Problem 1. Suppose we are told that for any n and M, for any binary code with blocklength n, with M codewords, the minimum distance d_{min} satisfies $d_{\text{min}} \leq d_0(M, n)$ where d_0 is a specified upper bound on minimum distance.

(a) Show that any upper bound d_0 can be improved to the following upper bound: for any n, M, for any binary code with blocklength n with M codewords

$$d_{\text{min}} \leq d_1(M, n)$$

where $d_1(M, n) = \min_{k: 0 \leq k \leq n} d_0(\lceil M/2^k \rceil, n - k)$.

(b) Consider the trivial bound

$$d_0(M, n) = \begin{cases} n, & M \geq 2 \\ \infty, & M \leq 1 \end{cases}$$

What is the bound d_1 constructed via (a) for this d_0?

(c) Suppose we are given a binary code with M words of blocklength n. Fix $1 \leq i \leq n$ and let a_1, \ldots, a_M be the ith bits if the M codewords. Suppose M_1 of the a_m’s are ‘1’ and M_0 of them are ‘0’. Show that

$$\sum_{m=1}^{M} \sum_{m' \neq m}^{M} d_H(a_m, a'_m) = 2M_0M_1 \leq M^2/2.$$

(d) Show that for any binary code with $M \geq 2$ codewords x_1, \ldots, x_M of blocklength n

$$M(M - 1)d_{\text{min}} \leq \sum_{m=1}^{M} \sum_{m' \neq m}^{M} d_H(x_m, x_{m'}) \leq nM^2/2;$$

consequently, $d_{\text{min}} \leq \lfloor \frac{1}{2} nM/(M-1) \rfloor$.

Problem 2. Let $W : \{0, 1\} \to \mathcal{Y}$ be a channel where the input is binary and where the output alphabet is \mathcal{Y}. The Bhattacharyya parameter of the channel W is defined as

$$Z(W) = \sum_{y \in \mathcal{Y}} \sqrt{W(y|0)W(y|1)}.$$

Let X_1, X_2 be two independent random variables uniformly distributed in $\{0, 1\}$ and let Y_1 and Y_2 be the output of the channel W when the input is X_1 and X_2 respectively, i.e.,

$$P_{Y_1, Y_2|X_1, X_2}(y_1, y_2|x_1, x_2) = W(y_1|x_1)W(y_2|x_2).$$

Define the channels $W^- : \{0, 1\} \to \mathcal{Y}^2$ and $W^+ : \{0, 1\} \to \mathcal{Y}^2 \times \{0, 1\}$ as follows:
\[W^-(y_1, y_2|u_1) = \mathbb{P}[Y_1 = y_1, Y_2 = y_2|X_1 \oplus X_2 = u_1] \text{ for every } u_1 \in \{0, 1\} \text{ and every } y_1, y_2 \in \mathcal{Y} \text{, where } \oplus \text{ is the XOR operation.} \]

\[W^+(y_1, y_2, u_1|u_2) = \mathbb{P}[Y_1 = y_1, Y_2 = y_2, X_1 \oplus X_2 = u_1|X_2 = u_2] \text{ for every } u_1, u_2 \in \{0, 1\} \text{ and every } y_1, y_2 \in \mathcal{Y}. \]

(a) Show that \(W^-(y_1, y_2|u_1) = \frac{1}{2} \sum_{u_2 \in \{0,1\}} W(y_1|u_1 \oplus u_2)W(y_2|u_2). \)

(b) Show that \(W^+(y_1, y_2, u_1|u_2) = \frac{1}{2} W(y_1|u_1 \oplus u_2)W(y_2|u_2). \)

(c) Show that \(Z(W^+) = Z(W)^2. \)

For every \(y \in \mathcal{Y} \) define \(\alpha(y) = W(y|0), \beta(y) = W(y|1) \) and \(\gamma(y) = \sqrt{\alpha(y)\beta(y)}. \)

(d) Show that

\[
Z(W^-) = \sum_{y_1, y_2 \in \mathcal{Y}} \frac{1}{2} \sqrt{\left(\alpha(y_1)\alpha(y_2) + \beta(y_1)\beta(y_2) \right) \left(\alpha(y_1)\beta(y_2) + \beta(y_1)\alpha(y_2) \right)}.
\]

(e) Show that for every \(x, y, z, t \geq 0 \) we have \(\sqrt{x + y + z + t} \leq \sqrt{x} + \sqrt{y} + \sqrt{z} + \sqrt{t}. \) Deduce that

\[
Z(W^-) \leq \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \alpha(y_1)\gamma(y_2) \right) + \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \alpha(y_2)\gamma(y_1) \right) + \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \beta(y_2)\gamma(y_1) \right) + \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \beta(y_1)\gamma(y_2) \right). \tag{1}
\]

(f) Show that every sum in (1) is equal to \(Z(W) \). Deduce that \(Z(W^-) \leq 2Z(W). \)

Problem 3. For a given value \(0 \leq z_0 \leq 1 \), define the following random process:

\[
Z_0 = z_0, \quad Z_{i+1} = \begin{cases}
Z_i^2 & \text{with probability } 1/2 \\
2Z_i - Z_i^2 & \text{with probability } 1/2
\end{cases} \quad i \geq 0,
\]

with the sequence of random choices made independently. Observe that the \(Z \) process keeps track of the polarization of a Binary Erasure Channel with erasure probability \(z_0 \) as it is transformed by the polar transform: \(\mathbb{P}(Z_i = z) \) is exactly the fraction of Binary Erasure Channels having an erasure probability \(z \) among the \(2^i \) BEC channels which are synthesized by the polar transform at the \(i \)th level. The aim of this problem is to prove that for any \(\delta > 0 \), \(\mathbb{P}[Z_i \in (\delta, 1 - \delta)] \to 0 \) as \(i \) gets large.

(a) Define \(Q_i = \sqrt{Z_i(1 - Z_i)} \). Find \(f_1(z) \) and \(f_2(z) \) so that

\[
Q_{i+1} = Q_i \times \begin{cases}
f_1(Z_i) & \text{with probability } 1/2, \\
f_2(Z_i) & \text{with probability } 1/2.
\end{cases}
\]

(b) Show that \(f_1(z) + f_2(z) \leq \sqrt{3} \). Based on this, find a \(\rho < 1 \) so that

\[
\mathbb{E}[Q_{i+1} | Z_0, \ldots, Z_i] \leq \rho Q_i.
\]
(c) Show that, for the ρ you found in (b), $E[Q_i] \leq \frac{1}{2} \rho^i$.

(d) Show that

$$P[Z_i \in (\delta, 1 - \delta)] = P[Q_i > \sqrt{\delta(1 - \delta)}] \leq \frac{\rho^i}{2 \sqrt{\delta(1 - \delta)}}.$$

Deduce that $P[Z_i \in (\delta, 1 - \delta)] \to 0$ as i gets large.