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Problem 1. Suppose (U1, V ) is a pair of random variables with distribution pUV , and
suppose U2, . . . , Um are i.i.d. random variables with distribution pU , independent of (U1, V ).

Let score(u, v) := pV |U(v|u), and let Si = score(Ui, V ). For i = 2, . . . ,m, let Bi =
1{Si ≥ S1}, and let L =

∑m
i=2Bi. Note that the event {L ≥ 1} includes the event

{S1 is not the highest score}.

(a) Show that for any r ≥ 0 and i ≥ 2,

E[Bi | U1 = u1, V = v] ≤
∑
u

pU(u)

[
pV |U(v|u)
pV |U(v|u1)

]r
.

Hint: For non-negative a, b, r, the inequality 1{a ≥ b} ≤ (a/b)r holds.

Solution: This follows by computing the expectation and using the hint, as

E[Bi | U1 = u1, V = v] = E[1{Si ≥ S1} | U1 = u1, V = v]

= E[1{score(Ui, v) ≥ score(u1, v)}]

=
∑
ui

pU(ui)1{pV |U(v|ui) ≥ pV |U(v|u1)}

≤
∑
ui

pU(ui)
pV |U(v|ui)

r

pV |U(v|u1)r
,

and we are done by changing the summation variable ui to u.

(b) For i ≥ 2, show that E[Bi] ≤
∑

v

[∑
u pU(u)

√
pV |U(v|u)

]2
.

Hint: Use (a) with a careful choice of r.

Solution: We write E[Bi] as the average of E[Bi | U1 = u1, V = v] as

E[Bi] =
∑
u1,v

pUV (u1, v)E[Bi | U1 = u1, V = v]

≤
∑
u1,v

pUV (u1, v)
∑
u

pU(u)

[
pV |U(v|u)
pV |U(v|u1)

]r
=

∑
u1,v

pV |U(v|u1)pU(u1)
∑
u

pU(u)

[
pV |U(v|u)
pV |U(v|u1)

]r
=

∑
v

[∑
u1

pU(u1)pV |U(v|u1)
1−r

][∑
u

pU(u)pV |U(v|u)r
]
.

Pick r = 1
2
, and we are done.

(c) Show that

Pr(S1 is not the highest score) ≤ (m− 1)
∑
v

[∑
u

pU(u)
√

pV |U(v|u)
]2
.



Hint: Pr(L ≥ 1) ≤ E[L].

Solution: This follows from

Pr(S1 is not the highest score) ≤ Pr(L ≥ 1)

≤ E[L] =
m∑
i=2

E[Bi]

≤ (m− 1)
∑
v

[∑
u

pU(u)
√

pV |U(v|u)
]2
.

Define R1(pU , pV |U) := − log
∑

v

[∑
u pU(u)

√
pV |U(v|u)

]2
.

(d) With pXn(xn) =
∏n

i=1 pX(xi), and pY n|Xn(yn|xn) =
∏n

i=1 pY |X(yi|xi), show that
R1(pXn , pY n|Xn) = nR1(pX , pY |X).

Solution: Consider

R1(pXn , pY n|Xn) = − log
∑
yn

[∑
xn

pXn(xn)
√

pY n|Xn(yn|xn)

]2

= − log
∑
yn

[∑
xn

n∏
i=1

pX(xi)

√√√√ n∏
i=1

pY |X(yi|xi)

]2

= − log
∑
yn

[∑
xn

n∏
i=1

pX(xi)
√
pY |X(yi|xi)

]2
= − log

∑
yn

[ n∏
i=1

∑
xi

pX(xi)
√
pY |X(yi|xi)

]2
= − log

∑
yn

n∏
i=1

[∑
xi

pX(xi)
√
pY |X(yi|xi)

]2
= − log

n∏
i=1

∑
yi

[∑
xi

pX(xi)
√
pY |X(yi|xi)

]2
= −

n∑
i=1

log
∑
yi

[∑
xi

pX(xi)
√

pY |X(yi|xi)

]2
= −

n∑
i=1

log
∑
y

[∑
x

pX(x)
√

pY |X(y|x)
]2

= nR1(pX , pY |X)

(e) Given a channel pY |X and input distribution pX , show that for every 0 ≤ R <
R1(pX , pY |X) =: R1, and positive integer n, there is a code with m = ⌈2nR⌉ codewords
and with average probability of error p̄e ≤ 2−n(R1−R).
Hint: Choose m codewords Xn(1), . . . , Xn(m), i.i.d. from distribution pXn . Make use of what you

already showed in (d) and (c).

Solution: As suggested in the hint, choose m = ⌈2nR⌉ codewords Xn(1), . . . , Xn(m),
i.i.d. from distribution pXn . The encoder maps the message j = 1, . . . ,m to the
codeword Xn(j). Upon receiving Y n, the decoder computes Si = score(Xn(i), Y n)
for each i = 1, . . . ,m, and declares that ĵ = argmaxi=1,...,m Si was sent (in case of ties,
decide arbitrarily). Without loss of generality, assume that the message 1 was sent.
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The average probability of error p̄e, averaged over the random codebook generation,
is upper bounded by

Pr(S1 is not the highest score) ≤ (m− 1)
∑
yn

[∑
xn

pXn(xn)
√

pY n|Xn(yn|xn)
]2

≤ 2nR2−nR1 = 2−n(R1−R).

Hence, since the average p̄e over the choice of codewords is lesser than 2−n(R1−R),
there exists a code with p̄e ≤ 2−n(R1−R) and m = ⌈2nR⌉ codewords.

(f) With pY |X being the Binary Erasure Channel and for pX the uniform distribution
on the input alphabet, compute and sketch R1 (defined above) and C (the channel
capacity) as a function of the erasure probability. Comment on the plots obtained.

Solution: When pY |X is a BEC with erasure probability ϵ, by simply computing the
above expression for R1, we have R1 = − log 1+ϵ

2
. The channel capacity for the BEC

is given by C = 1 − ϵ. Clearly, R1 ≤ C, with a strict inequality except for ϵ = 0 or
1. In (e), we showed that for rates below R1, we can achieve an exponential decay of
p̄e. We now see that there are rates below capacity at which it is still, at this point in
the problem, unclear whether or not we can achieve exponential decay (all we know
thanks to the channel coding theorem is that the probability of error can be made
to decay to zero for rates below the capacity; we do not know whether this decay is
exponential in n).
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(g) Continuing with the notation of (a)–(c), for any r ≥ 0, and for any 0 ≤ ρ ≤ 1, show
that

E[Lρ | U1 = u1, V = v] ≤ (m− 1)ρ
(∑

u

pU(u)

[
pV |U(v|u)
pV |U(v|u1)

]r)ρ

.

Hint: Use of the bound you found in (a) to upper bound E[L | U1 = u1, V = v]; note that

z ∈ [0,∞) 7→ zρ is concave, so, E[Zρ] ≤ E[Z]ρ.
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Solution: Since z 7→ zρ is concave for 0 ≤ ρ ≤ 1, by Jensen’s inequality,

E[Lρ | U1 = u1, V = v] ≤ E[L | U1 = u1, V = v]ρ = E
[ m∑

i=2

Bi

∣∣∣U1 = u1, V = v

]ρ
=

( m∑
i=2

E[Bi | U1 = u1, V = v]

)ρ

≤
(
(m− 1)

∑
u

pU(u)

[
pV |U(v|u)
pV |U(v|u1)

]r)ρ

= (m− 1)ρ
(∑

u

pU(u)

[
pV |U(v|u)
pV |U(v|u1)

]r)ρ

.

(h) For any 0 ≤ ρ ≤ 1, and r ≥ 0, show that

E[Lρ] ≤ (m− 1)ρ
∑
v

[∑
u′

pU(u
′)pV |U(v|u′)1−rρ

][∑
u

pU(u)pV |U(v|u)r
]ρ
.

Hint: Use (g).

Solution: Simply computing, we have

E[Lρ] =
∑
u1,v

pUV (u1, v)E[Lρ | U1 = u1, V = v]

≤
∑
u1,v

pUV (u1, v)(m− 1)ρ

[∑
u

pU(u)

(
pV |U(v|u)
pV |U(v|u1)

)r
]ρ

≤ (m− 1)ρ
∑
u1,v

pU(u1)pV |U(v|u1)

[∑
u

pU(u)

(
pV |U(v|u)
pV |U(v|u1)

)r
]ρ

= (m− 1)ρ
∑
v

[∑
u1

pU(u1)pV |U(v|u1)
1−rρ

][∑
u

pU(u)pV |U(v|u)r
]ρ
,

and we are done by changing the summation variable from u1 to u′.

(i) For any 0 ≤ ρ ≤ 1, show that

E[Lρ] ≤ (m− 1)ρ
∑
v

[∑
u

pU(u)pV |U(v|u)1/(1+ρ)
]1+ρ

.

Hint: Examine (h) for the choice r = 1/(1 + ρ).

Solution: As suggested in the hint, substituting r = 1/(1 + ρ) into the result of part
(h) gives the desired result.

For 0 < ρ ≤ 1, defineRρ(pU , pV |U) := −ρ−1 log
∑

v

[∑
u pU(u)pV |U(v|u)1/(1+ρ)

]1+ρ

. (Observe

that setting ρ = 1 recovers R1.)

(j) Given a channel pY |X and input distribution pX , show that for every 0 ≤ R <
Rρ(pX , pY |X) =: Rρ, positive integer n, there is a code with m = ⌈2nR⌉ codewords
and with average probability of error p̄e ≤ 2−nρ(Rρ−R).
Hint: Observe that Pr(L ≥ 1) ≤ E[Lρ] and follow the reasoning in (d) and (e).
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Solution: First observe that Rρ(pXn , pY n|Xn) = nRρ(pX , pY |X). As in (e), again
pick the m = ⌈2nR⌉ codewords Xn(1), . . . , Xn(m), i.i.d. from distribution pXn . The
encoder maps the message j = 1, . . . ,m to the codeword Xn(j). The decoder receives
Y n and computes Si = score(Xn(i), Y n) for each i = 1, . . . ,m, and declares that
ĵ = argmaxi=1,...,m Si was sent (deciding arbitrarily in case of ties). Again, assuming
w.l.o.g. that message 1 was sent, the average value of p̄e (over the choice of codewords)
is upper bounded by the probability that S1 is not the highest, which is further upper
bounded by

Pr(L ≥ 1) ≤ E[Lρ]

≤ (m− 1)ρ
∑
v

[∑
u

pU(u)pV |U(v|u)1/(1+ρ)
]1+ρ

≤ 2nRρ2−nRρρ = 2−nρ(Rρ−R).

Hence, there is a code with m = ⌈2nR⌉ codewords and p̄e ≤ 2−nρ(Rρ−R).

(k) Show that limρ→0+ Rρ(pU , pV |U) = I(U ;V ). Conclude from this and (j) that for any
channel pY |X and R < C(pY |X) there is a number β > 0 such that, for every positive
integer n there is a code for the channel with m = ⌈2nR⌉ codewords and with error
probability p̄e ≤ 2−nβ.

Solution: We first show that limρ→0+ Rρ(pU , pV |U) = I(U ;V ). Starting from the
left-hand side, observing that it is of the 0

0
-form, and applying L’Hôpital’s rule,

limρ→0+ Rρ(pU , pV |U) equals

lim
ρ→0+

− d

dρ
log

∑
v

[∑
u

pU(u)pV |U(v|u)1/(1+ρ)
]1+ρ

.

Define F (ρ) :=
∑

v

[∑
u pU(u)pV |U(v|u)1/(1+ρ)

]1+ρ
, and note that F (0) = 1. Using the

relation d
dρ
logF (ρ) = log e

F (ρ)
d
dρ
F (ρ), we see that limρ→0+ Rρ = − log(e)dF (ρ)

dρ

∣∣
ρ=0

. To

evaluate dF/dρ, observe that F (ρ) is of the form
∑

v f(v, ρ)
1+ρ, with each f(v, ρ) the

sum
∑

u pU(u)pV |U(v|u)1/(1+ρ). Further observe that f(v, 0) = pV (v).

Use the relations d(f(ρ)1+ρ)/dρ = f(ρ)1+ρ[ln f(ρ) + (1 + ρ)f(ρ)−1f ′(ρ)] — at ρ = 0
this equals f(0)[ln f(0) + f ′(0)] — and d(z1/(1+ρ))/dρ = −(1 + ρ)−2z1/(1+ρ) ln z — at
ρ = 0 this equals −z ln z — to find

dF

dρ

∣∣∣
ρ=0

=
∑
v

[
pV (v) ln pV (v)−

∑
u

pU(u)pV |U(v|u) ln p(v|u)
]
.

We recognize the right hand side as [−H(V ) + H(V |U)]/ log(e). Consequently,
limρ→0+ Rρ(pU , pV |U) = H(V )−H(V |U) = I(U ;V ).

Since R < C(pY |X), there is a pX for which R < I(X;Y ). Moreover, as I(X;Y ) =
limρ→0+ Rρ(pX , pY |X), there is a ρ > 0 for which R < Rρ(pX , pY |X). The claim now
follows with β = ρ(Rρ(pX , pY |X)−R) and (j).

5


