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Handout 17 Principles of Digital Communications
Solutions to Midterm exam Apr. 22, 2023

Problem 1. (10 points)
Consider a hypothesis testing problem where the hypothesis H can take the values 0 or 1
with equal probability. The observation Y = (Y1, Y2), when H = i, is given by

Y = ci + Z,

where c0 = (1, 2) and c1 = (2, 1) are vectors in R2 and Z is Gaussian, zero mean, with

covariance matrix K =

[
1 0
0 2

]
.

Let α be a real number and let T = (1− α)Y1 + αY2 be a 1-dimensional statistic.

(a) (2 pts) What is the probability distribution of the statistic T when H = i, i = 0, 1?

Solution: Defining v = (1−α, α) and Z = (Z1, Z2), when H = i, T = ui +W , where
ui = ⟨v, ci⟩, and W = ⟨v, Z⟩ = (1 − α)Z1 + αZ2. For i = 0, we have u0 = ⟨v, c0⟩ =
(1−α)+ 2α = 1+α, and for i = 1, we have u1 = ⟨v, c1⟩ = 2(1−α)+α = 2−α. For
either value of H = i, T is a Gaussian random variable with mean ui and variance the
same as W , given by (1−α)2+2α2 = σ2, say. Hence, when H = 0, T ∼ N (1+α, σ2)
and when H = 1, T ∼ N (2− α, σ2).

(b) (2 pts) Consider the MAP decision rule based only on the statistic T . What is the
error probability for this rule?

Solution: With the same notation as in part (a), note that W (which is the noise
associated with the statistic T ) is a zero mean Gaussian with variance σ2 = (1 −
α)2 + 2α2. The error probability is thus Q

(
d
2σ

)
where d = |u0 − u1| = |1− 2α|.

(c) (3 pts) Which choice of α will minimize the error probability in (b)?

Solution: Minimizing the error probability in (b), is equivalent to maximizing d2/σ2 =
(1 − 2α)2/(1 − 2α + 3α2) (since |x| 7→ x2 is an increasing mapping and Q(·) is a
decreasing function). On differentiating, we find that α = −1 is the maximizer.

(d) (3 pts) Is the statistic T , with the α of (c), a sufficient statistic?

Solution: Yes. The likelihood ratio for the observation y = (y1, y2) is equal to

fY |H(y|0)
fY |H(y|1)

=
fZ(y − c0)

fZ(y − c1)
=
fZ1(y1 − 1)fZ2(y2 − 2)

fZ1(y1 − 2)fZ2(y2 − 1)

=
exp

(
− (y1−1)2

2

)
exp

(
− (y2−2)2

4

)
exp

(
− (y1−2)2

2

)
exp

(
− (y2−1)2

4

)
= exp

(
y1 −

1

2
+ y2 − 1− 2y1 + 2− y2

2
+

1

4

)
= exp

(
3

4
− 1

2
(2y1 − y2)

)
,

which is a function of y only through 2y1 − y2, which is exactly the statistic T with
α = −1.



Remark: In general, when Y = ci + Z with Z Gaussian and covariance K, T = ⟨v, Y ⟩ is a
statistic, and v is chosen to maximize the SNR = ⟨v,c0−c1⟩2

⟨v,Kv⟩ , then T is a sufficient statistic.
This problem is only a special case.
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Problem 2. (10 points)
Consider a communication channel with input (x1, x2) in R2, and output (Y1, Y2) in R2

given by
Y1 = A1x1 − A2x2 + Z1

Y2 = A2x1 + A1x2 + Z2

where A1, A2, Z1, Z2 are all i.i.d. N (0, 1) random variables.

(a) (2 pts) Observe that (Y1, Y2) is a Gaussian vector for any given (x1, x2). Find its
mean and covariance matrix in terms of x1, x2.

Solution: Since A1, A2, Z1, Z2 are all zero mean random variables, (Y1, Y2) is also zero
mean. Since A1, A2, Z1, Z2 are independent, the variances of Y1 and Y2 are given by

Var(Y1) = x21Var(A1) + x22Var(A2) + Var(Z1) = 1 + x21 + x22,

Var(Y2) = x21Var(A2) + x22Var(A1) + Var(Z2) = 1 + x21 + x22.

Further, the covariance between Y1 and Y2 is equal to zero, as

E[Y1Y2] = x1x2(E[A2
1]− E[A2

2]) + (x21 − x22)E[A1]E[A2] + E[Z1](. . . ) + +E[Z2](. . . ) = 0.

Hence (Y1, Y2) ∼ N ((0, 0), (1 + x21 + x22)I2) = N ((0, 0), (1 + ∥x∥2)I2).

(b) (3 pts) Suppose c1, . . . , cm are m vectors in R2, and that when the message H equals
i, the vector ci is input to the communication channel above. The receiver, from the
observation (Y1, Y2) tries to guess the value of H. Show that, no matter how the
vectors c1, . . . , cm are chosen, T = Y 2

1 + Y 2
2 is a sufficient statistic.

Solution: The pdf of the observation y = (y1, y2) when H = i is given by

fY |H(y|i) =
1

2π(1 + ∥ci∥2)
exp

(
− y21 + y22
2(1 + ∥ci∥2)

)
,

which depends only on y only through y21 + y22, hence T = Y 2
1 + Y 2

2 is a sufficient
statistic.

(c) (2 pts) Suppose m = 4, and c1 = (5, 0), c2 = (0, 5), c3 = (3, 4), c4 = (4, 3). All four
messages are equally likely. What is the probability of error of the MAP decoder?

Solution: Since all the ci’s have the same norm, the output is independent of the
input, thus the probability of error = 3/4 (equivalent to a random guess between the
four options).

(d) (3 pts) Consider four designs, all with m = 2, all with equally likely messages:

1. c1 = (0, 0), c2 = (10, 0)

2. c1 = (8, 6), c2 = (0, 0)

3. c1 = (0, 0), c2 = (5, 0)

4. c1 = (8, 6), c2 = (10, 0)

With P1, P2, P3, P4 denoting the error probability with MAP decoding of these sys-
tems, how will P1, . . . , P4 be ordered? What is the value of P4?

Solution: P1 = P2 < P3 < P4 = 1/2.
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P1 = P2 because in both cases, one message has norm 0 and the other has norm 10.
P1 < P3 because the distance between the message constellation is more in design 1.
P4 = 1/2 for the same reason as part (c), and P3 < P4 because we can definitely do
better than a random guess between the two messages in design 3.

Remark: Note that the channel is the “real” equivalent of the “complex” channel Y =
Ax + Z. Since A and Z are both circularly symmetric, is it not a surprise that |Y |2 is a
sufficient statistic and the input influences the output only via |x|2.
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Problem 3. (11 points)
Consider a communication system over an additive white Gaussian noise channel (with
noise intensity = 1) with two equally likely messages transmitted via waveforms w0(t) =
−w1(t) =

√
E1

{
|t| < 1

2

}
.

(a) (3 pts) At the receiver suppose we pass the received signal R(t) through a filter with
impulse response h(t) = 1

{
|t| < 1

2

}
, sample the filter output at t0 = 0, and, with Y

denoting the value of the sample, decide Ĥ = 1 if Y < 0, Ĥ = 0 if Y ≥ 0. Is this
receiver optimal? What is the probability of error?

Solution: Yes, this receiver does exactly what the optimal MAP receiver would do
(compute the inner product of R with the orthonormal basis functions). To see this,
observe that the orthonormal basis function is ψ(t) = 1

{
|t| < 1

2

}
, which is exactly

equal to h(T − t) with T = 0. Hence, sampling the output of the filter at t = T = 0
gives us the inner product of R with ψ.

We thus have Y = ci + Z, where Y = ⟨R,ψ⟩, ci = ⟨wi, ψ⟩ and Z = ⟨N,ψ⟩, where
N(t) is AWGN with noise intensity 1. It is easy to see that ci =

√
E for i = 0 and

−
√
E for i = 1, and Z is a Gaussian random variable with mean 0 and variance 1.

Hence the probability of error is Q(
√
E).

We are asked to design a receiver who does not get to observe R(t) but observes the output
S(t) of a filter whose input is R(t) and whose impulse response is 1{|t| < 1}. We can
sample S(t) at any number of time instants t1, . . . , tn, and base our decision on the values
Y1 = S(t1), . . . , Yn = S(tn).

(b) (2 pts) Suppose we choose n = 1, and t1 = 0. What is the distribution of Y1 given
H = i, i = 0, 1?

Solution: Let h′(t) = 1{|t| < 1} be the new impulse response. Then Y1 = c′i + Z ′,
where

c′i =

∫
R
wi(t)h

′(−t) dt =


∫ 1

2

− 1
2

√
E dt if i = 0∫ 1

2

− 1
2

−
√
E dt if i = 1

=

{√
E if i = 0

−
√
E if i = 1

Z ′ =

∫
R
N(t)h′(−t) dt =

∫ 1

−1

N(t) dt ∼ N (0, 2),

where the last step follows since ∥h′∥2 = 2. Hence, Y1 ∼ N (
√
E , 2) for i = 0 and

Y1 ∼ N (−
√
E , 2) for i = 1.

(c) (3 pts) What is the optimal choice of Ĥ(Y1) and what is the corresponding probability
of error?

Solution: Just as in part (a), the optimal choice of Ĥ(Y1) is to decide Ĥ(Y1) = 1
if Y1 < 0, Ĥ(Y1) = 0 if Y1 ≥ 0, and since the noise variance is now 2, the error

probability is Q
(√

E
2

)
.

(d) (3 pts) Suppose we choose n = 2, with t1 = −1/2, t2 = 1/2. What is the optimal
choice of Ĥ(Y1, Y2) and what is the probability of error?
Hint: Y1 + Y2 is a sufficient statistic.
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Solution: Observe that Y1 + Y2 =
∫
RR(t)

(
h′
(
−1

2
− t

)
+ h′

(
1
2
− t

))
dt, then define

h′′(t) = h′
(
−1

2
− t

)
+ h′

(
1
2
− t

)
=


1 if − 3

2
< t < −1

2

2 if − 1
2
< t < 1

2

1 if 1
2
< t < 3

2

0 else

.

Hence we have Y1 + Y2 = c′′i + Z ′′, where

c′′i =

∫
R
wi(t)h

′′(t) dt

=


∫ 1

2

− 1
2

2
√
E dt if i = 0∫ 1

2

− 1
2

−2
√
E dt if i = 1

=

{
2
√
E if i = 0

−2
√
E if i = 1

, and

Z ′ =

∫
R
N(t)h′′(t) dt ∼ N (0, 6),

where the last step follows since ∥h′′∥2 = 6. Thus we have that the optimal choice of
Ĥ(Y1, Y2) is to decide Ĥ(Y1, Y2) = 1 if Y1 +Y2 < 0, Ĥ(Y1) = 0 if Y1 +Y2 ≥ 0, and the

error probability is Q
(

2
√
E√
6

)
= Q

(√
2E
3

)
.

Remark: Let X̂(f) denote the Fourier transform of any signal X(t). The signal that we
would ideally like to have as in part (a) is the inverse Fourier transform of R̂(f)ĥ(f), with
ĥ(f) = sinc(f), and then sample the output at t = 0 to obtain the sufficient statistic
Y . However, we are only able to observe the signal S(t) with Fourier transform Ŝ(f) =
R̂(f)ĥ′(f), where ĥ′ = 2sinc(2f). Therefore, in principle, by passing S(t) through another
filter with frequency response (i.e., the Fourier transform of the impulse response) ĝ(f) =
ĥ(f)

ĥ′(f)
= 1

2 cos(πf)
, we should be able to obtain the desired signal. Since ĝ(f) is periodic with

period 2, the impulse response g(t) is of the form
∑

n∈Z cnδ
(
t− n

2

)
for some cn. This is

equivalent to sampling S(t) at the instances t = n
2
, scaling them by cn, and summing the

resulting quantities. The parts (c) and (d) look at the error performance when we truncate
the sum to n = 1 and n = 2 terms respectively. By continuing to an infinite number of
terms, we can, in principle, we recover the same error probability as part (a).
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Problem 4. (10 points)
Consider a communication system for the AWGN channel with noise intensity N0/2 with
four equally likely messages, and suppose the waveforms w1, . . . , w4 have all unit norm and
that ⟨wi, wk⟩ = α for all i ̸= k.

(a) (2 pts) Express ∥w1 + w2 + w3 + w4∥2 in terms of α, and show that −1/3 ≤ α ≤ 1.

Solution: Expanding ∥w1 + w2 + w3 + w4∥2, we have

∥w1 + w2 + w3 + w4∥2 =
∑
1≤i≤4

∥wi∥2 +
∑

1≤i ̸=j≤4

⟨wi, wj⟩ = 4 + 12α,

and since 4 + 12α = ∥w1 +w2 +w3 +w4∥2 ≥ 0, we have α ≥ −1/3. Furthermore, by
the Cauchy-Schwarz inequality, we have, for i ̸= k,

α = ⟨wi, wk⟩ ≤ ∥wi∥∥wk∥ = 1.

(b) (3 pts) Let {w̃1, . . . , w̃4} be obtained by a translation of {w1, . . . , w4} so that the new
signal set is of minimal average energy. Do w̃1, . . . , w̃4 all have the same energy? If
so, what is this energy in terms of α?

Solution: The minimal average energy set of waveforms {w̃1, w̃2, w̃3, w̃4} is formed by
subtracting the arithmetic mean m = 1

4
(w1+w2+w3+w4) from each waveform, i.e.,

w̃i = wi −m. Then,

∥w̃i∥2 = ∥wi −m∥2 = ∥wi∥2 + ∥m∥2 − 2⟨wi,m⟩

= 1 +

∥∥∥∥14(w1 + w2 + w3 + w4)

∥∥∥∥2

− 2

〈
wi,

1

4

∑
1≤j≤4

wj

〉

= 1 +
1

16
(4 + 12α)− 2

4
(1 + 3α) =

3

4
(1− α)

for all i. Hence all the minimal energy waveforms w̃1, w̃2, w̃3, w̃4 have the same energy,
given by 3

4
(1− α).

(c) (2 pts) Is there a common value of ⟨w̃i, w̃k⟩ for i ̸= k? If so, what is the common
value in terms of α?

Solution: For any i ̸= k, we have

⟨w̃i, w̃k⟩ = ⟨wi −m,wk −m⟩ = ⟨wi, wk⟩+ ∥m∥2 − ⟨wi,m⟩ − ⟨wk,m⟩

= α +

∥∥∥∥14(w1 + w2 + w3 + w4)

∥∥∥∥2

−

〈
wi,

1

4

∑
1≤j≤4

wj

〉
−

〈
wk,

1

4

∑
1≤j≤4

wj

〉

= α +
1

16
(4 + 12α)− 2

4
(1 + 3α) =

1

4
(α− 1).

(d) (3 pts) Let c1, c2, c3, c4 be the the corners of a regular tetrahedron in R3, centered at
the origin. I.e., (i) ∥ci∥2 = A2 for all i, (ii) ⟨ci, ck⟩ = −A2/3 for all i ̸= k. (As a
consequence, c1 + c2 + c3 + c4 = 0.)

Let etetra(A) denote the error probability of the MAP decoder that observes Y =
ci + Z where Z is N (0, I3) where each of the four ci’s are equally likely. Express
the probability of error of the communication system (the system which uses the
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waveforms w1, w2, w3, w4) described at the start of the problem in terms of α, N0 and
etetra(·).
Hint: No lengthy computations are needed.

Solution: First observe that the waveform set W̃ = {w̃1, . . . , w̃4} is an isometric
transformation of W = {w1, . . . , w4}, hence the error probability of the system using
W is identical to that using W̃ . Observe that W̃ has dimension 3, since w̃1+· · ·+w̃4 =
0, and let Ψ = {ψ1, ψ2, ψ3} be an orthonormal basis for the waveform set.

Given the received signal R(t) = w̃i(t) + N(t), where N(t) is AWGN with noise
intensity N0

2
, we compute the sufficient statistic Y = (⟨R,ψ1⟩, ⟨R,ψ2⟩, ⟨R,ψ3⟩) =

ci + Z, where ci = (⟨w̃i, ψ1⟩, ⟨w̃i, ψ2⟩, ⟨w̃i, ψ3⟩) and Z = (⟨N,ψ1⟩, ⟨N,ψ2⟩, ⟨N,ψ3⟩) ∼
N

(
0, N0

2
I3
)
.

Define Ỹ = Y√
N0/2

= c̃i + Z̃ with c̃i =
ci√
N0/2

and Z̃ = Z√
N0/2

∼ N (0, I3). Setting

E = 3
4
(1− α), we have ∥c̃i∥2 = 1

N0/2
∥w̃i∥2 = 2E

N0
, ⟨c̃i, c̃k⟩ = 1

N0/2
⟨w̃i, w̃k⟩ = −2E

N0

/
3 for

all i ̸= k, i.e., c̃i are corners of a regular tetrahedron in R3 centered at the origin as

described in the problem, with A =
√

2E
N0

= 3(1−α)
2N0

. Hence the error probability of

the system is etetra

(√
3(1−α)
2N0

)
.

Remark: This problem is related to the simplex conjecture, which states that the op-
timal choice of M signal vectors in AWGN, with an average energy constraint but no
constraint on the dimension of the signal set, is the vertices of the (M − 1)-dimensional
regular simplex (e.g., regular tetradehedron for M = 4, equilateral triangle for M = 3).
A counter example has been shown for M ≥ 7, and hence this conjecture is not true in
general. Refer to M. Steiner, “The strong simplex conjecture is false,” in IEEE Transac-
tions on Information Theory, vol. 40, no. 3, pp. 721-731, May 1994 (available online at
https://ieeexplore.ieee.org/abstract/document/335884), for more details.

8


