ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Problem 1. Show that a cascade of n identical binary symmetric channels,

$$
X_{0} \rightarrow \mathrm{BSC} \# 1 \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{n-1} \rightarrow \mathrm{BSC} \# \mathrm{n} \rightarrow X_{n}
$$

each with raw error probability p, is equivalent to a single BSC with error probability $\frac{1}{2}\left(1-(1-2 p)^{n}\right)$ and hence that $\lim _{n \rightarrow \infty} I\left(X_{0} ; X_{n}\right)=0$ if $p \neq 0,1$. Thus, if no processing is allowed at the intermediate terminals, the capacity of the cascade tends to zero.

Problem 2. Consider a memoryless channel with transition probability matrix $P_{Y \mid X}(y \mid x)$, with $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. For a distribution Q over \mathcal{X}, let $I(Q)$ denote the mutual information between the input and the output of the channel when the input distribution is Q. Show that for any two distributions Q and Q^{\prime} over \mathcal{X},
(a)

$$
I\left(Q^{\prime}\right) \leq \sum_{x \in \mathcal{X}} Q^{\prime}(x) \sum_{y \in \mathcal{Y}} P_{Y \mid X}(y \mid x) \log \left(\frac{P_{Y \mid X}(y \mid x)}{\sum_{x^{\prime} \in \mathcal{X}} P_{Y \mid X}\left(y \mid x^{\prime}\right) Q\left(x^{\prime}\right)}\right)
$$

(b)

$$
C \leq \max _{x} \sum_{y \in \mathcal{Y}} P_{Y \mid X}(y \mid x) \log \left(\frac{P_{Y \mid X}(y \mid x)}{\sum_{x^{\prime} \in \mathcal{X}} P_{Y \mid X}\left(y \mid x^{\prime}\right) Q\left(x^{\prime}\right)}\right)
$$

where C is the capacity of the channel. Notice that this upper bound to the capacity is independent of the maximizing distribution.

Problem 3.

(a) Show that $I(U ; V) \geq I(U ; V \mid T)$ if T, U, V form a Markov chain, i.e., conditional on U, the random variables T and V are independent.

Fix a conditional probability distribution $p(y \mid x)$, and suppose $p_{1}(x)$ and $p_{2}(x)$ are two probability distributions on \mathcal{X}.

For $k \in\{1,2\}$, let I_{k} denote the mutual information between X and Y when the distribution of X is $p_{k}(\cdot)$.

For $0 \leq \lambda \leq 1$, let W be a random variable, taking values in $\{1,2\}$, with

$$
\operatorname{Pr}(W=1)=\lambda, \quad \operatorname{Pr}(W=2)=1-\lambda .
$$

Define

$$
p_{W, X, Y}(w, x, y)= \begin{cases}\lambda p_{1}(x) p(y \mid x) & \text { if } w=1 \\ (1-\lambda) p_{2}(x) p(y \mid x) & \text { if } w=2\end{cases}
$$

(b) Express $I(X ; Y \mid W)$ in terms of I_{1}, I_{2} and λ.
(c) Express $p(x)$ in terms of $p_{1}(x), p_{2}(x)$ and λ.
(d) Using (a), (b) and (c) show that, for every fixed conditional distribution $p_{Y \mid X}$, the mutual information $I(X ; Y)$ is a concave \cap function of p_{X}.

Problem 4. Suppose Z is uniformly distributed on $[-1,1]$, and X is a random variable, independent of Z, constrained to take values in $[-1,1]$. What distribution for X maximizes the entropy of $X+Z$? What distribution of X maximizes the entropy of $X Z$?

Problem 5. Let P_{1} and P_{2} be two channels of input alphabet \mathcal{X}_{1} and \mathcal{X}_{2} and of output alphabet \mathcal{Y}_{1} and \mathcal{Y}_{2} respectively. Consider a communication scheme where the transmitter chooses the channel (P_{1} or P_{2}) to be used and where the receiver knows which channel were used. This scheme can be formalized by the channel P of input alphabet $\mathcal{X}=$ $\left(\mathcal{X}_{1} \times\{1\}\right) \cup\left(\mathcal{X}_{2} \times\{2\}\right)$ and of output alphabet $\mathcal{Y}=\left(\mathcal{Y}_{1} \times\{1\}\right) \cup\left(\mathcal{Y}_{2} \times\{2\}\right)$, which is defined as follows:

$$
P\left(y, k^{\prime} \mid x, k\right)= \begin{cases}P_{k}(y \mid x) & \text { if } k^{\prime}=k, \\ 0 & \text { otherwise }\end{cases}
$$

Let $X=\left(X_{k}, K\right)$ be a random variable in \mathcal{X} which will be the input distribution to the channel P, and let $Y=\left(Y_{k}, K\right) \in \mathcal{Y}$ be the output distribution. Define X_{1} as being the random variable in \mathcal{X}_{1} obtained by conditioning X_{k} on $K=1$. Similarly define X_{2}, Y_{1} and Y_{2}. Let α be the probability that $K=1$.
(a) Show that $I(X ; Y)=h_{2}(\alpha)+\alpha I\left(X_{1} ; Y_{1}\right)+(1-\alpha) I\left(X_{2} ; Y_{2}\right)$.
(b) What is the input distribution X that achieves the capacity of P ?
(c) Show that the capacity C of P satisfies $2^{C}=2^{C_{1}}+2^{C_{2}}$, where C_{1} and C_{2} are the capacities of P_{1} and P_{2} respectively.

Problem 6. Suppose X and Y are independent geometric random variables. That is, $p_{X}(k)=(1-p)^{k-1} p$ and $p_{Y}(k)=(1-q)^{k-1} q, \quad \forall k \in\{1,2, \ldots\}$.
(a) Find $H(X, Y)$.
(b) Find $H(2 X+Y, X-2 Y)$

Now consider two independent exponential random variables X and Y. That is, $p_{X}(t)=$ $\lambda_{X} e^{-\lambda_{X} t}$ and $p_{Y}(t)=\lambda_{Y} e^{-\lambda_{Y} t}, \quad \forall t \in[0, \infty)$.
(c) Find $h(X, Y)$.
(d) Find $h(2 X+Y, X-2 Y)$

