ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 6
Information Theory and Coding
Homework 3
Oct. 02, 2023

Problem 1. Recall that for a code $\mathcal{C}: \mathcal{U} \rightarrow\{0,1\}^{*}$, we define $\mathcal{C}^{n}: \mathcal{U}^{n} \rightarrow\{0,1\}^{*}$ as $\mathcal{C}^{n}\left(u_{1} \ldots u_{n}\right)=\mathcal{C}\left(u_{1}\right) \ldots \mathcal{C}\left(u_{n}\right)$.
(a) Show that if \mathcal{C} is uniquely decodable, then for all $n \geq 1, \mathcal{C}^{n}$ is injective.
(b) Suppose \mathcal{C} is not uniquely decodable. Show that there are u^{n} and v^{m} such that $u_{1} \neq v_{1}$ and $\mathcal{C}^{n}\left(u^{n}\right)=\mathcal{C}^{m}\left(v^{m}\right)$.
(c) Suppose \mathcal{C} is not uniquely decodable. Show that there is a k such that \mathcal{C}^{k} is not injective. [Hint: try $k=n+m$.]

Problem 2. Suppose X, Y and Z are random variables.
(a) Show that $H(X)+H(Y)+H(Z) \geq \frac{1}{2}[H(X Y)+H(Y Z)+H(Z X)]$.
(b) Show that $H(X Y)+H(Y Z) \geq H(X Y Z)+H(Y)$.
(c) Show that

$$
2[H(X Y)+H(Y Z)+H(Z X)] \geq 3 H(X Y Z)+H(X)+H(Y)+H(Z)
$$

(d) Show that $H(X Y)+H(Y Z)+H(Z X) \geq 2 H(X Y Z)$.
(e) Suppose n points in three dimensions are arranged so that their their projections to the $x y, y z$ and $z x$ planes give $n_{x y}, n_{y z}$ and $n_{z x}$ points. Clearly $n_{x y} \leq n, n_{y z} \leq n$, $n_{z x} \leq n$. Use part (d) show that

$$
n_{x y} n_{y z} n_{z x} \geq n^{2}
$$

Problem 3. Let X be a random variable taking values in M points a_{1}, \ldots, a_{M}, and let $P_{X}\left(a_{M}\right)=\alpha$. Show that

$$
H(X)=\alpha \log \frac{1}{\alpha}+(1-\alpha) \log \frac{1}{1-\alpha}+(1-\alpha) H(Y)
$$

where Y is a random variable taking values in $M-1$ points a_{1}, \ldots, a_{M-1} with probabilities $P_{Y}\left(a_{j}\right)=P_{X}\left(a_{j}\right) /(1-\alpha) ; 1 \leq j \leq M-1$. Show that

$$
H(X) \leq \alpha \log \frac{1}{\alpha}+(1-\alpha) \log \frac{1}{1-\alpha}+(1-\alpha) \log (M-1)
$$

and determine the condition for equality.
Problem 4. Let X, Y, Z be discrete random variables. Prove the validity of the following inequalities and find the conditions for equality:
(a) $I(X, Y ; Z) \geq I(X ; Z)$.
(b) $H(X, Y \mid Z) \geq H(X \mid Z)$.
(c) $H(X, Y, Z)-H(X, Y) \leq H(X, Z)-H(X)$.
(d) $I(X ; Z \mid Y) \geq I(Z ; Y \mid X)-I(Z ; Y)+I(X ; Z)$.

Problem 5. For a stationary process X_{1}, X_{2}, \ldots, show that
(a) $\frac{1}{n} H\left(X_{1}, \ldots, X_{n}\right) \geq H\left(X_{n} \mid X_{n-1}, \ldots, X_{1}\right)$.
(b) $\frac{1}{n} H\left(X_{1}, \ldots, X_{n}\right) \leq \frac{1}{n-1} H\left(X_{1}, \ldots, X_{n-1}\right)$.

Problem 6. Let $\left\{X_{i}\right\}_{i=-\infty}^{\infty}$ be a stationary stochastic process. Prove that

$$
H\left(X_{0} \mid X_{-1}, \ldots, X_{-n}\right)=H\left(X_{0} \mid X_{1}, \ldots, X_{n}\right)
$$

That is: the conditional entropy of the present given the past is equal to the conditional entropy of the present given the future.

Problem 7. Let $X \ominus Y \ominus(Z, W)$ form a Markov chain. Show that

$$
I(X ; Z)+I(X ; W) \leq I(X ; Y)+I(Z ; W)
$$

