}_{i}=\mathcal{A}_{i} \times \mathcal{B}_{i} \subseteq \mathbb{Z}^{2}$ for $i=1, \ldots, n$ (observe that $\left|\mathcal{C}_{i}\right|=a_{i} b_{i}$). Pick an index $C \in\{1, \ldots, n\}$ according to the probability distribution

$$
\operatorname{Pr}(C=c)=\frac{a_{c} b_{c}}{\sum_{k=1}^{n} a_{k} b_{k}}
$$

Now, given $C=c$, pick two points $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ uniformly and independently from $\mathcal{C}_{c}=\mathcal{A}_{c} \times \mathcal{B}_{c}$, i.e.,

$$
\operatorname{Pr}\left(\left(X_{1}, Y_{1}\right)=\left(x_{1}, y_{1}\right),\left(X_{2}, Y_{2}\right)=\left(x_{2}, y_{2}\right) \mid C=c\right)=\frac{1}{\left(a_{c} b_{c}\right)^{2}} \mathbb{1}\left\{\left(x_{1}, y_{1}\right) \in \mathcal{C}_{c},\left(x_{2}, y_{2}\right) \in \mathcal{C}_{c}\right\} .
$$

Observe that this means that $X_{1}, Y_{1}, X_{2}, Y_{2}$ are pairwise conditionally independent given $C=c$.
(a) (2 points) Compute $\operatorname{Pr}\left(\left(X_{1}, Y_{1}\right)=\left(x_{1}, y_{1}\right)\right)$ and $\operatorname{Pr}\left(\left(X_{2}, Y_{2}\right)=\left(x_{2}, y_{2}\right)\right)$.
(b) (2 points) Show that $H\left(X_{1}, Y_{1}\right)+H\left(X_{2}, Y_{2}\right)=2 \log \sum_{k=1}^{n} a_{k} b_{k}$.

Hint: Conclude from (a) that (X_{1}, Y_{1}) and (X_{2}, Y_{2}) are uniformly distributed on $\cup_{k=1}^{n} \mathcal{C}_{k}$.
(c) (4 points) Show that $H\left(X_{1}, Y_{1}\right)=H\left(X_{1}, Y_{1}, C\right)$ and $H\left(X_{1}, X_{2}\right)=H\left(X_{1}, X_{2}, C\right)$.

Hint: Use the chain rule.
(d) (4 points) Show that $H\left(X_{1}, Y_{1}\right)+H\left(X_{2}, Y_{2}\right)=H\left(X_{1}, X_{2}\right)+H\left(Y_{1}, Y_{2}\right)$.

Hint: Use the chain rule with (c) and the conditional independence of $X_{1}, Y_{1}, X_{2}, Y_{2}$ given C.
(e) (4 points) Show that $H\left(X_{1}, X_{2}\right) \leq \log \left(\sum_{k=1}^{n} a_{k}^{2}\right)$, and then show that

$$
\left(\sum_{k=1}^{n} a_{k} b_{k}\right)^{2} \leq\left(\sum_{k=1}^{n} a_{k}^{2}\right)\left(\sum_{k=1}^{n} b_{k}^{2}\right) .
$$

Problem 4. (16 points)
Suppose $\left(U_{1}, V_{1}\right),\left(U_{2}, V_{2}\right), \ldots$ are i.i.d. pairs with distribution $p_{U V}$ on $\mathcal{U} \times \mathcal{V}$. An multiple descriptions system is a pair of encoder functions enc ${ }_{1}:\left(U^{n}, V^{n}\right) \mapsto W_{1} \in\left\{1, \ldots, M_{1}\right\}$ and enc $_{2}:\left(U^{n}, V^{n}\right) \mapsto W_{2} \in\left\{1, \ldots, M_{2}\right\}$ with a pair of decoding functions $\operatorname{dec}_{1}: W_{1} \mapsto \hat{U}^{n}$ and $\operatorname{dec}_{2}:\left(W_{1}, W_{2}\right) \mapsto \hat{V}^{n}$. In other words the encoder gives two descriptions W_{1} and W_{2}; from W_{1} we recover U^{n}, and from the pair $\left(W_{1}, W_{2}\right)$ we recover the V^{n}, as shown in the figure. We define $p_{e}=\operatorname{Pr}\left(\left(\hat{U}^{n}, \hat{V}^{n}\right) \neq\left(U^{n}, V^{n}\right)\right)$ as the error probability and, $R_{1}=\frac{1}{n} \log M_{1}$, $R_{2}=\frac{1}{n} \log M_{2}$ as the rates of the two descriptions.

(a) (2 points) Show that $R_{1} \geq H(U)-p_{e} \log |\mathcal{U}|-\frac{1}{n} h_{2}\left(p_{e}\right)$, where $h_{2}(x)=-x \log x-$ $(1-x) \log (1-x)$ is the binary entropy function.
Hint: $n R_{1} \geq H\left(W_{1}\right) \geq I\left(U^{n} ; W_{1}\right)$; and Fano's inequality upper bounds $H\left(U^{n} \mid W_{1}\right)$.
(b) (2 points) Show that $R_{1}+R_{2} \geq H(U V)-p_{e} \log |\mathcal{U}||\mathcal{V}|-\frac{1}{n} h_{2}\left(p_{e}\right)$.

Hint: Similar to (a).
Let \mathcal{C} be the set of (r_{1}, r_{2}) pairs for which for any $\epsilon>0$ there is enc ${ }_{1}$, enc ${ }_{2}, \mathrm{dec}_{1}, \mathrm{dec}_{2}$ with $p_{e}<\epsilon, R_{1}<r_{1}+\epsilon$, and $R_{2}<r_{2}+\epsilon$.
(c) (2 points) Show that \mathcal{C} is included in the region

$$
\mathcal{R}=\left\{\left(r_{1}, r_{2}\right): r_{1} \geq H(U), r_{2} \geq 0, r_{1}+r_{2} \geq H(U V)\right\}
$$

[For parts (d) and (e), assume that the Huffman code described has expected length equal to the entropy exactly.]
(d) (2 points) Suppose we design a Huffman code c for the pair (U, V). Let W be the concatenation of $c\left(U_{1}, V_{1}\right), \ldots, c\left(U_{n}, V_{n}\right)$. Show that for $r>H(U V)$, $\lim _{n \rightarrow \infty} \operatorname{Pr}(\operatorname{length}(W)>n r)=0$, and conclude that $\left(r_{1}=H(U V), r_{2}=0\right)$ belongs to \mathcal{C}.
Hint: Use the law of large numbers with $\frac{1}{n} \operatorname{length}(W)=\frac{1}{n} \sum_{i=1}^{n} \operatorname{length}\left(c\left(U_{i}, V_{i}\right)\right)$.
(e) (4 points) Show that $\left(r_{1}=H(U), r_{2}=H(V \mid U)\right)$ belongs to \mathcal{C}.

Hint: Follow a similar logic to (d).
(f) (4 points) Show that the region \mathcal{R} is included in \mathcal{C} (and thus, because of (c), $\mathcal{R}=\mathcal{C}$). Hint: In (d) and (e) you have shown that the extreme points of \mathcal{R} are in \mathcal{C}, now use time-sharing. You may find it useful to make a sketch of \mathcal{R} and the two points in (d) and (e).

