ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 16
Principles of Digital Communications
Midterm exam

4 problems, 41 points, 165 minutes.
1 sheet (2 pages) of notes allowed.
Good Luck!

Please write your name on each sheet of your answers.
Please write the solution of each problem on a separate sheet.

Problem 1. (10 points)
Consider a hypothesis testing problem where the hypothesis H can take the values 0 or 1 with equal probability. The observation $Y=\left(Y_{1}, Y_{2}\right)$, when $H=i$, is given by

$$
Y=c_{i}+Z
$$

where $c_{0}=(1,2)$ and $c_{1}=(2,1)$ are vectors in \mathbb{R}^{2} and Z is Gaussian, zero mean, with covariance matrix $K=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.
Let α be a real number and let $T=(1-\alpha) Y_{1}+\alpha Y_{2}$ be a 1 -dimensional statistic.
(a) (2 pts) What is the probability distribution of the statistic T when $H=i, i=0,1$?
(b) (2 pts) Consider the MAP decision rule based only on the statistic T. What is the error probability for this rule?
(c) (3 pts) Which choice of α will minimize the error probability in (b)?
(d) (3 pts) Is the statistic T, with the α of (c), a sufficient statistic?

Problem 2. (10 points)
Consider a communication channel with input $\left(x_{1}, x_{2}\right)$ in \mathbb{R}^{2}, and output $\left(Y_{1}, Y_{2}\right)$ in \mathbb{R}^{2} given by

$$
\begin{aligned}
& Y_{1}=A_{1} x_{1}-A_{2} x_{2}+Z_{1} \\
& Y_{2}=A_{2} x_{1}+A_{1} x_{2}+Z_{2}
\end{aligned}
$$

where $A_{1}, A_{2}, Z_{1}, Z_{2}$ are all i.i.d. $\mathcal{N}(0,1)$ random variables.
(a) (2 pts) Observe that $\left(Y_{1}, Y_{2}\right)$ is a Gaussian vector for any given $\left(x_{1}, x_{2}\right)$. Find its mean and covariance matrix in terms of x_{1}, x_{2}.
(b) (3 pts) Suppose c_{1}, \ldots, c_{m} are m vectors in \mathbb{R}^{2}, and that when the message H equals i, the vector c_{i} is input to the communication channel above. The receiver, from the observation $\left(Y_{1}, Y_{2}\right)$ tries to guess the value of H. Show that, no matter how the vectors c_{1}, \ldots, c_{m} are chosen, $T=Y_{1}^{2}+Y_{2}^{2}$ is a sufficient statistic.
(c) (2 pts) Suppose $m=4$, and $c_{1}=(5,0), c_{2}=(0,5), c_{3}=(3,4), c_{4}=(4,3)$. All four messages are equally likely. What is the probability of error of the MAP decoder?
(d) (3 pts) Consider four designs, all with $m=2$, all with equally likely messages:

1. $c_{1}=(0,0), c_{2}=(10,0)$
2. $c_{1}=(8,6), c_{2}=(0,0)$
3. $c_{1}=(0,0), c_{2}=(5,0)$
4. $c_{1}=(8,6), c_{2}=(10,0)$

With $P_{1}, P_{2}, P_{3}, P_{4}$ denoting the error probability with MAP decoding of these systems, how will P_{1}, \ldots, P_{4} be ordered? What is the value of P_{4} ?

Problem 3. (11 points)
Consider a communication system over an additive white Gaussian noise channel (with noise intensity $=1$) with two equally likely messages transmitted via waveforms $w_{0}(t)=$ $-w_{1}(t)=\sqrt{\mathcal{E}} \mathbb{1}\left\{|t|<\frac{1}{2}\right\}$.
(a) (3 pts) At the receiver suppose we pass the received signal $R(t)$ through a filter with impulse response $h(t)=\mathbb{1}\left\{|t|<\frac{1}{2}\right\}$, sample the filter output at $t_{0}=0$, and, with Y denoting the value of the sample, decide $\hat{H}=1$ if $Y<0, \hat{H}=0$ if $Y \geq 0$. Is this receiver optimal? What is the probability of error?

We are asked to design a receiver who does not get to observe $R(t)$ but observes the output $S(t)$ of a filter whose input is $R(t)$ and whose impulse response is $\mathbb{1}\{|t|<1\}$. We can sample $S(t)$ at any number of time instants t_{1}, \ldots, t_{n}, and base our decision on the values $Y_{1}=S\left(t_{1}\right), \ldots, Y_{n}=S\left(t_{n}\right)$.
(b) (2 pts) Suppose we choose $n=1$, and $t_{1}=0$. What is the distribution of Y_{1} given $H=i, i=0,1$?
(c) (3 pts) What is the optimal choice of $\hat{H}\left(Y_{1}\right)$ and what is the corresponding probability of error?
(d) (3 pts) Suppose we choose $n=2$, with $t_{1}=-1 / 2, t_{2}=1 / 2$. What is the optimal choice of $\hat{H}\left(Y_{1}, Y_{2}\right)$ and what is the probability of error?
Hint: $Y_{1}+Y_{2}$ is a sufficient statistic.

Problem 4. (10 points)
Consider a communication system for the AWGN channel with noise intensity $N_{0} / 2$ with four equally likely messages, and suppose the waveforms w_{1}, \ldots, w_{4} have all unit norm and that $\left\langle w_{i}, w_{k}\right\rangle=\alpha$ for all $i \neq k$.
(a) (2 pts) Express $\left\|w_{1}+w_{2}+w_{3}+w_{4}\right\|^{2}$ in terms of α, and show that $-1 / 3 \leq \alpha \leq 1$.
(b) (3 pts) Let $\left\{\tilde{w}_{1}, \ldots, \tilde{w}_{4}\right\}$ be obtained by a translation of $\left\{w_{1}, \ldots, w_{4}\right\}$ so that the new signal set is of minimal average energy. Do $\tilde{w}_{1}, \ldots, \tilde{w}_{4}$ all have the same energy? If so, what is this energy in terms of α ?
(c) (2 pts) Is there a common value of $\left\langle\tilde{w}_{i}, \tilde{w}_{k}\right\rangle$ for $i \neq k$? If so, what is the common value in terms of α ?
(d) (3 pts) Let $c_{1}, c_{2}, c_{3}, c_{4}$ be the the corners of a regular tetrahedron in \mathbb{R}^{3}, centered at the origin. I.e., (i) $\left\|c_{i}\right\|^{2}=A^{2}$ for all i, (ii) $\left\langle c_{i}, c_{k}\right\rangle=-A^{2} / 3$ for all $i \neq k$. (As a consequence, $c_{1}+c_{2}+c_{3}+c_{4}=0$.)

Let $e_{\text {tetra }}(A)$ denote the error probability of the MAP decoder that observes $Y=$ $c_{i}+Z$ where Z is $\mathcal{N}\left(0, I_{3}\right)$ where each of the four c_{i} 's are equally likely. Express the probability of error of the communication system (the system which uses the waveforms $\left.w_{1}, w_{2}, w_{3}, w_{4}\right)$ described at the start of the problem in terms of α, N_{0} and $e_{\text {tetra }}(\cdot)$.
Hint: No lengthy computations are needed.

