ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 7

Information Theory and Coding
Solutions to Homework 3
Oct. 03, 2023

Problem 1.

(a) Recall that \mathcal{C} is uniquely decodable means that \mathcal{C}^{*} is injective, i.e., for any $u^{n} \neq v^{m}$ we have $\mathcal{C}^{n}\left(u^{n}\right) \neq \mathcal{C}^{m}\left(v^{m}\right)$. In particular, whenever $u^{n} \neq v^{n}$ we have $\mathcal{C}^{n}\left(u^{n}\right) \neq \mathcal{C}^{n}\left(v^{n}\right)$. The last statement is the definition of \mathcal{C}^{n} being injective.
(b) Since we are supposed to show that $u_{1} \neq v_{1}$, we may assume that $|\mathcal{U}| \geq 2$.

If \mathcal{C} is not uniquely decodable, then there are $u^{n} \neq v^{m}$ such that $\mathcal{C}^{n}\left(u^{n}\right)=\mathcal{C}^{m}\left(v^{m}\right)$. Among all such $\left(u^{n}, v^{m}\right)$ choose one for which $n+m$ is smallest, and assume (without loss of generality) that $m \leq n$. If $m \geq 1$ we are done, since in this case we must have $u_{1} \neq v_{1}$ (because, if not, we can replace u^{n} by $\tilde{u}^{n-1}=u_{2} \ldots u_{n}$ and v^{m} by $\tilde{v}^{m-1}=v_{2} \ldots v_{m}$, contradicting $m+n$ being smallest).
Otherwise, $m=0$ and $v^{m}=\lambda$ (the null string) with $\mathcal{C}\left(v^{m}\right)=\lambda$. Since $u^{n} \neq v^{m}=\lambda$ and $\mathcal{C}\left(u^{n}\right)=\lambda$, we have a letter $a=u_{1} \in \mathcal{U}$ such that $\mathcal{C}(a)=\lambda$. Take now any letter $b \in \mathcal{U}$ with $b \neq a$, and note that $\mathcal{C}^{2}(a b)=\mathcal{C}^{1}(b)$, i.e., there are two source sequences that differ in their first letter and have the same representation.
(c) \mathcal{C} is not uniquely decodable means that there is $u^{n} \neq v^{m}$ such that $\mathcal{C}^{n}\left(u^{n}\right)=\mathcal{C}^{m}\left(v^{m}\right)$. If $n=m$ then we are done: this would by definition mean that be \mathcal{C}^{n} is not injective. If $n \neq m$, we could attempt the following reasoning: observe $\mathcal{C}^{*}\left(u^{n} v^{m}\right)=\mathcal{C}^{*}\left(v^{m} u^{n}\right)$ and conclude that \mathcal{C}^{m+n} is not injective. However this reasoning fails because we can't be sure that $u^{n} v^{m} \neq v^{m} u^{n}$ just because $u^{n} \neq v^{m}$. (E.g., suppose $u^{n}=a$ and $v^{m}=a a$). This is the reason the problem has "part (b)":
As \mathcal{C} is not uniquely decodable, we can find u^{n} and v^{m} as in part (b). Now observe that (i) $u^{n} v^{m} \neq v^{m} u^{n}$ (as they differ in their first letter), (ii) $u^{n} v^{m}$ and $v^{m} u^{n}$ have the same length $k=n+m$, and $\mathcal{C}^{k}\left(u^{n} v^{m}\right)=\mathcal{C}^{k}\left(v^{m} u^{n}\right)$, i.e., \mathcal{C}^{k} is not singular.

Moral of the problem: it is clear that the statement " \mathcal{C}^{*} is injective" is a stronger statement than "for every n, \mathcal{C}^{n} is injective" - since the first ensures that $u^{n} \neq v^{m}$ are assigned different codewords not only when $n=m$ but also for $n \neq m$ - so part (a) is unsurprising. The statement " C^{n} is injective for each n " only means that different source sequences of same length get different representations; it is not immediately clear that this will also imply that source sequences of different lengths also get different representations. Part (c) shows this is indeed the case: that injectiveness of \mathcal{C}^{n} for every n implies the injectiveness of \mathcal{C}^{*}.

Problem 2.

(a) We already know that

$$
\begin{aligned}
H(X)+H(Y) & \geq H(X Y) \\
H(Y)+H(Z) & \geq H(Y Z)
\end{aligned}
$$

and

$$
H(Z)+H(X) \geq H(Z X)
$$

Adding these inequalities together and diving by two gives

$$
H(X)+H(Y)+H(Z) \geq \frac{1}{2}[H(X Y)+H(Y Z)+H(Z X)]
$$

(b) The difference between the left and right sides, i.e.,

$$
H(X Y)+H(Y Z)-H(X Y Z)-H(Y)
$$

equals

$$
H(X \mid Y)-H(X \mid Y Z)=I(X ; Z \mid Y)
$$

which is always positive.
(c) Using (b) with $(Y Z X)$ and $(Z X Y)$ in the role of $(X Y Z)$ gives the inequalities

$$
H(Y Z)+H(Z X) \geq H(X Y Z)+H(Z)
$$

and

$$
H(Z X)+H(X Y) \geq H(X Y Z)+H(X)
$$

Adding the inequality in (b) to these two gives

$$
2[H(X Y)+H(Y Z)+H(Z X)] \geq 3 H(X Y Z)+H(X)+H(Y)+H(Z)
$$

(d) Since $H(X)+H(Y)+H(Z) \geq H(X Y Z)$, (c) yields

$$
2[H(X Y)+H(Y Z)+H(Z X)] \geq 4 H(X Y Z)
$$

(e) Let $\left\{\left(x_{i}, y_{i}, z_{i}\right): i=1, \ldots, n\right\}$ be the $x y z$-coordinates of the n points. Let X, Y and Z be random variables with $\operatorname{Pr}\left((X, Y, Z)=\left(x_{i}, y_{i}, z_{i}\right)\right)=1 / n$ for every $1 \leq i \leq n$. Then, $H(X Y Z)=\log _{2} n$. Furthermore, the random pair $(X Y)$ takes values in the projection of the n points to the $x y$ plane and similarly for $(Y Z)$ and $(Z X)$. Thus $H(X Y) \leq \log _{2} n_{x y}, H(Y Z) \leq \log _{2} n_{y z}$, and $H(Z X) \leq \log _{2} n_{z x}$. Part (d) now yields

$$
\log _{2}\left[n_{x y} n_{y z} n_{z x}\right] \geq H(X Y)+H(Y Z)+H(Z X) \geq 2 H(X Y Z)=2 \log _{2} n
$$

which implies that $n_{x y} n_{y z} n_{z x} \geq n^{2}$.
The relationship between $H(X Y Z)$ and $H(X Y), H(Y Z)$ and $H(Z X)$ is a special case of Han's inequality, which, for a collection of n random variables relates the sum of the $\binom{n}{k}$ joint entropies of k out of n random variables to the sum of the $\binom{n}{k+1}$ entropies of $k+1$ out of n random variables.

The combinatorial fact about the projections of points in 3D is known as Shearer's lemma.

Problem 3.

$$
\begin{aligned}
H(X) & =-\sum_{k=1}^{M} P_{X}\left(a_{k}\right) \log P_{X}\left(a_{k}\right) \\
& =-\sum_{k=1}^{M-1}(1-\alpha) P_{Y}\left(a_{k}\right) \log \left[(1-\alpha) P_{Y}\left(a_{k}\right)\right]-\alpha \log \alpha \\
& =(1-\alpha) H(Y)-(1-\alpha) \log (1-\alpha)-\alpha \log \alpha
\end{aligned}
$$

Since Y is a random variable that takes $M-1$ values $H(Y) \leq \log (M-1)$ with equality if and only if Y takes each of its possible values with equal probability.

Problem 4.

(a) Using the chain rule for mutual information,

$$
I(X, Y ; Z)=I(X ; Z)+I(Y ; Z \mid X) \geq I(X ; Z)
$$

with equality iff $I(Y ; Z \mid X)=0$, that is, when Y and Z are conditionally independent given X.
(b) Using the chain rule for conditional entropy,

$$
H(X, Y \mid Z)=H(X \mid Z)+H(Y \mid X, Z) \geq H(X \mid Z)
$$

with equality iff $H(Y \mid X, Z)=0$, that is, when Y is a function of X and/or Z.
(c) Using first the chain rule for entropy and then the definition of conditional mutual information,

$$
\begin{aligned}
H(X, Y, Z)-H(X, Y) & =H(Z \mid X, Y)=H(Z \mid X)-I(Y ; Z \mid X) \\
& \leq H(Z \mid X)=H(X, Z)-H(X)
\end{aligned}
$$

with equality iff $I(Y ; Z \mid X)=0$, that is, when Y and Z are conditionally independent given X.
(d) Using the chain rule for mutual information,

$$
I(X ; Z \mid Y)+I(Z ; Y)=I(X, Y ; Z)=I(Z ; Y \mid X)+I(X ; Z),
$$

and therefore

$$
I(X ; Z \mid Y)=I(Z ; Y \mid X)-I(Z ; Y)+I(X ; Z)
$$

We see that this inequality is actually an equality in all cases.
Problem 5. Let X^{i} denote X_{1}, \ldots, X_{i}.
(a) By stationarity we have for all $1 \leq i \leq n$,

$$
H\left(X_{n} \mid X^{n-1}\right) \leq H\left(X_{n} \mid X_{n-i+1}, X_{n-i+2}, \ldots, X_{n-1}\right)=H\left(X_{i} \mid X^{i-1}\right),
$$

which implies that,

$$
\begin{align*}
H\left(X_{n} \mid X^{n-1}\right) & =\frac{\sum_{i=1}^{n} H\left(X_{n} \mid X^{n-1}\right)}{n} \tag{1}\\
& \leq \frac{\sum_{i=1}^{n} H\left(X_{i} \mid X^{i-1}\right)}{n} \tag{2}\\
& =\frac{H\left(X_{1}, X_{2}, \ldots, X_{n}\right)}{n} . \tag{3}
\end{align*}
$$

(b) By the chain rule for entropy,

$$
\begin{align*}
\frac{H\left(X_{1}, X_{2}, \ldots, X_{n}\right)}{n} & =\frac{\sum_{i=1}^{n} H\left(X_{i} \mid X^{i-1}\right)}{n} \tag{4}\\
& =\frac{H\left(X_{n} \mid X^{n-1}\right)+\sum_{i=1}^{n-1} H\left(X_{i} \mid X^{i-1}\right)}{n} \tag{5}\\
& =\frac{H\left(X_{n} \mid X^{n-1}\right)+H\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)}{n} . \tag{6}
\end{align*}
$$

From stationarity it follows that for all $1 \leq i \leq n$,

$$
H\left(X_{n} \mid X^{n-1}\right) \leq H\left(X_{i} \mid X^{i-1}\right)
$$

which further implies, by summing both sides over $i=1, \ldots, n-1$ and dividing by $n-1$, that,

$$
\begin{align*}
H\left(X_{n} \mid X^{n-1}\right) & \leq \frac{\sum_{i=1}^{n-1} H\left(X_{i} \mid X^{i-1}\right)}{n-1} \tag{7}\\
& =\frac{H\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)}{n-1} \tag{8}
\end{align*}
$$

Combining (6) and (8) yields,

$$
\begin{align*}
\frac{H\left(X_{1}, X_{2}, \ldots, X_{n}\right)}{n} & \leq \frac{1}{n}\left[\frac{H\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)}{n-1}+H\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)\right] \tag{9}\\
& =\frac{H\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)}{n-1} \tag{10}
\end{align*}
$$

Problem 6. By the chain rule for entropy,

$$
\begin{align*}
H\left(X_{0} \mid X_{-1}, \ldots, X_{-n}\right) & =H\left(X_{0}, X_{-1}, \ldots, X_{-n}\right)-H\left(X_{-1}, \ldots, X_{-n}\right) \tag{11}\\
& =H\left(X_{0}, X_{1}, \ldots, X_{n}\right)-H\left(X_{1}, \ldots, X_{n}\right) \tag{12}\\
& =H\left(X_{0} \mid X_{1}, \ldots, X_{n}\right), \tag{13}
\end{align*}
$$

where (12) follows from stationarity.
Problem 7. $X \ominus Y \ominus(Z, W)$ implies that $I(X ; Z, W \mid Y)=0$. Then,

$$
I(X ; Y)+I(Z ; W)=I(X ; Y)+I(X ; Z, W \mid Y)+I(Z ; W)=I(X ; Y, Z, W)+I(Z ; W)
$$

Notice that $I(X ; Y)+I(X ; Z, W \mid Y)=I(X ; Y, Z, W)$ follows from chain rule. Using the chain rule for a couple of times, we obtain the following steps.

$$
\begin{gather*}
I(X ; Y, Z, W)+I(Z ; W)=I(X ; Z)+I(X ; Y, W \mid Z)+I(Z ; W) \tag{14}\\
=I(X ; Z)+I(X ; Y \mid W, Z)+I(X ; W \mid Z)+I(Z ; W) \tag{15}\\
=I(X ; Z)+I(X ; Y \mid W, Z)+I(X, Z ; W) \tag{16}\\
\geq I(X ; Z)+I(X ; W) \tag{17}\\
\text { as } I(X, Z ; W) \geq I(X ; W)
\end{gather*}
$$

