ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 29
Information Theory and Coding
Homework 12

Problem 1. Suppose we are told that for any n and M, for any binary code with blocklength n, with M codewords, the minimum distance $d_{\text {min }}$ satisfies $d_{\text {min }} \leq d_{0}(M, n)$ where d_{0} is a specified upper bound on minimum distance.
(a) Show that any upper bound d_{0} can be improved to he following upper bound: for any n, M, for any binary code with blocklength n with M codewords

$$
d_{m i n} \leq d_{1}(M, n)
$$

where $d_{1}(M, n)=\min _{k: 0 \leq k \leq n} d_{0}\left(\left\lceil M / 2^{k}\right\rceil, n-k\right)$.
(b) Consider the trivial bound

$$
d_{0}(M, n)= \begin{cases}n, & M \geq 2 \\ \infty, & M \leq 1\end{cases}
$$

What is the bound d_{1} constructed via (a) for this d_{0} ?
(c) Suppose we are given a binary code with M words of blocklength n. Fix $1 \leq i \leq n$ and let a_{1}, \ldots, a_{M} be the i th bits if the M codewords. Suppose M_{1} of the a_{m} 's are ' 1 ' and M_{0} of them are ' 0 '. Show that

$$
\sum_{m=1}^{M} \sum_{\substack{m^{\prime}=1 \\ m^{\prime} \neq m}}^{M} d_{H}\left(a_{m}, a_{m}^{\prime}\right)=2 M_{0} M_{1} \leq M^{2} / 2
$$

(d) Show that for any binary code with $M \geq 2$ codewords x_{1}, \ldots, x_{M} of blocklength n

$$
M(M-1) d_{\text {min }} \leq \sum_{m=1}^{M} \sum_{\substack{m^{\prime}=1 \\ m^{\prime} \neq m}}^{M} d_{H}\left(x_{m}, x_{m^{\prime}}\right) \leq n M^{2} / 2
$$

consequently, $d_{\min } \leq\left\lfloor\frac{1}{2} n \frac{M}{M-1}\right\rfloor$.
Problem 2. Let $W:\{0,1\} \longrightarrow \mathcal{Y}$ be a channel where the input is binary and where the output alphabet is \mathcal{Y}. The Bhattacharyya parameter of the channel W is defined as

$$
Z(W)=\sum_{y \in \mathcal{Y}} \sqrt{W(y \mid 0) W(y \mid 1)}
$$

Let X_{1}, X_{2} be two independent random variables uniformly distributed in $\{0,1\}$ and let Y_{1} and Y_{2} be the output of the channel W when the input is X_{1} and X_{2} respectively, i.e., $\mathbb{P}_{Y_{1}, Y_{2} \mid X_{1}, X_{2}}\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)=W\left(y_{1} \mid x_{1}\right) W\left(y_{2} \mid x_{2}\right)$. Define the channels $W^{-}:\{0,1\} \longrightarrow \mathcal{Y}^{2}$ and $W^{+}:\{0,1\} \longrightarrow \mathcal{Y}^{2} \times\{0,1\}$ as follows:

- $W^{-}\left(y_{1}, y_{2} \mid u_{1}\right)=\mathbb{P}\left[Y_{1}=y_{1}, Y_{2}=y_{2} \mid X_{1} \oplus X_{2}=u_{1}\right]$ for every $u_{1} \in\{0,1\}$ and every $y_{1}, y_{2} \in \mathcal{Y}$, where \oplus is the XOR operation.
- $W^{+}\left(y_{1}, y_{2}, u_{1} \mid u_{2}\right)=\mathbb{P}\left[Y_{1}=y_{1}, Y_{2}=y_{2}, X_{1} \oplus X_{2}=u_{1} \mid X_{2}=u_{2}\right]$ for every $u_{1}, u_{2} \in$ $\{0,1\}$ and every $y_{1}, y_{2} \in \mathcal{Y}$.
(a) Show that $W^{-}\left(y_{1}, y_{2} \mid u_{1}\right)=\frac{1}{2} \sum_{u_{2} \in\{0,1\}} W\left(y_{1} \mid u_{1} \oplus u_{2}\right) W\left(y_{2} \mid u_{2}\right)$.
(b) Show that $W^{+}\left(y_{1}, y_{2}, u_{1} \mid u_{2}\right)=\frac{1}{2} W\left(y_{1} \mid u_{1} \oplus u_{2}\right) W\left(y_{2} \mid u_{2}\right)$.
(c) Show that $Z\left(W^{+}\right)=Z(W)^{2}$.

For every $y \in \mathcal{Y}$ define $\alpha(y)=W(y \mid 0), \beta(y)=W(y \mid 1)$ and $\gamma(y)=\sqrt{\alpha(y) \beta(y)}$.
(d) Show that

$$
Z\left(W^{-}\right)=\sum_{y_{1}, y_{2} \in \mathcal{Y}} \frac{1}{2} \sqrt{\left(\alpha\left(y_{1}\right) \alpha\left(y_{2}\right)+\beta\left(y_{1}\right) \beta\left(y_{2}\right)\right)\left(\alpha\left(y_{1}\right) \beta\left(y_{2}\right)+\beta\left(y_{1}\right) \alpha\left(y_{2}\right)\right)}
$$

(e) Show that for every $x, y, z, t \geq 0$ we have $\sqrt{x+y+z+t} \leq \sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{t}$. Deduce that

$$
\begin{align*}
Z\left(W^{-}\right) \leq & \frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \alpha\left(y_{1}\right) \gamma\left(y_{2}\right)\right)+\frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \alpha\left(y_{2}\right) \gamma\left(y_{1}\right)\right) \tag{1}\\
& +\frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \beta\left(y_{2}\right) \gamma\left(y_{1}\right)\right)+\frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \beta\left(y_{1}\right) \gamma\left(y_{2}\right)\right) .
\end{align*}
$$

(f) Show that every sum in (1) is equal to $Z(W)$. Deduce that $Z\left(W^{-}\right) \leq 2 Z(W)$.

Problem 3. For a given value $0 \leq z_{0} \leq 1$, define the following random process:

$$
Z_{0}=z_{0}, \quad Z_{i+1}=\left\{\begin{array}{ll}
Z_{i}^{2} & \text { with probability } 1 / 2 \\
2 Z_{i}-Z_{i}^{2} & \text { with probability } 1 / 2
\end{array} \quad i \geq 0\right.
$$

with the sequence of random choices made independently. Observe that the Z process keeps track of the polarization of a Binary Erasure Channel with erasure probability z_{0} as it is transformed by the polar transform: $\mathbb{P}\left(Z_{i}=z\right)$ is exactly the fraction of Binary Erasure Channels having an erasure probability z among the 2^{i} BEC channels which are synthesized by the polar transform at the i th level. The aim of this problem is to prove that for any $\delta>0, \mathbb{P}\left[Z_{i} \in(\delta, 1-\delta)\right] \rightarrow 0$ as i gets large.
(a) Define $Q_{i}=\sqrt{Z_{i}\left(1-Z_{i}\right)}$. Find $f_{1}(z)$ and $f_{2}(z)$ so that

$$
Q_{i+1}=Q_{i} \times \begin{cases}f_{1}\left(Z_{i}\right) & \text { with probability } 1 / 2 \\ f_{2}\left(Z_{i}\right) & \text { with probability } 1 / 2\end{cases}
$$

(b) Show that $f_{1}(z)+f_{2}(z) \leq \sqrt{3}$. Based on this, find a $\rho<1$ so that

$$
\mathbb{E}\left[Q_{i+1} \mid Z_{0}, \ldots, Z_{i}\right] \leq \rho Q_{i}
$$

(c) Show that, for the ρ you found in (b), $\mathbb{E}\left[Q_{i}\right] \leq \frac{1}{2} \rho^{i}$.
(d) Show that

$$
\mathbb{P}\left[Z_{i} \in(\delta, 1-\delta)\right]=\mathbb{P}\left[Q_{i}>\sqrt{\delta(1-\delta)}\right] \leq \frac{\rho^{i}}{2 \sqrt{\delta(1-\delta)}}
$$

Deduce that $\mathbb{P}\left[Z_{i} \in(\delta, 1-\delta)\right] \rightarrow 0$ as i gets large.

