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Problem 1. Suppose that we have two communication channels. On the first channel the
transmitted vector x ∈ Rn is received as

Y = Ax+ Z,

and on the second, the received vector is

Y = Ãx+ Z,

where A and Ã are deterministic n× n matrices and Z ∼ N (0, σ2In).

Suppose that A and Ã are related via UA = ÃV where U and V are orthogonal matrices
(i.e., U−1 = UT and similarly for V ).

(a) Suppose we are given a transmitter (i.e., vectors c1, . . . , cm) and a receiver (i.e., a
function Ĥ : Rn → {1, . . . ,m} that gives the guessed message Ĥ(y) when the received
vector is y) designed for the first channel. Show how we can design a transmitter and
receiver for the second channel (i.e., {c̃1, . . . , c̃m} and H̃(y)) such that

(i) for every message i, ∥c̃i∥ = ∥ci∥ (i.e., the new transmitter for the second channel
is equivalent in energy to the first), and

(ii) for every pair of messages i and k,

Pr(H̃(Y ) = k | message i is sent on the second channel) =

Pr(Ĥ(Y ) = k | message i is sent on the first channel)

(i.e., our design for the second channel has the same error probabilities as the
given design for the first channel).

Justified by (a), we say that the two channels above are equivalent.

(b) Show that any channel of the form Y = Ax+Z is equivalent to a channel Y = Ãx+Z
where Ã is a diagonal matrix.

Consider now a channel where the input x and output Y are vectors of dimension nL, and
Y is determined as follows:

1. The input x = (x1, . . . , xnL) is split into n segments s1 = (x1, . . . , xL), s2 = (xL+1, . . . , x2L),
. . . , sn = (x(n−1)L+1, . . . , xnL), each of dimension L,

2. Each segment si is multiplied by an L× L matrix A,

3. These are then concatenated to form a vector of dimension nL, and

4. Y is formed by adding Z ∼ N (0, σ2InL) to the result of 3.

(An equivalent way to describe the above is to say that Y = Bx+Z whereB = diag(A, . . . , A)
is a block diagonal matrix.)



(c) Show that the channel above is equivalent to the channel Y = B̃x+ Z where

B̃ = diag(g1, . . . , g1︸ ︷︷ ︸
n

, g2, . . . , g2︸ ︷︷ ︸
n

, . . . , gL, . . . , gL︸ ︷︷ ︸
n

)

for some g1, . . . , gL.

Problem 2. Consider a channel where the transmitted vector x ∈ R2n and received vector
Y ∈ R2n are related via

Yi = gixi + Zi,

where (Z1, . . . , Z2n) ∼ N (0, I2n). Suppose that g1 = g2 = · · · = gn = 10 and gn+1 = gn+2 =
· · · = g2n = 1. So, the first half of the transmitted signal is amplified by a factor 10, while
the second half experiences no amplification or attenuation.

We are asked to design a communication system with m = 2k messages, subject to the
constraints that (i) our codewords c1, . . . , cm satisfy

1

m

m∑
i=1

∥ci∥2 ≤ n,

and (ii) the error probability is less than some given ϵ. Our aim is to make k large subject
to these constraints.

We adopt the following strategy: design two separate systems for each half of the
transmission. That is, send k = k1 + k2 bits; where k1 = log2m1 bits is sent during
the first half of the transmission via vectors c′1, . . . , c

′
m1

, (all in Rn) and k2 = log2m2

bits is sent during the second half via vectors c′′1, . . . , c
′′
m2

(again all in Rn), so that the
channel input is a concatenation of a c′i1 and a c′′i2 . The receiver estimates i1 from the
first half Y ′ = (Y1, . . . , Yn) of the received vector, and estimates i2 from the second half
Y ′′ = (Yn+1, . . . , Y2n).

(a) If E ′ and E ′′ are the average energy of our first and second half designs, what is the
average energy of the overall design?

(b) If P ′
e and P ′′

e are the error probabilities for our designs for the first and second halves,
what is the overall error probability?

For rest of the problem suppose n = 100 and that the error probability requirement is
ϵ = 10−3.

(c) Consider a design with k2 = 0 with c′′1 = 0 (i.e., the design only uses the first half).
How large can we make k = k1 with a QAM design? (In QAM, a message is sent using
codewords in R2. Since n = 100 we can send 50 such messages — when choosing the
QAM constellation don’t forget that we need to ensure that the probability that all
50 messages are correctly received is high.)

(d) Consider a design with E ′ = E ′′. For the first half we use QAM, for the second we
choose to use a repetition code. (A binary repetition code sends one bit via repeating
a ∈ R or −a r times, i.e., using codewords (a, . . . , a) or −(a, . . . , a). We can thus
send k2 = ⌊n/r⌋ bits in the second half.) How large can we make k = k1 + k2?

(e) Suppose we make use of only the first two coordinates of the second half (in the
remaining n − 2 coordinates we send 0). In these two coordinates we use a QAM
constellation to send k2 = 2 bits. For the first half we use QAM (as in parts (c) and
(d)). How large can we make k = k1 + 2?

(f) Repeat (e) with k2 = 4.
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