ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 22	Principles of Digital Communications
Project: Theory	May 3, 2023

PROBLEM 1. Suppose that we have two communication channels. On the first channel the transmitted vector $x \in \mathbb{R}^n$ is received as

$$Y = Ax + Z,$$

and on the second, the received vector is

$$Y = \tilde{A}x + Z,$$

where A and \tilde{A} are deterministic $n \times n$ matrices and $Z \sim \mathcal{N}(0, \sigma^2 I_n)$.

Suppose that A and \tilde{A} are related via $UA = \tilde{A}V$ where U and V are orthogonal matrices (i.e., $U^{-1} = U^T$ and similarly for V).

- (a) Suppose we are given a transmitter (i.e., vectors c_1, \ldots, c_m) and a receiver (i.e., a function $\hat{H} : \mathbb{R}^n \to \{1, \ldots, m\}$ that gives the guessed message $\hat{H}(y)$ when the received vector is y) designed for the first channel. Show how we can design a transmitter and receiver for the second channel (i.e., $\{\tilde{c}_1, \ldots, \tilde{c}_m\}$ and $\tilde{H}(y)$) such that
 - (i) for every message i, $\|\tilde{c}_i\| = \|c_i\|$ (i.e., the new transmitter for the second channel is equivalent in energy to the first), and
 - (ii) for every pair of messages i and k,

 $\Pr(\tilde{H}(Y) = k \mid \text{message } i \text{ is sent on the second channel}) =$

 $\Pr(\hat{H}(Y) = k \mid \text{message } i \text{ is sent on the first channel})$

(i.e., our design for the second channel has the same error probabilities as the given design for the first channel).

Justified by (a), we say that the two channels above are *equivalent*.

(b) Show that any channel of the form Y = Ax + Z is equivalent to a channel $Y = \tilde{A}x + Z$ where \tilde{A} is a diagonal matrix.

Consider now a channel where the input x and output Y are vectors of dimension nL, and Y is determined as follows:

- 1. The input $x = (x_1, ..., x_{nL})$ is split into *n* segments $s_1 = (x_1, ..., x_L), s_2 = (x_{L+1}, ..., x_{2L}), \ldots, s_n = (x_{(n-1)L+1}, ..., x_{nL})$, each of dimension *L*,
- 2. Each segment s_i is multiplied by an $L \times L$ matrix A,
- 3. These are then concatenated to form a vector of dimension nL, and
- 4. Y is formed by adding $Z \sim \mathcal{N}(0, \sigma^2 I_{nL})$ to the result of 3.

(An equivalent way to describe the above is to say that Y = Bx + Z where $B = \text{diag}(A, \ldots, A)$ is a block diagonal matrix.)

(c) Show that the channel above is equivalent to the channel $Y = \tilde{B}x + Z$ where

$$B = \operatorname{diag}(\underbrace{g_1, \dots, g_1}_n, \underbrace{g_2, \dots, g_2}_n, \dots, \underbrace{g_L, \dots, g_L}_n)$$

for some g_1, \ldots, g_L .

PROBLEM 2. Consider a channel where the transmitted vector $x \in \mathbb{R}^{2n}$ and received vector $Y \in \mathbb{R}^{2n}$ are related via

$$Y_i = g_i x_i + Z_i,$$

where $(Z_1, \ldots, Z_{2n}) \sim \mathcal{N}(0, I_{2n})$. Suppose that $g_1 = g_2 = \cdots = g_n = 10$ and $g_{n+1} = g_{n+2} = \cdots = g_{2n} = 1$. So, the first half of the transmitted signal is amplified by a factor 10, while the second half experiences no amplification or attenuation.

We are asked to design a communication system with $m = 2^k$ messages, subject to the constraints that (i) our codewords c_1, \ldots, c_m satisfy

$$\frac{1}{m}\sum_{i=1}^{m} \|c_i\|^2 \le n,$$

and (ii) the error probability is less than some given ϵ . Our aim is to make k large subject to these constraints.

We adopt the following strategy: design two separate systems for each half of the transmission. That is, send $k = k_1 + k_2$ bits; where $k_1 = \log_2 m_1$ bits is sent during the first half of the transmission via vectors c'_1, \ldots, c'_{m_1} , (all in \mathbb{R}^n) and $k_2 = \log_2 m_2$ bits is sent during the second half via vectors c''_1, \ldots, c''_{m_2} (again all in \mathbb{R}^n), so that the channel input is a concatenation of a c'_{i_1} and a c''_{i_2} . The receiver estimates i_1 from the first half $Y' = (Y_1, \ldots, Y_n)$ of the received vector, and estimates i_2 from the second half $Y'' = (Y_{n+1}, \ldots, Y_{2n})$.

- (a) If \mathcal{E}' and \mathcal{E}'' are the average energy of our first and second half designs, what is the average energy of the overall design?
- (b) If P'_e and P''_e are the error probabilities for our designs for the first and second halves, what is the overall error probability?

For rest of the problem suppose n = 100 and that the error probability requirement is $\epsilon = 10^{-3}$.

- (c) Consider a design with $k_2 = 0$ with $c''_1 = 0$ (i.e., the design only uses the first half). How large can we make $k = k_1$ with a QAM design? (In QAM, a message is sent using codewords in \mathbb{R}^2 . Since n = 100 we can send 50 such messages — when choosing the QAM constellation don't forget that we need to ensure that the probability that all 50 messages are correctly received is high.)
- (d) Consider a design with $\mathcal{E}' = \mathcal{E}''$. For the first half we use QAM, for the second we choose to use a repetition code. (A binary repetition code sends one bit via repeating $a \in \mathbb{R}$ or $-a \ r$ times, i.e., using codewords (a, \ldots, a) or $-(a, \ldots, a)$. We can thus send $k_2 = \lfloor n/r \rfloor$ bits in the second half.) How large can we make $k = k_1 + k_2$?
- (e) Suppose we make use of only the first two coordinates of the second half (in the remaining n 2 coordinates we send 0). In these two coordinates we use a QAM constellation to send $k_2 = 2$ bits. For the first half we use QAM (as in parts (c) and (d)). How large can we make $k = k_1 + 2$?
- (f) Repeat (e) with $k_2 = 4$.