ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 23
Solutions to Homework 9
Information Theory and Coding
Nov. 21, 2023

Problem 1.

$$
\begin{aligned}
h(X) & =\frac{1}{2} \log \left(2 \pi e \sigma_{x}^{2}\right) \\
h(Y) & =\frac{1}{2} \log \left(2 \pi e \sigma_{y}^{2}\right) \\
h(X, Y) & =\frac{1}{2} \log \left((2 \pi e)^{2} \operatorname{det}(K)\right)=\frac{1}{2} \log \left((2 \pi e)^{2}\left(\sigma_{x}^{2} \sigma_{y}^{2}-\rho^{2} \sigma_{x}^{2} \sigma_{y}^{2}\right)\right) \\
I(X, Y) & =h(X)+h(Y)-h(X, Y)=\frac{1}{2} \log \frac{1}{1-\rho^{2}}
\end{aligned}
$$

Note that the result does not depend on σ_{x}, σ_{y}, which says that normalization does not change the mutual information.

Problem 2.
(a) This is by the definition of mutual information once we note that $p_{Y \mid X}(y \mid x)=p_{Z}(y-$ $x)$.
(b) Note that $p_{X}(x) p_{Z}(y-x)$ is simply the joint distribution of (x, y), and thus the integral

$$
\iint p_{X}(x) p_{Z}(y-x) \ln \frac{\mathcal{N}_{\sigma^{2}}(y-x)}{\mathcal{N}_{\sigma^{2}+P}(y)} d x d y
$$

is an expectation, namely

$$
E \ln \frac{\mathcal{N}_{\sigma^{2}}(Y-X)}{\mathcal{N}_{\sigma^{2}+P}(Y)}
$$

Substituting the formula for \mathcal{N}, this in turn, is

$$
\begin{aligned}
E \ln & \frac{\mathcal{N}_{\sigma^{2}}(Y-X)}{\mathcal{N}_{\sigma^{2}+P}(Y)} \\
& =\frac{1}{2} \ln \left(1+P / \sigma^{2}\right)+\frac{1}{2\left(\sigma^{2}+P\right)} E\left[Y^{2}\right]-\frac{1}{2 \sigma^{2}} E\left[(Y-X)^{2}\right] \\
& =\frac{1}{2} \ln \left(1+P / \sigma^{2}\right)+\frac{1}{2\left(\sigma^{2}+P\right)} E\left[(X+Z)^{2}\right]-\frac{1}{2 \sigma^{2}} E\left[Z^{2}\right] \\
& =\frac{1}{2} \ln \left(1+P / \sigma^{2}\right)+\frac{1}{2\left(\sigma^{2}+P\right)} E\left[X^{2}+Z^{2}+2 X Z\right]-\frac{1}{2} \\
& =\frac{1}{2} \ln \left(1+P / \sigma^{2}\right)+\frac{1}{2\left(\sigma^{2}+P\right)}\left(P+\sigma^{2}+0\right)-\frac{1}{2} \\
& =\frac{1}{2} \ln \left(1+P / \sigma^{2}\right)
\end{aligned}
$$

(c) The steps we need to justify read

$$
\begin{aligned}
\ln \left(1+P / \sigma^{2}\right)-I(X ; Y) & =\iint p_{X}(x) p_{Z}(y-x) \ln \frac{\mathcal{N}_{\sigma^{2}}(y-x) p_{Y}(y)}{\mathcal{N}_{\sigma^{2}+P}(y) p_{Z}(y-x)} d x d y \\
& \leq \iint \frac{p_{X}(x) \mathcal{N}_{\sigma^{2}}(y-x) p_{Y}(y)}{\mathcal{N}_{\sigma^{2}+P}(y)} d x d y-1 \\
& =\int p_{Y}(y) d y-1 \\
& =0
\end{aligned}
$$

The first equality is by substitution of parts (a) and (b). The inequality is by $\ln (x) \leq$ $x-1$. The next equality is by noting that

$$
\int p_{X}(x) \mathcal{N}_{\sigma^{2}}(y-x) d x=\left(p_{X} * \mathcal{N}_{\sigma^{2}}\right)(y)=\left(\mathcal{N}_{P} * \mathcal{N}_{\sigma^{2}}\right)(y)=\mathcal{N}_{P+\sigma^{2}}(y) .
$$

The last equality is because any density function integrates to 1 .
(d) The conclusion is made by noting that the right hand side of the first equality in (c) is equal to zero if $p_{Z}=\mathcal{N}_{\sigma^{2}}$.

Problem 3. Let the input distribution be p. We thus have

$$
p(-1)+p(0)+p(1)=1 \quad p(-1) \geq 0, p(0) \geq 0, p(1) \geq 0
$$

(since p is a distribution) and, to satisfy $E[b(X)] \leq \beta$ we must have

$$
p(-1)+p(1)=1-p(0) \leq \beta
$$

Moreover,

$$
\begin{aligned}
I(X ; Y) & =H(Y)-H(Y \mid X) \\
& \stackrel{(a)}{=} H(Y)-p(0) \\
& \stackrel{(b)}{\leq} 1-p(0) \\
& \stackrel{(c)}{\leq} \min \{1, \beta\} .
\end{aligned}
$$

where (a) follows because given $\{X=-1\}$ or $\{X=1\}$ there is no uncertainity in Y while given $\{X=0\}, Y$ is uniformly distributed in $\{-1,1\}$, (b) holds since Y is binary with equality if $p(-1)+\frac{1}{2} p(0)=p(1)+\frac{1}{2} p(0)=\frac{1}{2}$ (which happens if we choose $p(1)=$ $\left.p(-1)=\frac{1}{2}(1-p(0))\right)$ and (c) holds because of the cost constraint and is equality if we choose $p(0)=\max \{1-\beta, 0\}$. Hence, the capacity is

$$
C=\left\{\begin{array}{ll}
\beta, & \text { if } \beta \leq 1 \\
1, & \text { if } \beta>1
\end{array} .\right.
$$

Problem 4. (a) All rates less than $\frac{1}{2} \log _{2}\left(1+\frac{P}{\sigma^{2}}\right)$ are achievable.
(b) The new noise $Z_{1}-\rho Z_{2}$ has zero mean and variance $\mathrm{E}\left(\left(Z_{1}-\rho Z_{2}\right)^{2}\right)=\sigma^{2}\left(1-\rho^{2}\right)$. Therefore, all rates less than $\frac{1}{2} \log _{2}\left(1+\frac{P}{\sigma^{2}\left(1-\rho^{2}\right)}\right)$ are achievable.
(c) The capacity is $C=\max I\left(X ; Y_{1}, Y_{2}\right)=\max \left(h\left(Y_{1}, Y_{2}\right)-h\left(Z_{1}, Z_{2}\right)\right)=\frac{1}{2} \log _{2}(1+$ $\frac{P}{\sigma^{2}\left(1-\rho^{2}\right)}$. This shows that the scheme used in (b) is a way to achieve capacity.

Problem 5. (a) In this exercise we assume all the vectors are column vectors. We know that $\left(X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{m}\right)$ are jointly Gaussian random variables if and only if any linear combination of these variables is normally distributed. This means that any linear combination of $\mathrm{X}=\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ is normally distributed and thus X is an n Gaussian random vector. Similarly, the vector $\mathrm{Y}=\left(Y_{1}, \cdots, Y_{m}\right)$ is an m dimensional random vector.
Moreover, we can write $\left(X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{m}\right)=(\mathrm{X}, \mathrm{Y})$. So its covariance matrix is

$$
K=E\left(\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{X}^{T} & \mathrm{Y}^{T}
\end{array}\right]\right)=\left[\begin{array}{ll}
E\left(\mathrm{XX}^{T}\right) & E\left(\mathrm{XY}^{T}\right) \\
E\left(\mathrm{YX}^{T}\right) & E\left(\mathrm{YY}^{T}\right)
\end{array}\right]=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right] .
$$

So $K_{11}=E\left(\mathrm{XX}^{T}\right)$ and $K_{22}=E\left(\mathrm{YY}^{T}\right)$. Thus the vector $\mathrm{X}=\left(X_{1}, \cdots, X_{n}\right)$ is normally distributed with covariance matrix K_{11} and the vector $\mathrm{Y}=\left(Y_{1}, \cdots, Y_{m}\right)$ is normally distributed with covariance matrix K_{22}.

Hence, using the results derived in class we get

$$
\begin{aligned}
h\left(X_{1}, \cdots, X_{n}\right) & =\frac{1}{2} \ln \left((2 \pi e)^{n} \operatorname{det}\left(K_{11}\right)\right), \\
h\left(Y_{1}, \cdots, Y_{m}\right) & =\frac{1}{2} \ln \left((2 \pi e)^{m} \operatorname{det}\left(K_{22}\right)\right)
\end{aligned}
$$

and

$$
h\left(X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{m}\right)=\frac{1}{2} \ln \left((2 \pi e)^{n+m} \operatorname{det}(K)\right) .
$$

(b) Let A_{11} be an $n \times n$ matrix and A_{22} be an $m \times m$ matrix. So A becomes an $(n+$ $m) \times(n+m)$ matrix. Since A is a positive definite matrix then there exists an $n+m$ dimensional Gaussian random vector which covariance matrix is A. Let's denote this vector as $\left(X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{m}\right)$. From question (a) we know that

$$
\begin{aligned}
h\left(X_{1}, \cdots, X_{n}\right) & =\frac{1}{2} \ln \left((2 \pi e)^{n} \operatorname{det}\left(A_{11}\right)\right), \\
h\left(Y_{1}, \cdots, Y_{m}\right) & =\frac{1}{2} \ln \left((2 \pi e)^{m} \operatorname{det}\left(A_{22}\right)\right)
\end{aligned}
$$

and

$$
h\left(X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{m}\right)=\frac{1}{2} \ln \left((2 \pi e)^{n+m} \operatorname{det}(A)\right) .
$$

Moreover, we know that

$$
h\left(X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{m}\right) \leq h\left(X_{1}, \cdots, X_{n}\right)+h\left(Y_{1}, \cdots, Y_{m}\right) .
$$

So,

$$
\begin{aligned}
\frac{1}{2} \ln \left((2 \pi e)^{n+m} \operatorname{det}(A)\right) & \leq \frac{1}{2} \ln \left((2 \pi e)^{n} \operatorname{det}\left(A_{11}\right)\right)+\frac{1}{2} \ln \left((2 \pi e)^{m} \operatorname{det}\left(A_{22}\right)\right) \\
(2 \pi e)^{n+m} \operatorname{det}(A) & \leq(2 \pi e)^{n} \operatorname{det}\left(A_{11}\right) \times(2 \pi e)^{m} \operatorname{det}\left(A_{22}\right) \\
\operatorname{det}(A) & \leq \operatorname{det}\left(A_{11}\right) \operatorname{det}\left(A_{22}\right) .
\end{aligned}
$$

