ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 31	Information Theory and Coding
Homework 13	Dec. 18, 2023

PROBLEM 1. Suppose U is $\{0,1\}$ valued with $\mathbb{P}(U=0) = \mathbb{P}(U=1) = 1/2$. Suppose we have a distortion measure d given by

$$d(u,v) = \begin{cases} 0, & u = v \\ 1, & (u,v) = (1,0) \\ \infty, & (u,v) = (0,1) \end{cases}$$

i.e., we never want to represent a 0 with a 1. Find R(D).

PROBLEM 2. Suppose $\mathcal{U} = \mathcal{V}$ are additive groups with group operation \oplus . (E.g., $\mathcal{U} = \mathcal{V} = \{0, \ldots, K-1\}$, with modulo K addition.) Suppose the distortion measure d(u, v) depends only on the difference between u and v and is given by $g(u \oplus v)$. Let $\phi(D)$ denote $\max\{H(Z) : E[g(Z)] \leq D\}$.

a) Show that $\phi(D)$ is concave.

b) Let (U, V) be such that $E[d(U, V)] \leq D$. Show that $I(U; V) \geq H(U) - \phi(D)$ by justifying

$$I(U;V) = H(U) - H(U|V) = H(U) - H(U \ominus V|V) \ge H(U) - H(U \ominus V) \ge H(U) - \phi(D).$$

c) Show that $R(D) \ge H(U) - \phi(D)$.

d) Assume now that U is uniform on \mathcal{U} . Show that $R(D) = H(U) - \phi(D)$.

PROBLEM 3. Suppose $\mathcal{U} = \mathcal{V} = \mathbb{R}$, the set of real numbers, and $d(u, v) = (u - v)^2$.

(a) Show that for any U with variance σ^2 , R(D) satisfies

$$h(U) - \frac{1}{2}\log(2\pi eD) \le R(D).$$

(b) Show that R(D) does not depend on the mean of U.

Now, assume without loss of generality that U is zero-mean. Suppose we have access to a noisy observation V of U through the channel U + Z = V, where $Z \sim \mathcal{N}(0, \sigma_Z^2)$ and independent of U. We reconstruct U via a linear estimator $\hat{U} = aV + b$.

- (c) Show that $a = \frac{\sigma^2}{\sigma^2 + \sigma_Z^2}$ and b = 0 minimizes $E[(U \hat{U})^2]$ and for such choice of $a, b, E[(U \hat{U})^2] = \sigma^2 \frac{\sigma_Z^2}{\sigma^2 + \sigma_Z^2}$.
- (d) For the channel above, show that

$$I(U;V) \le \frac{1}{2} \log \left(1 + \frac{\sigma^2}{\sigma_Z^2}\right)$$

(e) Show that for $D \leq \sigma^2$

$$R(D) \le \frac{1}{2}\log(\sigma^2/D).$$

[Hint: Use the channel above for a candidate $p_{V|U}$.]

PROBLEM 4. Given finite alphabets \mathcal{X} and \mathcal{Y} , a distribution p_{XY} , $0 < \epsilon < \epsilon'$, and a sequence $x^n \in T(n, p_X, \epsilon)$, consider a random vector Y^n with independent components with $\Pr(Y_i = y) = p_{Y|X}(y|x_i)$.

For $x \in \mathcal{X}$, let $J(x) = \{i : x_i = x\}$. For an $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, let $N(x, y) = \sum_i \mathbb{1}\{(x_i, Y_i) = (x, y)\} = \sum_{i \in J(x)} \mathbb{1}\{Y_i = y\}.$

- (a) Show that for each x and y, $np(x,y)(1-\epsilon) \leq E[N(x,y)] \leq np(x,y)(1+\epsilon)$, and Var(N(x,y)) is at most n. [Hint: don't forget that x^n is in $T(n, p_X, \epsilon)$.]
- (b) Show that for each x and y, both $\Pr(N(x, y) < np(x, y)(1 \epsilon'))$ and $\Pr(N(x, y) > np(x, y)(1 + \epsilon'))$ approach to zero as n gets large. Would this be true if we had not assumed $\epsilon < \epsilon'$?
- (c) Using (a) and (b) show that $\Pr\left((x^n, Y^n) \notin T(n, p_{XY}, \epsilon')\right)$ approaches 0 as gets large.
- (d) Suppose now we have a distribution p(u, x, y) where p(y|ux) = p(y|x). [In other words, U, X, Y form a Markov chain.] Suppose (u^n, x^n) is in $T(n, p_{UX}, \epsilon)$, and Y^n has independent components as above. What can we say about $\Pr\left((u^n, x^n, Y^n) \in T(n, p_{UXY}, \epsilon')\right)$?

PROBLEM 5. Consider a two-way communication system where two parties communicate via a *common* output they both can observe and influence. Denote the common output by Y, and the signals emitted by the two parties by x_1 and x_2 respectively. Let $p(y|x_1, x_2)$ model the memoryless channel through which the two parties influence the output.

We will consider feedback-free block codes, i.e., we will use encoding and decoding functions of the form

enc₁:
$$\{1, ..., 2^{nR_1}\} \to \mathcal{X}_1^n$$
 dec₁: $\mathcal{Y}^n \times \{1, ..., 2^{nR_1}\} \to \{1, ..., 2^{nR_2}\}$
enc₂: $\{1, ..., 2^{nR_2}\} \to \mathcal{X}_2^n$ dec₂: $\mathcal{Y}^n \times \{1, ..., 2^{nR_2}\} \to \{1, ..., 2^{nR_1}\}$

with which the parties encode their own message and decode the other party's messages. (Note that when a party is decoding the other party's message, it can make use of the knowledge of its own message).

We will say that the rate pair (R_1, R_2) is achievable, if for any $\epsilon > 0$, there exist encoders and decoders with the above form for which the average error probability is less than ϵ .

Consider the following 'random coding' method to construct the encoders:

- (i) Choose probability distributions p_j on \mathcal{X}_j , j = 1, 2.
- (ii) Choose $\{ enc_1(m_1)_i : m_1 = 1, \ldots, 2^{nR_1}, i = 1, \ldots, n \}$ i.i.d., each having distribution as p_1 . Similarly, choose $\{ enc_2(m_2)_i : m_2 = 1, \ldots, 2^{nR_2}, i = 1, \ldots, n \}$ i.i.d., each having distribution as p_2 , independently of the choices for enc_1 .

For the decoders we will use typicality decoders:

- (i) Set $p(x_1, x_2, y) = p_1(x_1)p_2(x_2)p(y|x_1, x_2)$. Choose a small $\epsilon > 0$ and consider the set T of ϵ -typical (x_1^n, x_2^n, y^n) 's with respect to p.
- (ii) For decoder 1: given y^n and the correct m_1 , dec₁ will declare \hat{m}_2 if it is the unique m_2 for which $(\text{enc}_1(m_1), \text{enc}_2(m_2), y^n) \in T$. If there is no such m_2 , dec₁ outputs 0. (Similar description applies to Decoder 2.)

- (a) Given that m_1 and m_2 are the transmitted messages, show that $(\text{enc}_1(m_1), \text{enc}_2(m_2), Y^n) \in T$ with high probability.
- (b) Given that m_1 and m_2 are the transmitted messages, and $\tilde{m}_1 \neq m_1$ what is the probability distribution of $(\text{enc}_1(\tilde{m}_1), \text{enc}(m_2), Y^n)$?
- (c) Under the assumptions in (b) show that the

 $\Pr\{(\mathrm{enc}_1(\tilde{m}_1), \mathrm{enc}_2(m_2), Y^n) \in T\} \doteq 2^{-nI(X_1; X_2Y)}.$

(d) Show that all rate pairs satisfying

$$R_1 \le I(X_1; YX_2), \quad R_2 \le I(X_2; YX_1)$$

for some $p(x_1, x_2) = p(x_1)p(x_2)$ are achievable.

(e) For the case when X_1 , X_2 , Y are all binary and Y is the product of X_1 and X_2 , show that the achievable region is strictly larger than what we can obtain by 'half duplex communication' (i.e., the set of rates that satisfy $R_1 + R_2 \leq 1$.)