ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 4

Information Theory and Coding
Homework 2
Sep. 25, 2023

Problem 1. A source has an alphabet of 4 letters. The probabilities of the letters and two possible sets of binary code words for the source are given below:

Letter	Prob.	Code I	Code II
a_{1}	0.4	1	1
a_{2}	0.3	01	10
a_{3}	0.2	001	100
a_{4}	0.1	000	1000

For each code, answer the following questions (no proofs or numerical answers are required).
(a) Is the code prefix-free?
N.B. A "prefix-free" code is also known as an instantaneous code.
(b) Is the code uniquely decodable?
(c) Give an heuristic description of the purpose of the first letter in the code words of code II.

Problem 2. Let $\bar{M}=\sum_{i} p_{i} l_{i}^{2015}$ be the 2015th moment (i.e., the expected value of the 2015th power) of the code word lengths l_{i} associated with an encoding of a random variable X with distribution p. Let $\bar{M}_{1}=\min \bar{M}$ over all prefix-free (instantaneous) codes for X; and let $\bar{M}_{2}=\min \bar{M}$ over all uniquely decodable codes for X. What relationship exists between \bar{M}_{1} and \bar{M}_{2} ?

Problem 3. Consider the following method for constructing binary code words for a random variable U which takes values $\left\{a_{1}, \ldots, a_{m}\right\}$ with probabilities $P\left(a_{1}\right), \ldots, P\left(a_{m}\right)$. Assume that $P\left(a_{1}\right) \geq P\left(a_{2}\right) \geq \cdots \geq P\left(a_{m}\right)$. Define

$$
Q_{1}=0 \quad \text { and } \quad Q_{i}=\sum_{k=1}^{i-1} P\left(a_{k}\right) \quad \text { for } i=2,3, \ldots
$$

The code word assigned to the letter a_{i} is formed by finding the binary expansion of $Q_{i}<1$ (i.e, $1 / 2=.100 \ldots, 1 / 4=.0100 \ldots, 5 / 8=.1010 \ldots$) and letting the codeword be the first l_{i} bits of this expansion where $l_{i}=\left\lceil-\log _{2} P\left(a_{i}\right)\right\rceil$.
(a) Construct binary code words for the probability distribution $\{1 / 4,1 / 4,1 / 8,1 / 8,1 / 16$, $1 / 16,1 / 16,1 / 16\}$.
(b) Prove that the method described above yields a prefix-free (instantaneous) code and the average codeword length \bar{L} satisfies

$$
H(X) \leq \bar{L}<H(X)+1
$$

Problem 4. A random variable takes values on an alphabet of K letters, and each letter has the same probability. These letters are encoded into binary words using the Huffman procedure so as to minimize the average code word length. Let j and x be chosen such that $K=x 2^{j}$, where j is an integer and $1 \leq x<2$.
(a) Do any code words have lengths not equal to j or $j+1$? Why?
(b) In terms of j and x, how many code words have length j ?
(c) What is the average code word length?

Problem 5. Consider two discrete memoryless sources. Source 1 has an alphabet of 6 symbols with the probabilities, $0.3,0.2,0.15,0.15,0.1,0.1$. Source 2 has an alphabet of 7 letters with probabilities $0.3,0.25,0.15,0.1,0.1,0.05,0.05$. Construct a binary and a ternary Huffman code for each source. Find the average number of code letters per source symbol in each case.

Hint: A ternary code is a mapping of source symbols to $\{0,1,2\}^{*}$. Observe that a ternary tree has an odd number of leaves. A fictitious symbol with probability 0 might therefore be needed for the code construction.

Problem 6.

(a) A source has an alphabet of 4 letters, $a_{1}, a_{2}, a_{3}, a_{4}$, and we have the condition $P\left(a_{1}\right)>$ $P\left(a_{2}\right)=P\left(a_{3}\right)=P\left(a_{4}\right)$. Find the smallest number q such that $P\left(a_{1}\right)>q$ implies that $n_{1}=1$ where n_{1} throughout this problem is the length of the codeword for a_{1} in a Huffman code.
(b) Show by example that if $P\left(a_{1}\right)=q$ (your answer in part (a)), then a Huffman code exists with $n_{1}>1$.
(c) Now assume the more general condition, $P\left(a_{1}\right)>P\left(a_{2}\right) \geq P\left(a_{3}\right) \geq P\left(a_{4}\right)$. Does $P\left(a_{1}\right)>q$ still imply that $n_{1}=1$? Why or why not?
(d) Now assume that the source has an arbitrary number K of letters with $P\left(a_{1}\right)>$ $P\left(a_{2}\right) \geq \cdots \geq P\left(a_{K}\right)$. Does $P\left(a_{1}\right)>q$ now imply $n_{1}=1$?
(e) Assume $P\left(a_{1}\right) \geq P\left(a_{2}\right) \geq \cdots \geq P\left(a_{K}\right)$. Find the largest number q^{\prime} such that $P\left(a_{1}\right)<q^{\prime}$ implies that $n_{1}>1$.

