
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Handout 28 Information Theory and Coding
Solutions to Homework 11 Dec. 5, 2023

Problem 1.

(a) Since C is non-empty, it contains some codeword x. By linearity C must contain
x + x. But, for any x, x + x is the all-zero sequence since we are doing modulo-2
sums. So, C contains the all-zero sequence.

(b) The elements of D′ are those sequences of the form x+ y where y is in D. Since x is
in C and D is a subset of C, any x and y are both in C, and so is their sum.

(c) Suppose there was an element z common to D and D′. Then z = x+ y where y is in
D. Since we assumed that D is a linear subset, then z + y is also in D. But z + y
equals x, and we arrive at the contradiction that x is in D.

(d) Since the mapping y 7→ x+y is a bijection,D andD′ are in one-to-one correspondence,
and hence have the same number of elements.

(e) Suppose z1 and z2 are in D ∪D′. There are four possibilities: (1) both z1 and z2 are
in D, (2) both z1 and z2 are in D′, (3) z1 is in D, z2 is in D′, (4) z1 is in D′, z2 is in
D. In case (1), the linearity of D implies that z1+ z2 is in D. In case (2), z1 = x+ y1
and z2 = x+ y2 for some y1 and y2 both in D, then z1+ z2 = x+x+ y1+ y2 = y1+ y2
is in D. In case (3) z2 = x + y2 and z1 + z2 = x + (z1 + y2), which is in D′, and
similarly in case (4). Thus in all cases z1 + z2 is in D ∪D′ and we see that D ∪D′ is
a linear subset of C.

(f) We thus see that if at the beginning of step (ii) D is a linear subset of C, at the end
of step (iii) D ∪ D′ is linear, is a subset of C because both D and D′ are, and has
twice as many elements of D since D′ has the same number of elements of D and is
disjoint from it. Thus, when the algorithm terminates, D contains all elements of C
and since it is a subset of C it must equal C. Furthermore, its size, being equal to
successive doublings of 1, is a power of 2.

Problem 2.

(a) Any codeword of C is of the from ⟨a, a ⊕ b⟩ with a ∈ C1 and b ∈ C2. Given two
codewords ⟨u′,u′⊕v′⟩ and ⟨u′′,u′′⊕v′′⟩ of C, their sum is ⟨u,u⊕v⟩ with u = u′⊕u′′

and v = v′ ⊕ v′′. Since C1 and C2 are linear codes u ∈ C1 and v ∈ C2. Thus the sum
of any two codewords of C is a codeword of C and we conclude that C is linear.

(b) If (u,v) ̸= (u′,v′), then either u ̸= u′, or, u = u′ and v ̸= v′. In either case
⟨u|u⊕v⟩ ≠ ⟨u′|u′⊕v′⟩: in the first case the first halves differ, in the second case the
second halves differ. Thus no two of the (u,v) pairs are mapped to the same element
of C, and the code has exactly M1M2 elements. Its rate is 1

2n
log(M1M2) =

1
2
R1+

1
2
R2.

(c) As v = u⊕ u⊕ v,

wH(v) = wH(u⊕ u⊕ v) ≤ wH(u) + wH(u⊕ v)

by the triangle inequality. Noting that the right hand side is wH(⟨u|u⊕v⟩) completes
the proof.

(d) If v = 0 we have ⟨u|u ⊕ v⟩ = ⟨u|u⟩ which has twice the Hamming weight of u.
Otherwise (c) gives wH(⟨u|u⊕ v⟩) ≥ wH(v).

(e) Since C is linear its minimum distance equals the minimum weight of its non-zero
codewords. If ⟨u|u ⊕ v⟩ is non-zero either v ̸= 0, or, v = 0 and u ̸= 0. By (d),
in the first case wH(⟨u|u ⊕ v⟩) ≥ wH(v) ≥ d1, in the second case wH(⟨u|u ⊕ v⟩) ≥
2wH(u) ≥ 2d2. Thus d ≥ min{2d1, d2}.

(f) Let u0 be the minimum weight non-zero codeword of C1 and let v0 be the minimum
weight non-zero codeword of C2. Note that ⟨u0|u0⟩ is a non-zero codeword of C
(corresponding to the choice u = u0, v = 0). It has weight 2d1. Similarly, ⟨0|v0⟩ is
also a non-zero codeword of C (corresponding to the choice u = 0, v = v0). It has
weight d2. Consequently d ≤ min{2d1, d2}. In light of (e) we find d = min{2d1, d2}.

This method of constructing a longer code from two shorter ones is known under several
names: ‘Plotkin construction’, ‘bar product’, ‘(u|u + v) construction’ appear regularly in
the literature. Compare this method to the ‘obvious’ method of letting the codewords to
be ⟨u|v⟩. The simple method has the same block-length and rate as we have here, but
its minimum distance is only min{d1, d2}. The factor two gained in d1 by the bar product
is significant, and many practical code families can be built from very simple base codes
by a recursive application of the bar product. Notable among them are the family of
Reed–Muller codes.

Problem 3.

(a) Suppose x and x′ are two codewords in C. Then for ∀i = 0, 1, . . . ,m− 1,

x0 + x1αi + · · ·+ xn−1α
n−1
i = 0

x′
0 + x′

1αi + · · ·+ x′
n−1α

n−1
i = 0

Therefore,

(x0 + x′
0) + (x1 + x′

1)αi + · · ·+ (xn−1 + x′
n−1)α

n−1
i = 0 for ∀i = 0, 1, . . . ,m− 1.

which shows x+ x′ is also a codeword.

(b) x(D) = x0 + x1D + · · · + xn−1D
n−1 is a polynomial of degree (at most) n − 1 and

(x0, . . . , xn−1) is a codeword if α0, α1, . . . , αm−1 are m of its roots. This means

x(D) = (D − α0)(D − α1) . . . (D − αm−1)h(D) = g(D)h(D)

for some h(D). Note that h(D) can have degree (at most) n − m − 1. On the
other side, there is a one-to-one correspondence between the codewords of C and
degree n − 1 polynomials. Since g(D) is fixed for all codewords, a polynomial x(D)
corresponding to a codeword x is determined by choosing the coefficients of h(D) =
h0 + h1D + · · · + hn−m−1D

n−m−1. Since hj ∈ X for j = 0, 1, . . . , n −m − 1 we have
qn−m different h(D)s and, thus, qn−m codewords.

(c) For every column vector u = [u0, u1, . . . , um−1]
T , Au = [u(1), u(β), . . . , u(βn−1)]T .

Consequently, Au = 0 means u(D) has n roots which is impossible (since it is a
polynomial of degree m− 1 < n).

2

(d) Using the same reasoning as in (c) one can verify that x = (x1, . . . , xn) is a codeword
iff xA = 0. This means A is the parity-check matrix of the code C. Since the code
is linear, using Problem 4 of Homework 11 we know that has minimum distance
d iff every d − 1 rows of H are linearly independent and some d rows are linearly
dependent. That A has rank m implies there are no m linearly dependent rows thus
d ≥ m + 1. On the other side, we know from the Singleton bound that a code with
qn−m codewords and block-length n has minimum distance d ≤ m + 1. Thus we
conclude that d = m+ 1.

Problem 4.

(a) As H had four columns the blocklength n = 4. Observe that we can rearrange
Hx = 0 to solve for x1, x2 in terms of x3, x4. As there are 32 possibilities for (x3, x4)
the code has M = 9 codewords. The code rate is thus 1

2
log 3.

(b) The receiver receives y = x + z where z is either the zero vector, or it has only a
single nonzero component zi which can take the value 1 or 2. With hi denoting the
ith column of H, Hy = Hz is either zero, or takes on the value hi (if zi = 1) or 2hi

(zi = 2). Since the collection of eight vectors h1, 2h1, h2, 2h2, h3, 2h3, h4, 2h4 are all
distinct and different from zero, the receiver can identify if z is the zero vector or the
i and the value of zi from Hy

(c) This will increase the block length to 5 and the number of codewords to 33 yielding
a new rate of 3

5
log 3 which is larger than the rate found in (a).

(d) We need to ensure that the new column and its multiple by 2 is different from the
zero and the collection of 8 vectors above. We see that this is not the case for any of
the vectors listed.

(e) Now zi can take on only the value 1 (but not 2). Thus to ensure detection and
correction we only need hi’s to be distinct and different from zero. Now, all columns
except the zero column in (d) can be added.

3

