ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 30
Information Theory and Coding
Homework 12
Dec. 12, 2023
Problem 1. (a) Given a code \mathcal{C} with M codewords and blocklength n, and $0 \leq k \leq n$, partition the codewords into 2^{k} groups according to their first k bits. The group with the largest number of codewords will contain at least $M^{\prime}=\left\lceil M / 2^{k}\right\rceil$ codewords. The minimum distance within that group is upper bounded by $d_{0}\left(M^{\prime}, n-k\right)$ since all codewords in the group agree in their first k bits. Thus the minimum distance of the code \mathcal{C} is upper bounded by $d_{0}\left(\left\lceil M / 2^{k}\right\rceil, n-k\right)$. Since this is true for each $k \in\{0, \ldots, n\}$ we conclude that $d_{\text {min }} \leq d_{1}(M, n)$.
(b) With $d_{0}(M, n)=\left\{\begin{array}{ll}n & M \leq 2 \\ \infty & M \leq 1\end{array}\right.$ the minimum over k is obtained by choosing k as large as possible while keeping $M / 2^{k}>1$. Thus the bound d_{1} says " $d_{\min } \leq n-k$ when $M>2^{k n}$ " which is the Singleton bound we derived in class.
(c) Each pair $\left(m, m^{\prime}\right)$ contributes 1 to the sum when $a_{m}=0$ and $a_{m^{\prime}}=1$ or when $a_{m}=1$ and $a_{m^{\prime}}=0$. There are $M_{0} M_{1}$ pairs of the first type and $M_{1} M_{0}$ pairs of the second type. Thus the sum equals $2 M_{0} M_{1}$. As $M_{0}+M_{1}=M$, we have $M_{0} M_{1} \leq M^{2} / 4$, from which the final inequality follows.
(d) As $d_{H}\left(\mathbf{x}_{m}, \mathbf{x}_{m^{\prime}}\right) \geq d_{\text {min }}$ for every $m \neq m^{\prime}$, the first inequality follows by summing both sides. For the second write $d_{H}\left(\mathbf{x}_{m}, \mathbf{x}_{m^{\prime}}\right)=\sum_{i=1}^{n} d_{H}\left(x_{m i}, x_{m^{\prime} i}\right)$ to obtain

$$
\sum_{m=1}^{M} \sum_{\substack{m^{\prime}=1 \\ m^{\prime} \neq m}}^{M} d_{H}\left(\mathbf{x}_{m}, \mathbf{x}_{m^{\prime}}\right)=\sum_{i=1}^{n} \sum_{m=1}^{M} \sum_{\substack{m^{\prime}=1 \\ m^{\prime} \neq m}}^{M} d_{H}\left(x_{m i}, x_{m^{\prime} i}\right)
$$

By (c) for each i the inner double-sum is upper bounded by $M^{2} / 2$ and the conclusion follows.

Problem 2.

(a) We have

$$
\begin{aligned}
W^{-}\left(y_{1}, y_{2} \mid u_{1}\right) & =\mathbb{P}_{Y_{1}, Y_{2} \mid X_{1} \oplus X_{2}}\left(y_{1}, y_{2} \mid u_{1}\right)=\frac{\mathbb{P}_{Y_{1}, Y_{2}, X_{1} \oplus X_{2}}\left(y_{1}, y_{2}, u_{1}\right)}{\mathbb{P}_{X_{1} \oplus X_{2}}\left(u_{1}\right)} \\
& \stackrel{(\stackrel{*}{*})}{=} 2 \mathbb{P}_{Y_{1}, Y_{2}, X_{1} \oplus X_{2}}\left(y_{1}, y_{2}, u_{1}\right) \\
& =2 \sum_{u_{2} \in\{0,1\}} \mathbb{P}_{Y_{1}, Y_{2}, X_{1} \oplus X_{2}, X_{2}}\left(y_{1}, y_{2}, u_{1}, u_{2}\right) \\
& \stackrel{(\stackrel{*}{ })}{=} 2 \sum_{u_{2} \in\{0,1\}} \mathbb{P}_{Y_{1}, Y_{2}, X_{1}, X_{2}}\left(y_{1}, y_{2}, u_{1} \oplus u_{2}, u_{2}\right) \\
& =2 \sum_{u_{2} \in\{0,1\}} \mathbb{P}_{Y_{1}, Y_{2} \mid X_{1}, X_{2}}\left(y_{1}, y_{2} \mid u_{1} \oplus u_{2}, u_{2}\right) \mathbb{P}_{X_{1}, X_{2}}\left(u_{1} \oplus u_{2}, u_{2}\right) \\
& =2 \sum_{u_{2} \in\{0,1\}} W\left(y_{1} \mid u_{1} \oplus u_{2}\right) W\left(y_{2} \mid u_{2}\right) \frac{1}{2^{2}} \\
& =\frac{1}{2} \sum_{u_{2} \in\{0,1\}} W\left(y_{1} \mid u_{1} \oplus u_{2}\right) W\left(y_{2} \mid u_{2}\right),
\end{aligned}
$$

where ($*$) follows from the fact that if X_{1}, X_{2} are independent and uniform then $X_{1} \oplus X_{2}$ is also uniform. (**) follows from the fact that

$$
\left(X_{1} \oplus X_{2}=u_{1} \text { and } X_{2}=u_{2}\right) \Leftrightarrow\left(X_{1}=u_{1} \oplus u_{2} \text { and } X_{2}=u_{2}\right)
$$

(b) We have

$$
\begin{aligned}
W^{+}\left(y_{1}, y_{2}, u_{1} \mid u_{2}\right) & =\mathbb{P}_{Y_{1}, Y_{2}, X_{1} \oplus X_{2} \mid X_{2}}\left(y_{1}, y_{2}, u_{1} \mid u_{2}\right)=\frac{\mathbb{P}_{Y_{1}, Y_{2}, X_{1} \oplus X_{2}, X_{2}}\left(y_{1}, y_{2}, u_{1}, u_{2}\right)}{\mathbb{P}_{X_{2}}\left(u_{2}\right)} \\
& =2 \mathbb{P}_{Y_{1}, Y_{2}, X_{1} \oplus X_{2}, X_{2}}\left(y_{1}, y_{2}, u_{1}, u_{2}\right) \\
& \stackrel{(*)}{=} 2 \mathbb{P}_{Y_{1}, Y_{2}, X_{1}, X_{2}}\left(y_{1}, y_{2}, u_{1} \oplus u_{2}, u_{2}\right) \\
& =2 \mathbb{P}_{Y_{1}, Y_{2} \mid X_{1}, X_{2}}\left(y_{1}, y_{2} \mid u_{1} \oplus u_{2}, u_{2}\right) \mathbb{P}_{X_{1}, X_{2}}\left(u_{1} \oplus u_{2}, u_{2}\right) \\
& =2 W\left(y_{1} \mid u_{1} \oplus u_{2}\right) W\left(y_{2} \mid u_{2}\right) \frac{1}{2^{2}} \\
& =\frac{1}{2} W\left(y_{1} \mid u_{1} \oplus u_{2}\right) W\left(y_{2} \mid u_{2}\right),
\end{aligned}
$$

where ($*$) follows from the fact that

$$
\left(X_{1} \oplus X_{2}=u_{1} \text { and } X_{2}=u_{2}\right) \Leftrightarrow\left(X_{1}=u_{1} \oplus u_{2} \text { and } X_{2}=u_{2}\right) .
$$

(c) We have

$$
\begin{aligned}
Z\left(W^{+}\right)= & \sum_{\substack{y_{1}, y_{2} \in \mathcal{Y}, u_{1} \in\{0,1\}}} \sqrt{W^{+}\left(y_{1}, y_{2}, u_{1} \mid 0\right) W^{+}\left(y_{1}, y_{2}, u_{1} \mid 1\right)} \\
= & \frac{1}{2} \sum_{\substack{y_{1}, y_{2} \in \mathcal{Y}, u_{1} \in\{0,1\}}} \sqrt{W\left(y_{1} \mid u_{1} \oplus 0\right) W\left(y_{2} \mid 0\right) W\left(y_{1} \mid u_{1} \oplus 1\right) W\left(y_{2} \mid 1\right)} \\
= & \frac{1}{2}\left(\sum_{\substack{y_{1}, y_{2} \in \mathcal{Y}}} \sqrt{W\left(y_{1} \mid 0 \oplus 0\right) W\left(y_{2} \mid 0\right) W\left(y_{1} \mid 0 \oplus 1\right) W\left(y_{2} \mid 1\right)}\right) \\
& +\frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \sqrt{W\left(y_{1} \mid 1 \oplus 0\right) W\left(y_{2} \mid 0\right) W\left(y_{1} \mid 1 \oplus 1\right) W\left(y_{2} \mid 1\right)}\right) \\
= & \frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \sqrt{W\left(y_{1} \mid 0\right) W\left(y_{2} \mid 0\right) W\left(y_{1} \mid 1\right) W\left(y_{2} \mid 1\right)}\right) \\
& +\frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \sqrt{W\left(y_{1} \mid 1\right) W\left(y_{2} \mid 0\right) W\left(y_{1} \mid 0\right) W\left(y_{2} \mid 1\right)}\right) \\
= & \frac{1}{2}\left(\sum_{y_{1} \in \mathcal{Y}} \sqrt{W\left(y_{1} \mid 0\right) W\left(y_{1} \mid 1\right)}\right)\left(\sum_{y_{2} \in \mathcal{Y}} \sqrt{W\left(y_{2} \mid 0\right) W\left(y_{2} \mid 1\right)}\right) \\
& +\frac{1}{2}\left(\sum_{y_{1} \in \mathcal{Y}} \sqrt{W\left(y_{1} \mid 0\right) W\left(y_{1} \mid 1\right)}\right)\left(\sum_{y_{2} \in \mathcal{Y}} \sqrt{W\left(y_{2} \mid 0\right) W\left(y_{2} \mid 1\right)}\right) \\
= & \frac{1}{2} Z(W) \cdot Z(W)+\frac{1}{2} Z(W) \cdot Z(W)=Z(W)^{2} .
\end{aligned}
$$

(d) For every $y_{1}, y_{2} \in \mathcal{Y}$, we have:

$$
\begin{aligned}
W^{-}\left(y_{1}, y_{2} \mid 0\right) & =\frac{1}{2} \sum_{u_{2} \in\{0,1\}} W\left(y_{1} \mid 0 \oplus u_{2}\right) W\left(y_{2} \mid u_{2}\right)=\frac{1}{2} \sum_{u_{2} \in\{0,1\}} W\left(y_{1} \mid u_{2}\right) W\left(y_{2} \mid u_{2}\right) \\
& =\frac{1}{2} W\left(y_{1} \mid 0\right) W\left(y_{2} \mid 0\right)+\frac{1}{2} W\left(y_{1} \mid 1\right) W\left(y_{2} \mid 1\right)=\frac{1}{2} \alpha\left(y_{1}\right) \alpha\left(y_{2}\right)+\frac{1}{2} \beta\left(y_{1}\right) \beta\left(y_{2}\right) \\
& =\frac{1}{2}\left(\alpha\left(y_{1}\right) \alpha\left(y_{2}\right)+\beta\left(y_{1}\right) \beta\left(y_{2}\right)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
W^{-}\left(y_{1}, y_{2} \mid 1\right) & =\frac{1}{2} \sum_{u_{2} \in\{0,1\}} W\left(y_{1} \mid 1 \oplus u_{2}\right) W\left(y_{2} \mid u_{2}\right) \\
& =\frac{1}{2} W\left(y_{1} \mid 1 \oplus 0\right) W\left(y_{2} \mid 0\right)+\frac{1}{2} W\left(y_{1} \mid 1 \oplus 1\right) W\left(y_{2} \mid 1\right) \\
& =\frac{1}{2} W\left(y_{1} \mid 1\right) W\left(y_{2} \mid 0\right)+\frac{1}{2} W\left(y_{1} \mid 0\right) W\left(y_{2} \mid 1\right)=\frac{1}{2} \beta\left(y_{1}\right) \alpha\left(y_{2}\right)+\frac{1}{2} \alpha\left(y_{1}\right) \beta\left(y_{2}\right) \\
& =\frac{1}{2}\left(\alpha\left(y_{1}\right) \beta\left(y_{2}\right)+\beta\left(y_{1}\right) \alpha\left(y_{2}\right)\right) .
\end{aligned}
$$

We have

$$
\begin{aligned}
Z\left(W^{-}\right) & =\sum_{y_{1}, y_{2} \in \mathcal{Y}} \sqrt{W^{-}\left(y_{1}, y_{2} \mid 0\right) W^{-}\left(y_{1}, y_{2} \mid 1\right)} \\
& =\frac{1}{2} \sum_{y_{1}, y_{2} \in \mathcal{Y}} \sqrt{\left(\alpha\left(y_{1}\right) \alpha\left(y_{2}\right)+\beta\left(y_{1}\right) \beta\left(y_{2}\right)\right)\left(\alpha\left(y_{1}\right) \beta\left(y_{2}\right)+\beta\left(y_{1}\right) \alpha\left(y_{2}\right)\right)} .
\end{aligned}
$$

(e) For every $x, y \geq 0$, we have $x+y \leq x+y+2 \sqrt{x y}=(\sqrt{x}+\sqrt{y})^{2}$ which implies that $\sqrt{x+y} \leq \sqrt{x}+\sqrt{y}$. Therefore, for every $x, y, z, t \geq 0$ we have:

$$
\sqrt{x+y+z+t} \leq \sqrt{x+y}+\sqrt{z+t} \leq \sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{t}
$$

Therefore,

$$
\begin{aligned}
& Z\left(W^{-}\right) \\
&= \frac{1}{2} \sum_{y_{1}, y_{2} \in \mathcal{Y}} \sqrt{\left(\alpha\left(y_{1}\right) \alpha\left(y_{2}\right)+\beta\left(y_{1}\right) \beta\left(y_{2}\right)\right)\left(\alpha\left(y_{1}\right) \beta\left(y_{2}\right)+\beta\left(y_{1}\right) \alpha\left(y_{2}\right)\right)} \\
&= \frac{1}{2} \sum_{y_{1}, y_{2} \in \mathcal{Y}} \sqrt{\alpha\left(y_{1}\right)^{2} \gamma\left(y_{2}\right)^{2}+\alpha\left(y_{2}\right)^{2} \gamma\left(y_{1}\right)^{2}+\beta\left(y_{2}\right)^{2} \gamma\left(y_{1}\right)^{2}+\beta\left(y_{1}\right)^{2} \gamma\left(y_{2}\right)^{2}} \\
& \quad(*) \frac{1}{2} \sum_{y_{1}, y_{2} \in \mathcal{Y}}\left(\sqrt{\alpha\left(y_{1}\right)^{2} \gamma\left(y_{2}\right)^{2}}+\sqrt{\alpha\left(y_{2}\right)^{2} \gamma\left(y_{1}\right)^{2}}+\sqrt{\beta\left(y_{2}\right)^{2} \gamma\left(y_{1}\right)^{2}}+\sqrt{\beta\left(y_{1}\right)^{2} \gamma\left(y_{2}\right)^{2}}\right) \\
&= \frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \alpha\left(y_{1}\right) \gamma\left(y_{2}\right)\right)+\frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \alpha\left(y_{2}\right) \gamma\left(y_{1}\right)\right) \\
&+\frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \beta\left(y_{2}\right) \gamma\left(y_{1}\right)\right)+\frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \beta\left(y_{1}\right) \gamma\left(y_{2}\right)\right),
\end{aligned}
$$

where $(*)$ follows from the inequality $\sqrt{x+y+z+t} \leq \sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{t}$.
(f) Note that $\sum_{y \in \mathcal{Y}} \alpha(y)=\sum_{y \in \mathcal{Y}} \beta(y)=1$ and $\sum_{y \in \mathcal{Y}} \gamma(y)=Z(W)$. Therefore,

$$
\begin{aligned}
Z\left(W^{-}\right) \leq & \frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \alpha\left(y_{1}\right) \gamma\left(y_{2}\right)\right)+\frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \alpha\left(y_{2}\right) \gamma\left(y_{1}\right)\right) \\
& +\frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \beta\left(y_{2}\right) \gamma\left(y_{1}\right)\right)+\frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \beta\left(y_{1}\right) \gamma\left(y_{2}\right)\right) \\
= & \frac{1}{2}\left(\sum_{y_{1} \in \mathcal{Y}} \alpha\left(y_{1}\right)\right)\left(\sum_{y_{2} \in \mathcal{Y}} \gamma\left(y_{2}\right)\right)+\frac{1}{2}\left(\sum_{y_{2} \in \mathcal{Y}} \alpha\left(y_{2}\right)\right)\left(\sum_{y_{1} \in \mathcal{Y}} \gamma\left(y_{1}\right)\right) \\
& +\frac{1}{2}\left(\sum_{y_{2} \in \mathcal{Y}} \beta\left(y_{2}\right)\right)\left(\sum_{y_{1} \in \mathcal{Y}} \gamma\left(y_{1}\right)\right)+\frac{1}{2}\left(\sum_{y_{1} \in \mathcal{Y}} \beta\left(y_{1}\right)\right)\left(\sum_{y_{2} \in \mathcal{Y}} \gamma\left(y_{2}\right)\right) \\
= & \frac{1}{2} 1 \cdot Z(W)+\frac{1}{2} 1 \cdot Z(W)+\frac{1}{2} 1 \cdot Z(W)+\frac{1}{2} 1 \cdot Z(W)=2 Z(W) .
\end{aligned}
$$

Problem 3.

(a) We have

$$
\begin{aligned}
Q_{i+1} & =\sqrt{Z_{i+1}\left(1-Z_{i+1}\right)}= \begin{cases}\sqrt{Z_{i}^{2}\left(1-Z_{i}^{2}\right)} & \text { w.p. } 1 / 2 \\
\sqrt{\left(2 Z_{i}-Z_{i}^{2}\right)\left(1-2 Z_{i}+Z_{i}^{2}\right)} & \text { w.p. } 1 / 2\end{cases} \\
& =\left\{\begin{array}{lll}
\sqrt{Z_{i}^{2}\left(1-Z_{i}\right)\left(1+Z_{i}\right)} & \text { w.p. } 1 / 2 \\
\sqrt{\left(2-Z_{i}\right) Z_{i}\left(1-Z_{i}\right)^{2}} & \text { w.p. } 1 / 2
\end{array}\right. \\
& = \begin{cases}\sqrt{Z_{i}\left(1-Z_{i}\right)} \sqrt{Z_{i}\left(1+Z_{i}\right)} & \text { w.p. } 1 / 2 \\
\sqrt{Z_{i}\left(1-Z_{i}\right)} \sqrt{\left(2-Z_{i}\right)\left(1-Z_{i}\right)} & \text { w.p. } 1 / 2\end{cases} \\
& =\sqrt{Z_{i}\left(1-Z_{i}\right)} \begin{cases}\sqrt{Z_{i}\left(1+Z_{i}\right)} & \text { w.p. } 1 / 2 \\
\sqrt{\left(2-Z_{i}\right)\left(1-Z_{i}\right)} & \text { w.p. } 1 / 2\end{cases} \\
& =Q_{i} \begin{cases}f_{1}\left(Z_{i}\right) & \text { w.p. } 1 / 2 \\
f_{2}\left(Z_{i}\right) & \text { w.p. } 1 / 2\end{cases}
\end{aligned}
$$

where $f_{1}(z)=\sqrt{z(z+1)}$ and $f_{2}(z)=\sqrt{(2-z)(1-z)}$.
(b) We have

$$
f_{1}^{\prime}(z)=\frac{2 z+1}{2 \sqrt{z(z+1)}}
$$

so

$$
\begin{aligned}
f_{1}^{\prime \prime}(z) & =\frac{4 \sqrt{z(z+1)}-(2 z+1) \frac{2(2 z+1)}{2 \sqrt{z(z+1)}}}{(2 \sqrt{z(z+1)})^{2}} \\
& =\frac{4 z(z+1)-(2 z+1)^{2}}{4(z(z+1))^{\frac{3}{2}}}=\frac{-1}{4(z(z+1))^{\frac{3}{2}}} \leq 0 .
\end{aligned}
$$

Therefore, f_{1} is concave. By noticing that $f_{2}(z)=f_{1}(1-z)$, we obtain:

$$
\begin{aligned}
f_{1}(z)+f_{2}(z) & =f_{1}(z)+f_{1}(1-z)=2\left(\frac{1}{2} f_{1}(z)+\frac{1}{2} f_{1}(1-z)\right) \\
& \stackrel{(*)}{\leq} 2 f_{1}\left(\frac{1}{2} z+\frac{1}{2}(1-z)\right)=2 f_{1}\left(\frac{1}{2}\right)=2 \sqrt{\frac{1}{2}\left(\frac{1}{2}+1\right)} \\
& =2 \sqrt{\frac{1}{2} \cdot \frac{3}{2}}=2 \frac{\sqrt{3}}{2}=\sqrt{3},
\end{aligned}
$$

where $(*)$ follows from the concavity of f_{1}. We have

$$
\mathbb{E}\left[Q_{i+1} \mid Z_{0}, \ldots, Z_{i}\right]=\frac{1}{2} f_{1}\left(Z_{i}\right) Q_{i}+\frac{1}{2} f_{2}\left(Z_{i}\right) Q_{i}=\frac{1}{2}\left(f_{1}\left(Z_{i}\right)+f_{2}\left(Z_{i}\right)\right) Q_{i} \leq \rho Q_{i},
$$

where $\rho=\frac{\sqrt{3}}{2}<1$.
(c) We will show the claim by induction on $i \geq 0$. For $i=0$, we have $Z_{0}=z_{0}$ with probability 1 . Therefore, $\mathbb{E} Q_{0}=\sqrt{z_{0}\left(1-z_{0}\right)}$.
It is easy to that the function $[0,1] \rightarrow \mathbb{R}$ defined by $z \rightarrow \sqrt{z(1-z)}$ achieves its maximum at $z=\frac{1}{2}$, and so $\mathbb{E} Q_{0}=\sqrt{z_{0}\left(1-z_{0}\right)} \leq \sqrt{\frac{1}{2}\left(1-\frac{1}{2}\right)}=\frac{1}{2}$. Therefore, the claim is true for $i=0$.
Now suppose that the claim is true for $i \geq 0$, i.e., $\mathbb{E} Q_{i} \leq \frac{1}{2} \rho^{i}$. We have

$$
\mathbb{E} Q_{i+1}=\mathbb{E}\left[\mathbb{E}\left[Q_{i+1} \mid Z_{0}, \ldots, Z_{i}\right]\right] \stackrel{(*)}{\leq} \mathbb{E}\left[\rho Q_{i}\right]=\rho \mathbb{E}\left[Q_{i}\right] \stackrel{(* *)}{\leq} \rho \cdot \frac{1}{2} \rho^{i}=\frac{1}{2} \rho^{i+1}
$$

where ($*$) follows from Part (b) and ($* *$) follows from the induction hypothesis. We conclude that $\mathbb{E} Q_{i} \leq \frac{1}{2} \rho^{i}$ for every $i \geq 0$.
(d) By noticing that $\delta<z<1-\delta$ if and only if $z(1-z)>\delta(1-\delta)$, we get:

$$
\begin{aligned}
\mathbb{P}\left[Z_{i} \in(\delta, 1-\delta)\right] & =\mathbb{P}\left[Z_{i}\left(1-Z_{i}\right)>\delta(1-\delta)\right]=\mathbb{P}\left[\sqrt{Z_{i}\left(1-Z_{i}\right)}>\sqrt{\delta(1-\delta)}\right] \\
& =\mathbb{P}\left[Q_{i}>\sqrt{\delta(1-\delta)}\right] \stackrel{(*)}{\leq} \frac{\mathbb{E} Q_{i}}{\sqrt{\delta(1-\delta)}} \stackrel{(* *)}{\leq} \frac{\rho^{i}}{2 \sqrt{\delta(1-\delta)}}
\end{aligned}
$$

where (*) follows from the Markov inequality and ($* *$) follows from Part (c). Now since $\rho<1$, we have $\frac{\rho^{i}}{2 \sqrt{\delta(1-\delta)}} \rightarrow 0$ as $i \rightarrow \infty$. We conclude that

$$
\mathbb{P}\left[Z_{i} \in(\delta, 1-\delta)\right] \rightarrow 0 \text { as } i \text { gets large. }
$$

