ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Information Theory and Coding
Homework 13
Dec. 18, 2023

Problem 1. Suppose U is $\{0,1\}$ valued with $\mathbb{P}(U=0)=\mathbb{P}(U=1)=1 / 2$. Suppose we have a distortion measure d given by

$$
d(u, v)= \begin{cases}0, & u=v \\ 1, & (u, v)=(1,0) \\ \infty, & (u, v)=(0,1)\end{cases}
$$

i.e., we never want to represent a 0 with a 1 . Find $R(D)$.

Problem 2. Suppose $\mathcal{U}=\mathcal{V}$ are additive groups with group operation \oplus. (E.g., $\mathcal{U}=$ $\mathcal{V}=\{0, \ldots, K-1\}$, with modulo K addition.) Suppose the distortion measure $d(u, v)$ depends only on the difference between u and v and is given by $g(u \ominus v)$. Let $\phi(D)$ denote $\max \{H(Z): E[g(Z)] \leq D\}$.
a) Show that $\phi(D)$ is concave.
b) Let (U, V) be such that $E[d(U, V)] \leq D$. Show that $I(U ; V) \geq H(U)-\phi(D)$ by justifying
$I(U ; V)=H(U)-H(U \mid V)=H(U)-H(U \ominus V \mid V) \geq H(U)-H(U \ominus V) \geq H(U)-\phi(D)$.
c) Show that $R(D) \geq H(U)-\phi(D)$.
d) Assume now that U is uniform on \mathcal{U}. Show that $R(D)=H(U)-\phi(D)$.

Problem 3. Suppose $\mathcal{U}=\mathcal{V}=\mathbb{R}$, the set of real numbers, and $d(u, v)=(u-v)^{2}$.
(a) Show that for any U with variance $\sigma^{2}, R(D)$ satisfies

$$
h(U)-\frac{1}{2} \log (2 \pi e D) \leq R(D)
$$

(b) Show that $R(D)$ does not depend on the mean of U.

Now, assume without loss of generality that U is zero-mean. Suppose we have access to a noisy observation V of U through the channel $U+Z=V$, where $Z \sim \mathcal{N}\left(0, \sigma_{Z}^{2}\right)$ and independent of U. We reconstruct U via a linear estimator $\hat{U}=a V+b$.
(c) Show that $a=\frac{\sigma^{2}}{\sigma^{2}+\sigma_{2}^{2}}$ and $b=0$ minimizes $E\left[(U-\hat{U})^{2}\right]$ and for such choice of a, b, $E\left[(U-\hat{U})^{2}\right]=\sigma^{2} \frac{\sigma_{Z}^{2}}{\sigma^{2}+\sigma_{Z}^{2}}$.
(d) For the channel above, show that

$$
I(U ; V) \leq \frac{1}{2} \log \left(1+\frac{\sigma^{2}}{\sigma_{Z}^{2}}\right)
$$

(e) Show that for $D \leq \sigma^{2}$

$$
R(D) \leq \frac{1}{2} \log \left(\sigma^{2} / D\right)
$$

[Hint: Use the channel above for a candidate $p_{V \mid U}$.]

Problem 4. Given finite alphabets \mathcal{X} and \mathcal{Y}, a distribution $p_{X Y}, 0<\epsilon<\epsilon^{\prime}$, and a sequence $x^{n} \in T\left(n, p_{X}, \epsilon\right)$, consider a random vector Y^{n} with independent components with $\operatorname{Pr}\left(Y_{i}=y\right)=p_{Y \mid X}\left(y \mid x_{i}\right)$.

For $x \in \mathcal{X}$, let $J(x)=\left\{i: x_{i}=x\right\}$. For an $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, let $N(x, y)=\sum_{i} \mathbb{1}\left\{\left(x_{i}, Y_{i}\right)=\right.$ $(x, y)\}=\sum_{i \in J(x)} \mathbb{1}\left\{Y_{i}=y\right\}$.
(a) Show that for each x and $y, n p(x, y)(1-\epsilon) \leq E[N(x, y)] \leq n p(x, y)(1+\epsilon)$, and $\operatorname{Var}(N(x, y))$ is at most n. [Hint: don't forget that x^{n} is in $T\left(n, p_{X}, \epsilon\right)$.]
(b) Show that for each x and y, both $\operatorname{Pr}\left(N(x, y)<n p(x, y)\left(1-\epsilon^{\prime}\right)\right)$ and $\operatorname{Pr}(N(x, y)>$ $\left.n p(x, y)\left(1+\epsilon^{\prime}\right)\right)$ approach to zero as n gets large. Would this be true if we had not assumed $\epsilon<\epsilon^{\prime}$?
(c) Using (a) and (b) show that $\operatorname{Pr}\left(\left(x^{n}, Y^{n}\right) \notin T\left(n, p_{X Y}, \epsilon^{\prime}\right)\right)$ approaches 0 as gets large.
(d) Suppose now we have a distribution $p(u, x, y)$ where $p(y \mid u x)=p(y \mid x)$. [In other words, U, X, Y form a Markov chain.] Suppose $\left(u^{n}, x^{n}\right)$ is in $T\left(n, p_{U X}, \epsilon\right)$, and Y^{n} has independent components as above. What can we say about $\operatorname{Pr}\left(\left(u^{n}, x^{n}, Y^{n}\right) \in\right.$ $\left.T\left(n, p_{U X Y}, \epsilon^{\prime}\right)\right)$?

Problem 5. Consider a two-way communication system where two parties communicate via a common output they both can observe and influence. Denote the common output by Y, and the signals emitted by the two parties by x_{1} and x_{2} respectively. Let $p\left(y \mid x_{1}, x_{2}\right)$ model the memoryless channel through which the two parties influence the output.

We will consider feedback-free block codes, i.e., we will use encoding and decoding functions of the form

$$
\begin{array}{ll}
\operatorname{enc}_{1}:\left\{1, \ldots, 2^{n R_{1}}\right\} \rightarrow \mathcal{X}_{1}^{n} & \operatorname{dec}_{1}: \mathcal{Y}^{n} \times\left\{1, \ldots, 2^{n R_{1}}\right\} \rightarrow\left\{1, \ldots, 2^{n R_{2}}\right\} \\
\operatorname{enc}_{2}:\left\{1, \ldots, 2^{n R_{2}}\right\} \rightarrow \mathcal{X}_{2}^{n} & \operatorname{dec}_{2}: \mathcal{Y}^{n} \times\left\{1, \ldots, 2^{n R_{2}}\right\} \rightarrow\left\{1, \ldots, 2^{n R_{1}}\right\}
\end{array}
$$

with which the parties encode their own message and decode the other party's messages. (Note that when a party is decoding the other party's message, it can make use of the knowledge of its own message).

We will say that the rate pair (R_{1}, R_{2}) is achievable, if for any $\epsilon>0$, there exist encoders and decoders with the above form for which the average error probability is less than ϵ.

Consider the following 'random coding' method to construct the encoders:
(i) Choose probability distributions p_{j} on $\mathcal{X}_{j}, j=1,2$.
(ii) Choose $\left\{\operatorname{enc}_{1}\left(m_{1}\right)_{i}: m_{1}=1, \ldots, 2^{n R_{1}}, i=1, \ldots, n\right\}$ i.i.d., each having distribution as p_{1}. Similarly, choose $\left\{\operatorname{enc}_{2}\left(m_{2}\right)_{i}: m_{2}=1, \ldots, 2^{n R_{2}}, i=1, \ldots, n\right\}$ i.i.d., each having distribution as p_{2}, independently of the choices for enc ${ }_{1}$.

For the decoders we will use typicality decoders:
(i) Set $p\left(x_{1}, x_{2}, y\right)=p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right) p\left(y \mid x_{1}, x_{2}\right)$. Choose a small $\epsilon>0$ and consider the set T of ϵ-typical $\left(x_{1}^{n}, x_{2}^{n}, y^{n}\right.$)'s with respect to p.
(ii) For decoder 1: given y^{n} and the correct m_{1}, dec_{1} will declare \hat{m}_{2} if it is the unique m_{2} for which $\left(\operatorname{enc}_{1}\left(m_{1}\right), \operatorname{enc}_{2}\left(m_{2}\right), y^{n}\right) \in T$. If there is no such $m_{2}, \operatorname{dec}_{1}$ outputs 0 . (Similar description applies to Decoder 2.)
(a) Given that m_{1} and m_{2} are the transmitted messages, show that $\left(\operatorname{enc}_{1}\left(m_{1}\right)\right.$, enc $\left._{2}\left(m_{2}\right), Y^{n}\right) \in T$ with high probability.
(b) Given that m_{1} and m_{2} are the transmitted messages, and $\tilde{m}_{1} \neq m_{1}$ what is the probability distribution of $\left(\operatorname{enc}_{1}\left(\tilde{m}_{1}\right), \operatorname{enc}\left(m_{2}\right), Y^{n}\right)$?
(c) Under the assumptions in (b) show that the

$$
\operatorname{Pr}\left\{\left(\operatorname{enc}_{1}\left(\tilde{m}_{1}\right), \operatorname{enc}_{2}\left(m_{2}\right), Y^{n}\right) \in T\right\} \doteq 2^{-n I\left(X_{1} ; X_{2} Y\right)}
$$

(d) Show that all rate pairs satisfying

$$
R_{1} \leq I\left(X_{1} ; Y X_{2}\right), \quad R_{2} \leq I\left(X_{2} ; Y X_{1}\right)
$$

for some $p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)$ are achievable.
(e) For the case when X_{1}, X_{2}, Y are all binary and Y is the product of X_{1} and X_{2}, show that the achievable region is strictly larger than what we can obtain by 'half duplex communication' (i.e., the set of rates that satisfy $R_{1}+R_{2} \leq 1$.)

