
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Handout 17 Information Theory and Coding
Solutions to Midterm exam Oct. 31, 2023

Problem 1. (7 points)

Suppose X1, X2, . . . are i.i.d. random variables with Pr(X1 = 0) = Pr(X1 = 1) = 1/2. Let
Yn =

∑n
i=1Xi.

Hint: No explicit computation is necessary. For each part you only need to show that the quantity for

n+ 1 is at least as large as the quantity for n. “Conditioning reduces entropy” is your friend.

(a) (2 points) Show that H(Yn) is nondecreasing in n.

Solution: This follows immediately, as

H(Yn+1) ≥ H(Yn+1 | Xn+1) [conditioning reduces entropy]

= H(Yn | Xn+1) [Yn+1 = Yn +Xn+1]

= H(Yn). [Yn is independent of Xn+1]

(b) (2 points) Show that H(Xn|Yn) is nondecreasing in n.

Solution: This follows from

H(Xn+1 | Yn+1) ≥ H(Xn | Yn+1) [chain rule, then H(Xn+1 | Yn+1) ≥ 0]

≥ H(Xn | Yn+1, Yn) [conditioning reduces entropy]

= H(Xn | Xn+1, Yn) [(Yn+1, Yn) 7→ (Xn+1, Yn) is invertible]

= H(Xn | Yn). [Xn is independent of Xn+1]

(c) (3 points) Show that H(Xn|Yn) is nondecreasing in n.

Solution: Since Yn+1 = Yn + Xn+1, with Xn+1 independent of Yn, we have Xn −−◦
Yn −−◦ Yn+1, i.e., Xn, Yn, Yn+1 form a Markov chain. Hence, by the data processing
inequality, we have I(Xn;Yn) ≥ I(Xn;Yn+1). This gives us the desired result, as

H(Xn+1 | Yn+1) = H(Xn | Yn+1) [Xn+1, Xn are identical w.r.t. Yn+1]

= H(Xn)− I(Xn;Yn+1)

≥ H(Xn)− I(Xn;Yn)

= H(Xn | Yn).

Remark: This makes formal the intuitive idea that as more independent random variables
are added, the influence of each on the sum reduces, and conversely, the uncertainty in
each knowing the sum increases.

Problem 2. (9 points)

Suppose X1, X2, . . . is a binary (i.e., Xn ∈ {0, 1}) stationary process with entropy rate H.
Define the following quantities:

p = Pr(X1 = 1),

α = Pr(X2 = 1 | X1 = 1),

β = Pr(X2 = 0 | X1 = 0).

(Note that this does not necessarily imply that X is a Markov process.)

(a) (2 points) Show that p = pα + (1− p)(1− β).

Solution: This follows directly, as

p = Pr(X1 = 1) = Pr(X2 = 1) [Xn is stationary]

=
∑
i=0,1

Pr(X1 = i) Pr(X2 = 1 | X1 = i). [total probability = pα + (1− p)(1− β)]

(b) (2 points) Show that H ≤ ph2(α) + (1 − p)h2(β), where h2 is the binary entropy
function given by h2(x) = −x log(x)− (1− x) log(1− x).

Solution: Observe that the right-hand side is exactly H(X2 | X1). The entropy rate
for a stationary process is given by

H = lim
n→∞

H(Xn | Xn−1, . . . , X1)

≤ lim
n→∞

H(Xn | Xn−1) [conditioning reduces entropy]

= H(X2 | X1), [X is stationary]

and we are done.

(c) (2 points) Show that among all such stationary processes the Markov process has
the largest entropy rate. [Recall that for a Markov process, Pr(Xn = xn | Xn−1 =
xn−1) = Pr(Xn = xn | Xn−1 = xn−1).]

Solution: In the solution to part (b), observe that the only inequality is in the “con-
ditioning reduces entropy” step. Equality holds here if and only if Xn is conditionally
independent of Xn−2, Xn−3, . . . , X1 given Xn−1, or equivalently, if X is a Markov
process. In this case, we have H = ph2(α) + (1 − p)h2(β), while for all other such
stationary processes, we have that H ≤ ph2(α) + (1 − p)h2(β), which completes the
proof.

(d) (3 points) Suppose we have a stationary binary process for which every ‘1’ is im-
mediately followed by a ‘0’. Show that the entropy rate of this process is at most

max
a∈[0,1]

h2(a)

1 + a
.

Solution: Observe that this process is a special case of the above with α = 0, but β is
some number in [0, 1]. Then, from part (a), we have p = (1−p)(1−β), and from part
(b), we have H ≤ (1−p)h2(β). Let b = 1−β, then we have h2(b) = h2(1−β) = h2(β),
since h2 is symmetric about 1

2
, and

1 + b = 1 +
p

1− p
=

1

1− p
=⇒ 1− p =

1

1 + b
.

2

Substituting these in H ≤ (1−p)h2(β), we have H ≤ h2(b)
1+b

. This holds for some b such

that β = 1− b ∈ [0, 1], i.e., some b ∈ [0, 1], hence we have H ≤ h2(b)
1+b

≤ maxa∈[0,1]
h2(a)
1+a

.

Remark: Among all stationary processes with a fixed value of the marginal distribution,
the i.i.d. process has the largest entropy rate, since the uncertainty is maximized if each
element in the sequence is independent. Parts (a)-(c) naturally extend this to all stationary
processes with a fixed value of the marginals and one-step transition probabilities — the
uncertainty is maximized if there is no more dependence than is necessitated by the fixed
transition probabilities. The process in part (d) represents a run-length limited setup,
where no two ‘1’s may appear together. Such a constraint often occurs in practice:
https://en.wikipedia.org/wiki/Run-length limited#Need for RLL coding.

3

Problem 3. (9 points)

Suppose U1, U2, . . . are i.i.d. random variables on the alphabet U with distribution pU , and
define H := H(U1). Suppose S1, S2, . . . are sets with Sn ⊆ Un, and define pn := Pr(Un ∈
Sn). Pick ϵ > 0 and let Tn = T (n, pU , ϵ) be the typical sets as defined in class. Let
An = Tn ∩ Sn.

(a) (3 points) Show that, for large enough n, Pr(Un ∈ An) ≥ pn − ϵ.

Solution: Since pn = Pr(Un ∈ Sn), the above statement is equivalent to

Pr(Un ∈ Sn)− Pr(Un ∈ An) ≤ ϵ.

The left-hand side can be written as

Pr(Un ∈ Sn)− Pr(Un ∈ An) = Pr(Un ∈ Sn \ An) [An ⊆ Sn]

= Pr(Un ∈ Sn ∩ T c
n) [An = Tn ∩ Sn]

≤ Pr(Un ∈ T c
n).

Since the Ui are i.i.d. with distribution pU , we know that limn→∞ Pr(Un ∈ Tn) = 1.
Let n0 be such that Pr(Un ∈ Tn) ≥ 1− ϵ for all n ≥ n0. Then we have that for large
enough n, Pr(Un ∈ T c

n) ≤ ϵ, which completes the proof.

(b) (2 points) Show that, for large enough n, |An| ≥ (pn − ϵ)2n(1−ϵ)H .
Hint: Any un ∈ An also belongs to Tn.

Solution: Observing that any un ∈ An also belongs to Tn, we have that Pr(Un =
un) ≤ 2−n(1−ϵ)H for all un ∈ An. Combining this with the result from part (a), we
have, for large enough n,

pn − ϵ ≤ Pr(Un ∈ An) =
∑

un∈An

Pr(Un = un)

≤
∑

un∈An

2−n(1−ϵ)H [un ∈ An ⊆ Tn]

= |An|2−n(1−ϵ)H ,

and multiplying both sides by 2n(1−ϵ)H , we are done.

(c) (2 points) Show that if p := limn→∞ pn > 0, then limn→∞
1
n
log |Sn| ≥ H.

Hint: Pick ϵ < p, use (b), and note that Sn includes An.

Solution: As given in the hint, pick a positive ϵ < p (this is possible since p > 0).
Let n1 be such that pn > ϵ for all n ≥ n1 (again, this is possible since the limit
is positive) — this is just to ensure that all subsequent logarithms are well-defined.
Since An ⊆ Sn, we have, for large enough n (i.e., n ≥ max{n0, n1}),

log |Sn| ≥ log |An| ≥ log(pn − ϵ) + n(1− ϵ)H,

and hence, limn→∞
1
n
log |Sn| ≥ (1 − ϵ)H. Since ϵ can be made arbitrarily small, we

are done.

(d) (2 points) Fix ρ ≥ 0 and let kn = ⌊nρ⌋. Consider assigning kn-bit representations to
n-letter words un via a function fn : Un → {0, 1}kn and attempting to recover the

4

n-letter word un from the representation via a function gn : {0, 1}kn → Un. Suppose
limn→∞ Pr(Un = gn(fn(U

n)) > 0. Show that ρ ≥ H.
Hint: Let Sn := {un : un = gn(fn(u

n))}.

Solution: As given in the hint, let Sn := {un : un = gn(fn(u
n))} and pn := Pr(Un ∈

Sn). Then, we have p = limn→∞ pn = limn→∞ Pr(Un = gn(fn(U
n)) > 0. By part (c),

we have limn→∞
1
n
log |Sn| ≥ H, i.e.,

H ≤ lim
n→∞

1

n
log |Sn| ≤ lim

n→∞

1

n
log 2kn

= lim
n→∞

1

n
⌊nρ⌋ = ρ, [nρ− 1 < ⌊nρ⌋ ≤ nρ, sandwich theorem]

and we are done. We used the fact that |Sn| ≤ 2kn , which is true because the range
of fn is {0, 1}kn , hence gn(fn(u

n)) can take at most 2kn values.

Remark: We saw in the lectures that typical sets have probability nearly 1 and size nearly
2nH . In this problem, we not only show that this is as small as such a large-probability set
can be, but also that any sequence of sets with nonzero(!) probability in the limit, must
have size growing as 2nH , which is a surprising result. Part (d) is an application of this
fact — the source coding theorem says that by compressing to a rate more than H, we can
recover Un with probability nearly 1, but here we see that to have even a small, nonzero
probability of correctly recovering Un, we must have a rate at least H. Equivalently, if the
rate is even slightly below H, the probability of recovering Un correctly goes to 0.

5

Problem 4. (12 points)

Consider two binary codes, c1 and c2 for the nonnegative integers {0, 1, 2, . . . }. The code
c1 is defined as c1(n) = 1n0; e.g, c1(3) = 1110. The code c2 is given as follows: c2(0) =
null, c2(1) = 0, c2(2) = 1, c2(3) = 00, c2(4) = 01, c2(5) = 10, c2(6) = 11, c2(7) = 000, and so
on. Observe that length(c1(n)) = 1 + n, and length(c2(n)) = ⌊log(1 + n)⌋.

(a) (2 points) Is c1 injective? Is it prefix-free? Is c2 injective? Is it prefix-free?

Solution: Clearly, c1 is both injective and prefix-free, but c2 is only injective, not
prefix-free.

(b) (2 points) With n1 = length(c2(n)), and n2 = length(c2(n1)), consider the code
formed by a concatenation c(n) = c1(n2)c2(n1)c2(n). Explain why c is prefix-free.

Solution: Suppose there exist nonnegative integers n,m such that c(n) is a prefix of
c(m), with n1, n2,m1,m2 defined analogously. Since c(n) and c(m) start with c1(n2)
and c1(m2) respectively, and c1 is a prefix-free code, the only way for c(n) to be a
prefix of c(m) is if c1(n2) = c1(m2), i.e., n2 = m2, or equivalently, length(c2(n1)) =
length(c2(m1)). Now, since the initial segments match, we require that the remainder
of c(n) is a prefix of c(m), i.e., c2(n1)c2(n) is a prefix of c2(m1)c2(m). However, the
lengths of c2(n1) and c2(m1) are equal, and among codewords of the same length,
no codeword of c2 is a prefix of the other. Hence, we must have n = m, and c is
prefix-free.

(c) (3 points) Show that there is a prefix-free code c3 for positive integers {1, 2, . . . } with
length(c3(n)) ≤ log(n) + 2 log(1 + log(n)) + 1.

Solution: We use the same code as in part (c), except that we encode n − 1 in-
stead of n, since we now need a code for positive integers only. Formally, we de-
fine c3(n) = c1(n2)c2(n1)c2(n − 1), with n1 = length(c2(n − 1)) = ⌊log(n)⌋, and
n2 = length(c2(n1)) = ⌊log(1 + n1)⌋, for n ∈ {1, 2, . . . }, which we now know to be
prefix-free. All that is left to show is the bound on the length of c3(n), which comes
from

length(c3(n)) = length(c1(n2)) + length(c2(n1)) + length(c2(n− 1))

= 1 + n2 + ⌊log(1 + n1)⌋+ ⌊log(n)⌋
= 1 + 2⌊log

(
1 + ⌊log(n)⌋

)
⌋+ ⌊log(n)⌋

≤ 1 + 2 log(1 + log(n)) + log(n),

and we are done.

Suppose that . . . , U−2, U−1, U0, U1, U2, . . . are i.i.d. from an alphabet U , and we observe Ui

at time i. Let Ni = inf{j > 0 : Ui−j = Ui}, i.e., the symbol Ui we observed at time i, was
most recently observed at time i−Ni.

(d) (2 points) Show that Pr(Ni > j | Ui = u) = (1−pU(u))
j, j = 0, 1, Conclude that

E[Ni | Ui = u] = 1/pU(u). [Fact: If X ∈ {0, 1, 2, . . . }, then E[X] =
∑∞

i=0 Pr(X > i).]

Solution: For j = 0, this is trivial, since both sides are 1. For j ≥ 1, the event
{Ni > j} is identical to the event that none of Ui−1, Ui−2, . . . , Ui−j is equal to Ui,

6

hence

Pr(Ni > j | Ui = u) = Pr(Ui−j ̸= u, . . . , Ui−1 ̸= u | Ui = u)

= Pr(Ui−j ̸= u) · · ·Pr(Ui−1 ̸= u) [Ui are i.i.d.]

= (1− pU(u))
j.

We can use this to compute the expectation conditioned on {Ui = u} as

E[Ni | Ui = u] =
∞∑
j=0

Pr(Ni > j | Ui = u) =
∞∑
j=0

(1− pU(u))
j =

1

pU(u)
.

Suppose that we have already described the “past” (. . . , U−2, U−1, U0) in binary, we now
describe U1, U2, . . . , by giving a binary descriptions of N1, N2, . . . , by the code c3 above.

(e) (3 points) With H = H(Ui) = H(U1), show that E[length(c3(Ni))] ≤ H + 2 log(1 +
H) + 1.
Hint: First condition on {Ui = u}.

Solution: We first condition on {Ui = u}, and use part (c) to get

E[length(c3(Ni)) | Ui = u] ≤ E[logNi + 2 log(1 + logNi) + 1 | Ui = u]

≤ logE[Ni | Ui = u] + 2 log(1 + logE[Ni | Ui = u]) + 1

= log
1

pU(u)
+ 2 log

(
1 + log

1

pU(u)

)
+ 1,

where the second inequality follows from the concavity of log. We can now compute
the unconditional expectation as

E[length(c3(Ni))] =
∑
u∈U

pU(u)E[length(c3(Ni)) | Ui = u]

≤
∑
u∈U

pU(u)

[
log

1

pU(u)
+ 2 log

(
1 + log

1

pU(u)

)
+ 1

]
≤ H + 2 log(1 +H) + 1,

where the last step follows, once again, by the concavity of log, and we are done.

Remark: This problem describes a universal compression scheme. It has the feature that the
only codes needed are for positive integers, irrespective of the alphabet U , but seems to in-
duce an overhead of 2 log(1+H)+1 bits. By taking V1 = (U1, . . . , Un), V2 = (Un+1, . . . , U2n)
and so on, and applying part (e) to these Vi, as n goes to infinity, the overhead can be made
as small as needed, hence this scheme can also compress any i.i.d. source to its entropy.
Further, the result on the expectation conditioned on {Ui = u} in part (d) holds even for
stationary ergodic processes, so this method compresses any stationary ergodic process to
its entropy rate.

7

