ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 32

Solutions to Graded Homework

Information Theory and Coding
Dec. 18, 2023

Problem 1. Suppose $\left(U_{1}, V\right)$ is a pair of random variables with distribution $p_{U V}$, and suppose U_{2}, \ldots, U_{m} are i.i.d. random variables with distribution p_{U}, independent of $\left(U_{1}, V\right)$.

Let score $(u, v):=p_{V \mid U}(v \mid u)$, and let $S_{i}=\operatorname{score}\left(U_{i}, V\right)$. For $i=2, \ldots, m$, let $B_{i}=$ $\mathbb{1}\left\{S_{i} \geq S_{1}\right\}$, and let $L=\sum_{i=2}^{m} B_{i}$. Note that the event $\{L \geq 1\}$ includes the event $\left\{S_{1}\right.$ is not the highest score $\}$.
(a) Show that for any $r \geq 0$ and $i \geq 2$,

$$
\mathbb{E}\left[B_{i} \mid U_{1}=u_{1}, V=v\right] \leq \sum_{u} p_{U}(u)\left[\frac{p_{V \mid U}(v \mid u)}{p_{V \mid U}\left(v \mid u_{1}\right)}\right]^{r}
$$

Hint: For non-negative a, b, r, the inequality $\mathbb{1}\{a \geq b\} \leq(a / b)^{r}$ holds.
Solution: This follows by computing the expectation and using the hint, as

$$
\begin{aligned}
\mathbb{E}\left[B_{i} \mid U_{1}=u_{1}, V=v\right] & =\mathbb{E}\left[\mathbb{1}\left\{S_{i} \geq S_{1}\right\} \mid U_{1}=u_{1}, V=v\right] \\
& =\mathbb{E}\left[\mathbb{1}\left\{\operatorname{score}\left(U_{i}, v\right) \geq \operatorname{score}\left(u_{1}, v\right)\right\}\right] \\
& =\sum_{u_{i}} p_{U}\left(u_{i}\right) \mathbb{1}\left\{p_{V \mid U}\left(v \mid u_{i}\right) \geq p_{V \mid U}\left(v \mid u_{1}\right)\right\} \\
& \leq \sum_{u_{i}} p_{U}\left(u_{i}\right) \frac{p_{V \mid U}\left(v \mid u_{i}\right)^{r}}{p_{V \mid U}\left(v \mid u_{1}\right)^{r}}
\end{aligned}
$$

and we are done by changing the summation variable u_{i} to u.
(b) For $i \geq 2$, show that $\mathbb{E}\left[B_{i}\right] \leq \sum_{v}\left[\sum_{u} p_{U}(u) \sqrt{p_{V \mid U}(v \mid u)}\right]^{2}$. Hint: Use (a) with a careful choice of r.
Solution: We write $\mathbb{E}\left[B_{i}\right]$ as the average of $\mathbb{E}\left[B_{i} \mid U_{1}=u_{1}, V=v\right]$ as

$$
\begin{aligned}
\mathbb{E}\left[B_{i}\right] & =\sum_{u_{1}, v} p_{U V}\left(u_{1}, v\right) \mathbb{E}\left[B_{i} \mid U_{1}=u_{1}, V=v\right] \\
& \leq \sum_{u_{1}, v} p_{U V}\left(u_{1}, v\right) \sum_{u} p_{U}(u)\left[\frac{p_{V \mid U}(v \mid u)}{p_{V \mid U}\left(v \mid u_{1}\right)}\right]^{r} \\
& =\sum_{u_{1}, v} p_{V \mid U}\left(v \mid u_{1}\right) p_{U}\left(u_{1}\right) \sum_{u} p_{U}(u)\left[\frac{p_{V \mid U}(v \mid u)}{p_{V \mid U}\left(v \mid u_{1}\right)}\right]^{r} \\
& =\sum_{v}\left[\sum_{u_{1}} p_{U}\left(u_{1}\right) p_{V \mid U}\left(v \mid u_{1}\right)^{1-r}\right]\left[\sum_{u} p_{U}(u) p_{V \mid U}(v \mid u)^{r}\right] .
\end{aligned}
$$

Pick $r=\frac{1}{2}$, and we are done.
(c) Show that

$$
\operatorname{Pr}\left(S_{1} \text { is not the highest score }\right) \leq(m-1) \sum_{v}\left[\sum_{u} p_{U}(u) \sqrt{p_{V \mid U}(v \mid u)}\right]^{2}
$$

Hint: $\operatorname{Pr}(L \geq 1) \leq \mathbb{E}[L]$.
Solution: This follows from

$$
\begin{aligned}
\operatorname{Pr}\left(S_{1} \text { is not the highest score }\right) & \leq \operatorname{Pr}(L \geq 1) \\
& \leq \mathbb{E}[L]=\sum_{i=2}^{m} \mathbb{E}\left[B_{i}\right] \\
& \leq(m-1) \sum_{v}\left[\sum_{u} p_{U}(u) \sqrt{p_{V \mid U}(v \mid u)}\right]^{2} .
\end{aligned}
$$

Define $R_{1}\left(p_{U}, p_{V \mid U}\right):=-\log \sum_{v}\left[\sum_{u} p_{U}(u) \sqrt{p_{V \mid U}(v \mid u)}\right]^{2}$.
(d) With $p_{X^{n}}\left(x^{n}\right)=\prod_{i=1}^{n} p_{X}\left(x_{i}\right)$, and $p_{Y^{n} \mid X^{n}}\left(y^{n} \mid x^{n}\right)=\prod_{i=1}^{n} p_{Y \mid X}\left(y_{i} \mid x_{i}\right)$, show that $R_{1}\left(p_{X^{n}}, p_{Y^{n} \mid X^{n}}\right)=n R_{1}\left(p_{X}, p_{Y \mid X}\right)$.
Solution: Consider

$$
\begin{aligned}
R_{1}\left(p_{X^{n}}, p_{Y^{n} \mid X^{n}}\right) & =-\log \sum_{y^{n}}\left[\sum_{x^{n}} p_{X^{n}}\left(x^{n}\right) \sqrt{p_{Y^{n} \mid X^{n}}\left(y^{n} \mid x^{n}\right)}\right]^{2} \\
& =-\log \sum_{y^{n}}\left[\sum_{x^{n}} \prod_{i=1}^{n} p_{X}\left(x_{i}\right) \sqrt{\prod_{i=1}^{n} p_{Y \mid X}\left(y_{i} \mid x_{i}\right)}\right]^{2} \\
& =-\log \sum_{y^{n}}\left[\sum_{x^{n}} \prod_{i=1}^{n} p_{X}\left(x_{i}\right) \sqrt{p_{Y \mid X}\left(y_{i} \mid x_{i}\right)}\right]^{2} \\
& =-\log \sum_{y^{n}}\left[\prod_{i=1}^{n} \sum_{x_{i}} p_{X}\left(x_{i}\right) \sqrt{p_{Y \mid X}\left(y_{i} \mid x_{i}\right)}\right]^{2} \\
& =-\log \sum_{y^{n}} \prod_{i=1}^{n}\left[\sum_{x_{i}} p_{X}\left(x_{i}\right) \sqrt{p_{Y \mid X}\left(y_{i} \mid x_{i}\right)}\right]^{2} \\
& =-\log \prod_{i=1}^{n} \sum_{y_{i}}\left[\sum_{x_{i}} p_{X}\left(x_{i}\right) \sqrt{p_{Y \mid X}\left(y_{i} \mid x_{i}\right)}\right]^{2} \\
& =-\sum_{i=1}^{n} \log \sum_{y_{i}}\left[\sum_{x_{i}} p_{X}\left(x_{i}\right) \sqrt{p_{Y \mid X}\left(y_{i} \mid x_{i}\right)}\right]^{2} \\
& =-\sum_{i=1}^{n} \log \sum_{y}\left[\sum_{x} p_{X}(x) \sqrt{p_{Y \mid X}(y \mid x)}\right]^{2}=n R_{1}\left(p_{X}, p_{Y \mid X}\right)
\end{aligned}
$$

(e) Given a channel $p_{Y \mid X}$ and input distribution p_{X}, show that for every $0 \leq R<$ $R_{1}\left(p_{X}, p_{Y \mid X}\right)=: R_{1}$, and positive integer n, there is a code with $m=\left\lceil 2^{n R}\right\rceil$ codewords and with average probability of error $\bar{p}_{e} \leq 2^{-n\left(R_{1}-R\right)}$.
Hint: Choose m codewords $X^{n}(1), \ldots, X^{n}(m)$, i.i.d. from distribution $p_{X^{n}}$. Make use of what you already showed in (d) and (c).
Solution: As suggested in the hint, choose $m=\left\lceil 2^{n R}\right\rceil$ codewords $X^{n}(1), \ldots, X^{n}(m)$, i.i.d. from distribution $p_{X^{n}}$. The encoder maps the message $j=1, \ldots, m$ to the codeword $X^{n}(j)$. Upon receiving Y^{n}, the decoder computes $S_{i}=\operatorname{score}\left(X^{n}(i), Y^{n}\right)$ for each $i=1, \ldots, m$, and declares that $\hat{j}=\arg \max _{i=1, \ldots, m} S_{i}$ was sent (in case of ties, decide arbitrarily). Without loss of generality, assume that the message 1 was sent.

The average probability of error \bar{p}_{e}, averaged over the random codebook generation, is upper bounded by

$$
\begin{aligned}
\operatorname{Pr}\left(S_{1} \text { is not the highest score }\right) & \leq(m-1) \sum_{y^{n}}\left[\sum_{x^{n}} p_{X^{n}}\left(x^{n}\right) \sqrt{p_{Y^{n} \mid X^{n}}\left(y^{n} \mid x^{n}\right)}\right]^{2} \\
& \leq 2^{n R_{2}} 2^{-n R_{1}}=2^{-n\left(R_{1}-R\right)} .
\end{aligned}
$$

Hence, since the average \bar{p}_{e} over the choice of codewords is lesser than $2^{-n\left(R_{1}-R\right)}$, there exists a code with $\bar{p}_{e} \leq 2^{-n\left(R_{1}-R\right)}$ and $m=\left\lceil 2^{n R}\right\rceil$ codewords.
(f) With $p_{Y \mid X}$ being the Binary Erasure Channel and for p_{X} the uniform distribution on the input alphabet, compute and sketch R_{1} (defined above) and C (the channel capacity) as a function of the erasure probability. Comment on the plots obtained.

Solution: When $p_{Y \mid X}$ is a BEC with erasure probability ϵ, by simply computing the above expression for R_{1}, we have $R_{1}=-\log \frac{1+\epsilon}{2}$. The channel capacity for the BEC is given by $C=1-\epsilon$. Clearly, $R_{1} \leq C$, with a strict inequality except for $\epsilon=0$ or 1. In (e), we showed that for rates below R_{1}, we can achieve an exponential decay of \bar{p}_{e}. We now see that there are rates below capacity at which it is still, at this point in the problem, unclear whether or not we can achieve exponential decay (all we know thanks to the channel coding theorem is that the probability of error can be made to decay to zero for rates below the capacity; we do not know whether this decay is exponential in n).

(g) Continuing with the notation of (a)-(c), for any $r \geq 0$, and for any $0 \leq \rho \leq 1$, show that

$$
\mathbb{E}\left[L^{\rho} \mid U_{1}=u_{1}, V=v\right] \leq(m-1)^{\rho}\left(\sum_{u} p_{U}(u)\left[\frac{p_{V \mid U}(v \mid u)}{p_{V \mid U}\left(v \mid u_{1}\right)}\right]^{r}\right)^{\rho} .
$$

Hint: Use of the bound you found in (a) to upper bound $\mathbb{E}\left[L \mid U_{1}=u_{1}, V=v\right]$; note that $z \in[0, \infty) \mapsto z^{\rho}$ is concave, so, $\mathbb{E}\left[Z^{\rho}\right] \leq \mathbb{E}[Z]^{\rho}$.

Solution: Since $z \mapsto z^{\rho}$ is concave for $0 \leq \rho \leq 1$, by Jensen's inequality,

$$
\begin{aligned}
\mathbb{E}\left[L^{\rho} \mid U_{1}=u_{1}, V=v\right] & \leq \mathbb{E}\left[L \mid U_{1}=u_{1}, V=v\right]^{\rho}=\mathbb{E}\left[\sum_{i=2}^{m} B_{i} \mid U_{1}=u_{1}, V=v\right]^{\rho} \\
& =\left(\sum_{i=2}^{m} \mathbb{E}\left[B_{i} \mid U_{1}=u_{1}, V=v\right]\right)^{\rho} \\
& \leq\left((m-1) \sum_{u} p_{U}(u)\left[\frac{p_{V \mid U}(v \mid u)}{p_{V \mid U}\left(v \mid u_{1}\right)}\right]^{r}\right)^{\rho} \\
& =(m-1)^{\rho}\left(\sum_{u} p_{U}(u)\left[\frac{p_{V \mid U}(v \mid u)}{p_{V \mid U}\left(v \mid u_{1}\right)}\right]^{r}\right)^{\rho}
\end{aligned}
$$

(h) For any $0 \leq \rho \leq 1$, and $r \geq 0$, show that

$$
\mathbb{E}\left[L^{\rho}\right] \leq(m-1)^{\rho} \sum_{v}\left[\sum_{u^{\prime}} p_{U}\left(u^{\prime}\right) p_{V \mid U}\left(v \mid u^{\prime}\right)^{1-r \rho}\right]\left[\sum_{u} p_{U}(u) p_{V \mid U}(v \mid u)^{r}\right]^{\rho}
$$

Hint: Use (g).
Solution: Simply computing, we have

$$
\begin{aligned}
\mathbb{E}\left[L^{\rho}\right] & =\sum_{u_{1}, v} p_{U V}\left(u_{1}, v\right) \mathbb{E}\left[L^{\rho} \mid U_{1}=u_{1}, V=v\right] \\
& \leq \sum_{u_{1}, v} p_{U V}\left(u_{1}, v\right)(m-1)^{\rho}\left[\sum_{u} p_{U}(u)\left(\frac{p_{V \mid U}(v \mid u)}{p_{V \mid U}\left(v \mid u_{1}\right)}\right)^{r}\right]^{\rho} \\
& \leq(m-1)^{\rho} \sum_{u_{1}, v} p_{U}\left(u_{1}\right) p_{V \mid U}\left(v \mid u_{1}\right)\left[\sum_{u} p_{U}(u)\left(\frac{p_{V \mid U}(v \mid u)}{p_{V \mid U}\left(v \mid u_{1}\right)}\right)^{r}\right]^{\rho} \\
& =(m-1)^{\rho} \sum_{v}\left[\sum_{u_{1}} p_{U}\left(u_{1}\right) p_{V \mid U}\left(v \mid u_{1}\right)^{1-r \rho}\right]\left[\sum_{u} p_{U}(u) p_{V \mid U}(v \mid u)^{r}\right]^{\rho},
\end{aligned}
$$

and we are done by changing the summation variable from u_{1} to u^{\prime}.
(i) For any $0 \leq \rho \leq 1$, show that

$$
\mathbb{E}\left[L^{\rho}\right] \leq(m-1)^{\rho} \sum_{v}\left[\sum_{u} p_{U}(u) p_{V \mid U}(v \mid u)^{1 /(1+\rho)}\right]^{1+\rho} .
$$

Hint: Examine (h) for the choice $r=1 /(1+\rho)$.
Solution: As suggested in the hint, substituting $r=1 /(1+\rho)$ into the result of part (h) gives the desired result.

For $0<\rho \leq 1$, define $R_{\rho}\left(p_{U}, p_{V \mid U}\right):=-\rho^{-1} \log \sum_{v}\left[\sum_{u} p_{U}(u) p_{V \mid U}(v \mid u)^{1 /(1+\rho)}\right]^{1+\rho} \cdot$ (Observe that setting $\rho=1$ recovers R_{1}.)
(j) Given a channel $p_{Y \mid X}$ and input distribution p_{X}, show that for every $0 \leq R<$ $R_{\rho}\left(p_{X}, p_{Y \mid X}\right)=: R_{\rho}$, positive integer n, there is a code with $m=\left\lceil 2^{n R}\right\rceil$ codewords and with average probability of error $\bar{p}_{e} \leq 2^{-n \rho\left(R_{\rho}-R\right)}$.
Hint: Observe that $\operatorname{Pr}(L \geq 1) \leq \mathbb{E}\left[L^{\rho}\right]$ and follow the reasoning in (d) and (e).

Solution: First observe that $R_{\rho}\left(p_{X^{n}}, p_{Y^{n} \mid X^{n}}\right)=n R_{\rho}\left(p_{X}, p_{Y \mid X}\right)$. As in (e), again pick the $m=\left\lceil 2^{n R}\right\rceil$ codewords $X^{n}(1), \ldots, X^{n}(m)$, i.i.d. from distribution $p_{X^{n}}$. The encoder maps the message $j=1, \ldots, m$ to the codeword $X^{n}(j)$. The decoder receives Y^{n} and computes $S_{i}=\operatorname{score}\left(X^{n}(i), Y^{n}\right)$ for each $i=1, \ldots, m$, and declares that $\hat{j}=\arg \max _{i=1, \ldots, m} S_{i}$ was sent (deciding arbitrarily in case of ties). Again, assuming w.l.o.g. that message 1 was sent, the average value of \bar{p}_{e} (over the choice of codewords) is upper bounded by the probability that S_{1} is not the highest, which is further upper bounded by

$$
\begin{aligned}
\operatorname{Pr}(L \geq 1) & \leq \mathbb{E}\left[L^{\rho}\right] \\
& \leq(m-1)^{\rho} \sum_{v}\left[\sum_{u} p_{U}(u) p_{V \mid U}(v \mid u)^{1 /(1+\rho)}\right]^{1+\rho} \\
& \leq 2^{n R \rho} 2^{-n R_{\rho} \rho}=2^{-n \rho\left(R_{\rho}-R\right)} .
\end{aligned}
$$

Hence, there is a code with $m=\left\lceil 2^{n R}\right\rceil$ codewords and $\bar{p}_{e} \leq 2^{-n \rho\left(R_{\rho}-R\right)}$.
(k) Show that $\lim _{\rho \rightarrow 0^{+}} R_{\rho}\left(p_{U}, p_{V \mid U}\right)=I(U ; V)$. Conclude from this and (j) that for any channel $p_{Y \mid X}$ and $R<C\left(p_{Y \mid X}\right)$ there is a number $\beta>0$ such that, for every positive integer n there is a code for the channel with $m=\left\lceil 2^{n R}\right\rceil$ codewords and with error probability $\bar{p}_{e} \leq 2^{-n \beta}$.
Solution: We first show that $\lim _{\rho \rightarrow 0^{+}} R_{\rho}\left(p_{U}, p_{V \mid U}\right)=I(U ; V)$. Starting from the left-hand side, observing that it is of the $\frac{0}{0}$-form, and applying L'Hôpital's rule, $\lim _{\rho \rightarrow 0^{+}} R_{\rho}\left(p_{U}, p_{V \mid U}\right)$ equals

$$
\lim _{\rho \rightarrow 0^{+}}-\frac{d}{d \rho} \log \sum_{v}\left[\sum_{u} p_{U}(u) p_{V \mid U}(v \mid u)^{1 /(1+\rho)}\right]^{1+\rho} .
$$

Define $F(\rho):=\sum_{v}\left[\sum_{u} p_{U}(u) p_{V \mid U}(v \mid u)^{1 /(1+\rho)}\right]^{1+\rho}$, and note that $F(0)=1$. Using the relation $\frac{d}{d \rho} \log F(\rho)=\frac{\log e}{F(\rho)} \frac{d}{d \rho} F(\rho)$, we see that $\lim _{\rho \rightarrow 0^{+}} R_{\rho}=-\left.\log (e) \frac{d F(\rho)}{d \rho}\right|_{\rho=0^{0}}$. To evaluate $d F / d \rho$, observe that $F(\rho)$ is of the form $\sum_{v} f(v, \rho)^{1+\rho}$, with each $f(v, \rho)$ the sum $\sum_{u} p_{U}(u) p_{V \mid U}(v \mid u)^{1 /(1+\rho)}$. Further observe that $f(v, 0)=p_{V}(v)$.
Use the relations $d\left(f(\rho)^{1+\rho}\right) / d \rho=f(\rho)^{1+\rho}\left[\ln f(\rho)+(1+\rho) f(\rho)^{-1} f^{\prime}(\rho)\right]$ - at $\rho=0$ this equals $f(0)\left[\ln f(0)+f^{\prime}(0)\right]-$ and $d\left(z^{1 /(1+\rho)}\right) / d \rho=-(1+\rho)^{-2} z^{1 /(1+\rho)} \ln z-$ at $\rho=0$ this equals $-z \ln z-$ to find

$$
\left.\frac{d F}{d \rho}\right|_{\rho=0}=\sum_{v}\left[p_{V}(v) \ln p_{V}(v)-\sum_{u} p_{U}(u) p_{V \mid U}(v \mid u) \ln p(v \mid u)\right] .
$$

We recognize the right hand side as $[-H(V)+H(V \mid U)] / \log (e)$. Consequently, $\lim _{\rho \rightarrow 0+} R_{\rho}\left(p_{U}, p_{V \mid U}\right)=H(V)-H(V \mid U)=I(U ; V)$.
Since $R<C\left(p_{Y \mid X}\right)$, there is a p_{X} for which $R<I(X ; Y)$. Moreover, as $I(X ; Y)=$ $\lim _{\rho \rightarrow 0^{+}} R_{\rho}\left(p_{X}, p_{Y \mid X}\right)$, there is a $\rho>0$ for which $R<R_{\rho}\left(p_{X}, p_{Y \mid X}\right)$. The claim now follows with $\beta=\rho\left(R_{\rho}\left(p_{X}, p_{Y \mid X}\right)-R\right)$ and (j).

