ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 16
Information Theory and Coding
Midterm exam

4 problems, 37 points
180 minutes
1 sheet (2 pages) of notes allowed.

Good Luck!

Please write your name on each sheet of your answers.

Please write the solution of each problem on a separate page.
(All logarithms are taken to the base 2.)

Problem 1. (7 points)
Suppose X_{1}, X_{2}, \ldots are i.i.d. random variables with $\operatorname{Pr}\left(X_{1}=0\right)=\operatorname{Pr}\left(X_{1}=1\right)=1 / 2$. Let $Y_{n}=\sum_{i=1}^{n} X_{i}$.
Hint: No explicit computation is necessary. For each part you only need to show that the quantity for $n+1$ is at least as large as the quantity for n. "Conditioning reduces entropy" is your friend.
(a) (2 points) Show that $H\left(Y_{n}\right)$ is nondecreasing in n.
(b) (2 points) Show that $H\left(X^{n} \mid Y_{n}\right)$ is nondecreasing in n.
(c) (3 points) Show that $H\left(X_{n} \mid Y_{n}\right)$ is nondecreasing in n.

Problem 2. (9 points)
Suppose X_{1}, X_{2}, \ldots is a binary (i.e., $X_{n} \in\{0,1\}$) stationary process with entropy rate H. Define the following quantities:

$$
\begin{aligned}
& p=\operatorname{Pr}\left(X_{1}=1\right), \\
& \alpha=\operatorname{Pr}\left(X_{2}=1 \mid X_{1}=1\right), \\
& \beta=\operatorname{Pr}\left(X_{2}=0 \mid X_{1}=0\right) .
\end{aligned}
$$

(Note that this does not necessarily imply that X is a Markov process.)
(a) (2 points) Show that $p=p \alpha+(1-p)(1-\beta)$.
(b) (2 points) Show that $H \leq p h_{2}(\alpha)+(1-p) h_{2}(\beta)$, where h_{2} is the binary entropy function given by $h_{2}(x)=-x \log (x)-(1-x) \log (1-x)$.
(c) (2 points) Show that among all such stationary processes the Markov process has the largest entropy rate. [Recall that for a Markov process, $\operatorname{Pr}\left(X_{n}=x_{n} \mid X^{n-1}=\right.$ $\left.x^{n-1}\right)=\operatorname{Pr}\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right)$.]
(d) (3 points) Suppose we have a stationary binary process for which every ' 1 ' is immediately followed by a ' 0 '. Show that the entropy rate of this process is at most $\max _{a \in[0,1]} \frac{h_{2}(a)}{1+a}$.

Problem 3. (9 points)
Suppose U_{1}, U_{2}, \ldots are i.i.d. random variables on the alphabet \mathcal{U} with distribution p_{U}, and define $H:=H\left(U_{1}\right)$. Suppose S_{1}, S_{2}, \ldots are sets with $S_{n} \subseteq \mathcal{U}^{n}$, and define $p_{n}:=\operatorname{Pr}\left(U^{n} \in\right.$ S_{n}). Pick $\epsilon>0$ and let $T_{n}=T\left(n, p_{U}, \epsilon\right)$ be the typical sets as defined in class. Let $A_{n}=T_{n} \cap S_{n}$.
(a) (3 points) Show that, for large enough $n, \operatorname{Pr}\left(U^{n} \in A_{n}\right) \geq p_{n}-\epsilon$.
(b) (2 points) Show that, for large enough $n,\left|A_{n}\right| \geq\left(p_{n}-\epsilon\right) 2^{n(1-\epsilon) H}$.

Hint: Any $u^{n} \in A_{n}$ also belongs to T_{n}.
(c) (2 points) Show that if $p:=\lim _{n \rightarrow \infty} p_{n}>0$, then $\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|S_{n}\right| \geq H$.

Hint: Pick $\epsilon<p$, use (b), and note that S_{n} includes A_{n}.
(d) (2 points) Fix $\rho \geq 0$ and let $k_{n}=\lfloor n \rho\rfloor$. Consider assigning k_{n}-bit representations to n-letter words u^{n} via a function $f_{n}: \mathcal{U}^{n} \rightarrow\{0,1\}^{k_{n}}$ and attempting to recover the n-letter word u^{n} from the representation via a function $g_{n}:\{0,1\}^{k_{n}} \rightarrow \mathcal{U}^{n}$. Suppose $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(U^{n}=g_{n}\left(f_{n}\left(U^{n}\right)\right)>0\right.$. Show that $\rho \geq H$.
Hint: Let $S_{n}:=\left\{u^{n}: u^{n}=g_{n}\left(f_{n}\left(u^{n}\right)\right)\right\}$.

Problem 4. (12 points)
Consider two binary codes, c_{1} and c_{2} for the nonnegative integers $\{0,1,2, \ldots\}$. The code c_{1} is defined as $c_{1}(n)=1^{n} 0$; e.g, $c_{1}(3)=1110$. The code c_{2} is given as follows: $c_{2}(0)=$ null, $c_{2}(1)=0, c_{2}(2)=1, c_{2}(3)=00, c_{2}(4)=01, c_{2}(5)=10, c_{2}(6)=11, c_{2}(7)=000$, and so on. Observe that length $\left(c_{1}(n)\right)=1+n$, and length $\left(c_{2}(n)\right)=\lfloor\log (1+n)\rfloor$.
(a) (2 points) Is c_{1} injective? Is it prefix-free? Is c_{2} injective? Is it prefix-free?
(b) (2 points) With $n_{1}=$ length $\left(c_{2}(n)\right)$, and $n_{2}=\operatorname{length}\left(c_{2}\left(n_{1}\right)\right)$, consider the code formed by a concatenation $c(n)=c_{1}\left(n_{2}\right) c_{2}\left(n_{1}\right) c_{2}(n)$. Explain why c is prefix-free.
(c) (3 points) Show that there is a prefix-free code c_{3} for positive integers $\{1,2, \ldots\}$ with $\operatorname{length}\left(c_{3}(n)\right) \leq \log (n)+2 \log (1+\log (n))+1$.

Suppose that $\ldots, U_{-2}, U_{-1}, U_{0}, U_{1}, U_{2}, \ldots$ are i.i.d. from an alphabet \mathcal{U}, and we observe U_{i} at time i. Let $N_{i}=\inf \left\{j>0: U_{i-j}=U_{i}\right\}$, i.e., the symbol U_{i} we observed at time i, was most recently observed at time $i-N_{i}$.
(d) (2 points) Show that $\operatorname{Pr}\left(N_{i}>j \mid U_{i}=u\right)=\left(1-p_{U}(u)\right)^{j}, j=0,1, \ldots$. Conclude that $\mathbb{E}\left[N_{i} \mid U_{i}=u\right]=1 / p_{U}(u)$. [Fact: If $X \in\{0,1,2, \ldots\}$, then $\mathbb{E}[X]=\sum_{i=0}^{\infty} \operatorname{Pr}(X>i)$.]

Suppose that we have already described the "past" $\left(\ldots, U_{-2}, U_{-1}, U_{0}\right)$ in binary, we now describe U_{1}, U_{2}, \ldots, by giving a binary descriptions of N_{1}, N_{2}, \ldots, by the code c_{3} above.
(e) (3 points) With $H=H\left(U_{i}\right)=H\left(U_{1}\right)$, show that $\mathbb{E}\left[\operatorname{length}\left(c_{3}\left(N_{i}\right)\right)\right] \leq H+2 \log (1+$ $H)+1$.
Hint: First condition on $\left\{U_{i}=u\right\}$.

