ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 28
Information Theory and Coding
Solutions to Homework 11
Dec. 5, 2023

Problem 1.

(a) Since C is non-empty, it contains some codeword x. By linearity C must contain $x+x$. But, for any $x, x+x$ is the all-zero sequence since we are doing modulo- 2 sums. So, C contains the all-zero sequence.
(b) The elements of D^{\prime} are those sequences of the form $x+y$ where y is in D. Since x is in C and D is a subset of C, any x and y are both in C, and so is their sum.
(c) Suppose there was an element z common to D and D^{\prime}. Then $z=x+y$ where y is in D. Since we assumed that D is a linear subset, then $z+y$ is also in D. But $z+y$ equals x, and we arrive at the contradiction that x is in D.
(d) Since the mapping $y \mapsto x+y$ is a bijection, D and D^{\prime} are in one-to-one correspondence, and hence have the same number of elements.
(e) Suppose z_{1} and z_{2} are in $D \cup D^{\prime}$. There are four possibilities: (1) both z_{1} and z_{2} are in D, (2) both z_{1} and z_{2} are in D^{\prime}, (3) z_{1} is in D, z_{2} is in D^{\prime}, (4) z_{1} is in D^{\prime}, z_{2} is in D. In case (1), the linearity of D implies that $z_{1}+z_{2}$ is in D. In case (2), $z_{1}=x+y_{1}$ and $z_{2}=x+y_{2}$ for some y_{1} and y_{2} both in D, then $z_{1}+z_{2}=x+x+y_{1}+y_{2}=y_{1}+y_{2}$ is in D. In case (3) $z_{2}=x+y_{2}$ and $z_{1}+z_{2}=x+\left(z_{1}+y_{2}\right)$, which is in D^{\prime}, and similarly in case (4). Thus in all cases $z_{1}+z_{2}$ is in $D \cup D^{\prime}$ and we see that $D \cup D^{\prime}$ is a linear subset of C.
(f) We thus see that if at the beginning of step (ii) D is a linear subset of C, at the end of step (iii) $D \cup D^{\prime}$ is linear, is a subset of C because both D and D^{\prime} are, and has twice as many elements of D since D^{\prime} has the same number of elements of D and is disjoint from it. Thus, when the algorithm terminates, D contains all elements of C and since it is a subset of C it must equal C. Furthermore, its size, being equal to successive doublings of 1 , is a power of 2 .

Problem 2.

(a) Any codeword of \mathcal{C} is of the from $\langle\mathbf{a}, \mathbf{a} \oplus \mathbf{b}\rangle$ with $\mathbf{a} \in \mathcal{C}_{1}$ and $\mathbf{b} \in \mathcal{C}_{2}$. Given two codewords $\left\langle\mathbf{u}^{\prime}, \mathbf{u}^{\prime} \oplus \mathbf{v}^{\prime}\right\rangle$ and $\left\langle\mathbf{u}^{\prime \prime}, \mathbf{u}^{\prime \prime} \oplus \mathbf{v}^{\prime \prime}\right\rangle$ of \mathcal{C}, their sum is $\langle\mathbf{u}, \mathbf{u} \oplus \mathbf{v}\rangle$ with $\mathbf{u}=\mathbf{u}^{\prime} \oplus \mathbf{u}^{\prime \prime}$ and $\mathbf{v}=\mathbf{v}^{\prime} \oplus \mathbf{v}^{\prime \prime}$. Since \mathcal{C}_{1} and \mathcal{C}_{2} are linear codes $\mathbf{u} \in \mathcal{C}_{1}$ and $\mathbf{v} \in \mathcal{C}_{2}$. Thus the sum of any two codewords of \mathcal{C} is a codeword of \mathcal{C} and we conclude that \mathcal{C} is linear.
(b) If $(\mathbf{u}, \mathbf{v}) \neq\left(\mathbf{u}^{\prime}, \mathbf{v}^{\prime}\right)$, then either $\mathbf{u} \neq \mathbf{u}^{\prime}$, or, $\mathbf{u}=\mathbf{u}^{\prime}$ and $\mathbf{v} \neq \mathbf{v}^{\prime}$. In either case $\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle \neq\left\langle\mathbf{u}^{\prime} \mid \mathbf{u}^{\prime} \oplus \mathbf{v}^{\prime}\right\rangle$: in the first case the first halves differ, in the second case the second halves differ. Thus no two of the (\mathbf{u}, \mathbf{v}) pairs are mapped to the same element of \mathcal{C}, and the code has exactly $M_{1} M_{2}$ elements. Its rate is $\frac{1}{2 n} \log \left(M_{1} M_{2}\right)=\frac{1}{2} R_{1}+\frac{1}{2} R_{2}$.
(c) As $\mathbf{v}=\mathbf{u} \oplus \mathbf{u} \oplus \mathbf{v}$,

$$
w_{H}(\mathbf{v})=w_{H}(\mathbf{u} \oplus \mathbf{u} \oplus \mathbf{v}) \leq w_{H}(\mathbf{u})+w_{H}(\mathbf{u} \oplus \mathbf{v})
$$

by the triangle inequality. Noting that the right hand side is $w_{H}(\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle)$ completes the proof.
(d) If $\mathbf{v}=\mathbf{0}$ we have $\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle=\langle\mathbf{u} \mid \mathbf{u}\rangle$ which has twice the Hamming weight of \mathbf{u}. Otherwise (c) gives $w_{H}(\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle) \geq w_{H}(\mathbf{v})$.
(e) Since \mathcal{C} is linear its minimum distance equals the minimum weight of its non-zero codewords. If $\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle$ is non-zero either $\mathbf{v} \neq \mathbf{0}$, or, $\mathbf{v}=\mathbf{0}$ and $\mathbf{u} \neq \mathbf{0}$. By (d), in the first case $w_{H}(\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle) \geq w_{H}(\mathbf{v}) \geq d_{1}$, in the second case $w_{H}(\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle) \geq$ $2 w_{H}(\mathbf{u}) \geq 2 d_{2}$. Thus $d \geq \min \left\{2 d_{1}, d_{2}\right\}$.
(f) Let \mathbf{u}_{0} be the minimum weight non-zero codeword of \mathcal{C}_{1} and let \mathbf{v}_{0} be the minimum weight non-zero codeword of \mathcal{C}_{2}. Note that $\left\langle\mathbf{u}_{0} \mid \mathbf{u}_{0}\right\rangle$ is a non-zero codeword of \mathcal{C} (corresponding to the choice $\mathbf{u}=\mathbf{u}_{0}, \mathbf{v}=\mathbf{0}$). It has weight $2 d_{1}$. Similarly, $\left\langle\mathbf{0} \mid \mathbf{v}_{0}\right\rangle$ is also a non-zero codeword of \mathcal{C} (corresponding to the choice $\mathbf{u}=\mathbf{0}, \mathbf{v}=\mathbf{v}_{0}$). It has weight d_{2}. Consequently $d \leq \min \left\{2 d_{1}, d_{2}\right\}$. In light of (e) we find $d=\min \left\{2 d_{1}, d_{2}\right\}$.

This method of constructing a longer code from two shorter ones is known under several names: 'Plotkin construction', 'bar product', ' $(u \mid u+v)$ construction' appear regularly in the literature. Compare this method to the 'obvious' method of letting the codewords to be $\langle\mathbf{u} \mid \mathbf{v}\rangle$. The simple method has the same block-length and rate as we have here, but its minimum distance is only $\min \left\{d_{1}, d_{2}\right\}$. The factor two gained in d_{1} by the bar product is significant, and many practical code families can be built from very simple base codes by a recursive application of the bar product. Notable among them are the family of Reed-Muller codes.

Problem 3.

(a) Suppose \mathbf{x} and \mathbf{x}^{\prime} are two codewords in \mathcal{C}. Then for $\forall i=0,1, \ldots, m-1$,

$$
\begin{aligned}
x_{0}+x_{1} \alpha_{i}+\cdots+x_{n-1} \alpha_{i}^{n-1} & =0 \\
x_{0}^{\prime}+x_{1}^{\prime} \alpha_{i}+\cdots+x_{n-1}^{\prime} \alpha_{i}^{n-1} & =0
\end{aligned}
$$

Therefore,

$$
\left(x_{0}+x_{0}^{\prime}\right)+\left(x_{1}+x_{1}^{\prime}\right) \alpha_{i}+\cdots+\left(x_{n-1}+x_{n-1}^{\prime}\right) \alpha_{i}^{n-1}=0 \quad \text { for } \forall i=0,1, \ldots, m-1
$$

which shows $\mathbf{x}+\mathrm{x}^{\prime}$ is also a codeword.
(b) $x(D)=x_{0}+x_{1} D+\cdots+x_{n-1} D^{n-1}$ is a polynomial of degree (at most) $n-1$ and $\left(x_{0}, \ldots, x_{n-1}\right)$ is a codeword if $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m-1}$ are m of its roots. This means

$$
x(D)=\left(D-\alpha_{0}\right)\left(D-\alpha_{1}\right) \ldots\left(D-\alpha_{m-1}\right) h(D)=g(D) h(D)
$$

for some $h(D)$. Note that $h(D)$ can have degree (at most) $n-m-1$. On the other side, there is a one-to-one correspondence between the codewords of \mathcal{C} and degree $n-1$ polynomials. Since $g(D)$ is fixed for all codewords, a polynomial $x(D)$ corresponding to a codeword \mathbf{x} is determined by choosing the coefficients of $h(D)=$ $h_{0}+h_{1} D+\cdots+h_{n-m-1} D^{n-m-1}$. Since $h_{j} \in \mathcal{X}$ for $j=0,1, \ldots, n-m-1$ we have q^{n-m} different $h(D)$ s and, thus, q^{n-m} codewords.
(c) For every column vector $\mathbf{u}=\left[u_{0}, u_{1}, \ldots, u_{m-1}\right]^{T}, A \mathbf{u}=\left[u(1), u(\beta), \ldots, u\left(\beta^{n-1}\right)\right]^{T}$. Consequently, $A \mathbf{u}=\mathbf{0}$ means $u(D)$ has n roots which is impossible (since it is a polynomial of degree $m-1<n$).
(d) Using the same reasoning as in (c) one can verify that $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is a codeword iff $\mathbf{x} A=\mathbf{0}$. This means A is the parity-check matrix of the code \mathcal{C}. Since the code is linear, using Problem 4 of Homework 11 we know that has minimum distance d iff every $d-1$ rows of H are linearly independent and some d rows are linearly dependent. That A has rank m implies there are no m linearly dependent rows thus $d \geq m+1$. On the other side, we know from the Singleton bound that a code with q^{n-m} codewords and block-length n has minimum distance $d \leq m+1$. Thus we conclude that $d=m+1$.

Problem 4.

(a) As H had four columns the blocklength $n=4$. Observe that we can rearrange $H \mathbf{x}=\mathbf{0}$ to solve for x_{1}, x_{2} in terms of x_{3}, x_{4}. As there are 3^{2} possibilities for $\left(x_{3}, x_{4}\right)$ the code has $M=9$ codewords. The code rate is thus $\frac{1}{2} \log 3$.
(b) The receiver receives $\mathbf{y}=\mathbf{x}+\mathbf{z}$ where \mathbf{z} is either the zero vector, or it has only a single nonzero component z_{i} which can take the value 1 or 2 . With h_{i} denoting the i th column of $H, H \mathbf{y}=H \mathbf{z}$ is either zero, or takes on the value h_{i} (if $z_{i}=1$) or $2 h_{i}$ $\left(z_{i}=2\right)$. Since the collection of eight vectors $h_{1}, 2 h_{1}, h_{2}, 2 h_{2}, h_{3}, 2 h_{3}, h_{4}, 2 h_{4}$ are all distinct and different from zero, the receiver can identify if z is the zero vector or the i and the value of z_{i} from $H \mathbf{y}$
(c) This will increase the block length to 5 and the number of codewords to 3^{3} yielding a new rate of $\frac{3}{5} \log 3$ which is larger than the rate found in (a).
(d) We need to ensure that the new column and its multiple by 2 is different from the zero and the collection of 8 vectors above. We see that this is not the case for any of the vectors listed.
(e) Now z_{i} can take on only the value 1 (but not 2). Thus to ensure detection and correction we only need h_{i} 's to be distinct and different from zero. Now, all columns except the zero column in (d) can be added.

