ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 23
Principles of Digital Communications
Solutions to Problem Set 9

Solution 1.
(a)

$$
\begin{aligned}
R_{\xi}(\tau) & =\int_{-\infty}^{\infty} \xi(t+\tau) \xi^{*}(t) d t=\langle\xi(t+\tau), \xi(t)\rangle \\
& \stackrel{(1)}{\leq}\|\xi(t+\tau)\| \cdot\|\xi(t)\|=\|\xi\| \cdot\|\xi\|=\|\xi\|^{2} \stackrel{(2)}{=} R_{\xi}(0)
\end{aligned}
$$

where (1) follows from the Cauchy-Schwarz inequality and (2) from the fact that $R_{\xi}(0)=\int_{-\infty}^{\infty} \xi(t) \xi^{*}(t) d t=\|\xi\|^{2}$.
(b)

$$
\begin{aligned}
R_{\xi}(-\tau) & =\int_{-\infty}^{\infty} \xi(t-\tau) \xi^{*}(t) d t \\
& =\left(\int_{-\infty}^{\infty} \xi(t) \xi^{*}(t-\tau) d t\right)^{*} \\
& \stackrel{t \rightarrow t+\tau}{=} R_{\xi}^{*}(\tau) .
\end{aligned}
$$

(c)

$$
\begin{aligned}
R_{\xi}(\tau) & =\int_{-\infty}^{\infty} \xi(t+\tau) \xi^{*}(t) d t \\
& \stackrel{t \rightarrow t-\tau}{=} \int_{-\infty}^{\infty} \xi(t) \xi^{*}(t-\tau) d t \\
& =\xi(\tau) \star \xi^{*}(-\tau) .
\end{aligned}
$$

(d) By Parseval's identity, we have

$$
\begin{aligned}
R_{\xi}(\tau) & =\langle\xi(t+\tau), \xi(t)\rangle \\
& =\left\langle\xi_{\mathcal{F}}(f) e^{\mathrm{j} 2 \pi f \tau}, \xi_{\mathcal{F}}(f)\right\rangle \\
& =\int_{-\infty}^{\infty} \xi_{\mathcal{F}}(f) \xi_{\mathcal{F}}^{*}(f) e^{\mathrm{j} 2 \pi f \tau} d f \\
& =\int_{-\infty}^{\infty}\left|\xi_{\mathcal{F}}(f)\right|^{2} e^{\mathrm{j} 2 \pi f \tau} d f,
\end{aligned}
$$

which is the inverse Fourier transform of $\left|\xi_{\mathcal{F}}(f)\right|^{2}$.

Solution 2.
(a) We have

$$
y(t)=\int_{-\infty}^{\infty} w(\tau) \psi(\tau-t) d \tau
$$

The samples of this waveform at multiples of T are

$$
\begin{aligned}
y(m T) & =\int_{-\infty}^{\infty} w(\tau) \psi(\tau-m T) d \tau \\
& =\int_{-\infty}^{\infty}\left[\sum_{k=1}^{K} d_{k} \psi(\tau-k T)\right] \psi(\tau-m T) d \tau \\
& =\sum_{k=1}^{K} d_{k} \int_{-\infty}^{\infty} \psi(\tau-k T) \psi(\tau-m T) d \tau \\
& =\sum_{k=1}^{K} d_{k} \mathbb{1}\{k=m\} \\
& =d_{m}
\end{aligned}
$$

(b) Let $\tilde{w}(t)$ be the channel output. Then, $\tilde{y}(t)$ is $\tilde{w}(t)$ filtered by $\psi(-t)$. We have

$$
\tilde{w}(t)=w(t)+\rho w(t-T)
$$

and

$$
\tilde{y}(t)=\int_{-\infty}^{\infty} \tilde{w}(\tau) \psi(\tau-t) d \tau
$$

The samples of this waveform at multiples of T are

$$
\begin{aligned}
\tilde{y}(m T)= & \int_{-\infty}^{\infty} \tilde{w}(\tau) \psi(\tau-m T) d \tau \\
= & \int_{-\infty}^{\infty}[w(\tau)+\rho w(\tau-T)] \psi(\tau-m T) d \tau \\
= & \int_{-\infty}^{\infty}\left[\sum_{k=1}^{K} d_{k} \psi(\tau-k T)\right] \psi(\tau-m T) d \tau+ \\
& \rho \int_{-\infty}^{\infty}\left[\sum_{k=1}^{K} d_{k} \psi(\tau-T-k T)\right] \psi(\tau-m T) d \tau \\
= & \sum_{k=1}^{K} d_{k} \mathbb{1}\{k=m\}+\rho \sum_{k=1}^{K} d_{k} \mathbb{1}\{k=m-1\} \\
= & d_{m}+\rho d_{m-1} .
\end{aligned}
$$

(c) From the symmetry of the problem, we have

$$
P_{e}=P_{e}(1)=P_{e}(-1) .
$$

$$
\begin{aligned}
P_{e}(1)= & \operatorname{Pr}\left\{\hat{D}_{k}=-1 \mid D_{k}=1, D_{k-1}=-1\right\} \operatorname{Pr}\left\{D_{k-1}=-1\right\}+ \\
& \operatorname{Pr}\left\{\hat{D}_{k}=-1 \mid D_{k}=1, D_{k-1}=1\right\} \operatorname{Pr}\left\{D_{k-1}=1\right\} \\
= & \frac{1}{2}\left(\operatorname{Pr}\left\{Y_{k}<0 \mid D_{k}=1, D_{k-1}=-1\right\}+\operatorname{Pr}\left\{Y_{k}<0 \mid D_{k}=1, D_{k-1}=1\right\}\right) \\
= & \frac{1}{2}\left(\operatorname{Pr}\left\{1-\alpha+Z_{k}<0\right\}+\operatorname{Pr}\left\{1+\alpha+Z_{k}<0\right\}\right) \\
= & \frac{1}{2}\left(\operatorname{Pr}\left\{Z_{k}<-1+\alpha\right\}+\operatorname{Pr}\left\{Z_{k}<-1-\alpha\right\}\right) \\
= & \frac{1}{2}\left[Q\left(\frac{1-\alpha}{\sigma}\right)+Q\left(\frac{1+\alpha}{\sigma}\right)\right] .
\end{aligned}
$$

Solution 3.
(a) We can easily see that

$$
\mathbb{E}\left[X_{i} \mid X_{i-1}\right]=\frac{1}{2} X_{i-1}+\frac{1}{2}\left(-X_{i-1}\right)=0
$$

Consequently (using the law of total expectation)

$$
\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[\mathbb{E}\left[X_{i} \mid X_{i-1}\right]\right]=0 .
$$

Therefore,

$$
K_{X}[k]=\mathbb{E}\left[\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)\left(X_{i-k}-\mathbb{E}\left[X_{i-k}\right]\right)^{*}\right]=\mathbb{E}\left[X_{i} X_{i-k}^{*}\right]
$$

Moreover, using the fact that $X_{i}=X_{i-1} \times(-1)^{D_{i}}$ repeatedly, we can write

$$
X_{i}=X_{i-k} \times \prod_{j=i-k+1}^{i}(-1)^{D_{j}}
$$

Thus,

$$
\begin{aligned}
K_{X}[k] & =\mathbb{E}\left[X_{i} X_{i-k}^{*}\right] \\
& =\mathbb{E}\left[X_{i-k} \prod_{j=i-k+1}^{i}(-1)^{D_{j}} X_{i-k}^{*}\right] \\
& \stackrel{(a)}{=} \mathbb{E}\left[X_{i-k} X_{i-k}^{*}\right] \prod_{j=i-k+1}^{i} \mathbb{E}\left[(-1)^{D_{j}}\right] \\
& =\mathcal{E} \prod_{j=i-k+1}^{i} \mathbb{E}\left[(-1)^{D_{j}}\right] \\
& \stackrel{(b)}{=} \begin{cases}\mathcal{E} & \text { if } k=0, \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

where (a) follows from the independence of data bits $\left\{D_{i}\right\}$ and (b) since $\mathbb{E}\left[(-1)^{D_{i}}\right]=0$.
(b) By sampling the signal at the output of the matched filter, $Y(t)$, at multiples of T, we obtain

$$
Y(i T)=X_{i}+Z_{i}
$$

where Z_{i} is normally distributed with zero mean and variance $N_{0} / 2$. By looking at the definition of X_{i}, we see that it is equal to X_{i-1} if $D_{i}=0$ and equal to $-X_{i-1}$ if $D_{i}=1$. Therefore a simple decoder estimates that $\hat{D}_{i}=0$ if Y_{i} and Y_{i-1} have the same sign, and $\hat{D}_{i}=1$ otherwise. This is equivalent to

$$
Y_{i} Y_{i-1} \underset{\hat{D}_{i}=1}{\stackrel{\hat{D}_{i}=0}{\gtrless} 0 .}
$$

(c) We first compute the error probability when $D_{i}=0$. If $X_{i-1}=\sqrt{\mathcal{E}}$, then $X_{i}=\sqrt{\mathcal{E}}$. When we decode, we will make an error if the signal $\left(Y_{i-1}, Y_{i}\right)^{\top}$ is in the second or fourth quadrants (shaded regions in the following figure).

Due to the symmetry of the problem, the probability for this to happen is two times the probability for $\left(Y_{i-1}, Y_{i}\right)^{\top}$ to be in the second quadrant:

$$
\operatorname{Pr}\left\{Z_{i-1}<-\sqrt{\mathcal{E}} \cap Z_{i}>-\sqrt{\mathcal{E}}\right\}=Q\left(\sqrt{\frac{\mathcal{E}}{N_{0} / 2}}\right) Q\left(-\sqrt{\frac{\mathcal{E}}{N_{0} / 2}}\right),
$$

so,

$$
P_{e}\left(D_{i}=0 \mid D_{i-1}=0\right)=2 Q\left(\sqrt{\frac{\mathcal{E}}{N_{0} / 2}}\right) Q\left(-\sqrt{\frac{\mathcal{E}}{N_{0} / 2}}\right) .
$$

Again, due to the symmetry of the problem,

$$
P_{e}\left(D_{i}=0 \mid D_{i-1}=1\right)=P_{e}\left(D_{i}=0 \mid D_{i-1}=0\right)=P_{e}\left(D_{i}=0\right)
$$

and

$$
P_{e}\left(D_{i}=1\right)=P_{e}\left(D_{i}=0\right) ;
$$

hence

$$
P_{e}=2 Q\left(\sqrt{\frac{\mathcal{E}}{N_{0} / 2}}\right) Q\left(-\sqrt{\frac{\mathcal{E}}{N_{0} / 2}}\right) .
$$

Solution 4. Because $\psi(t)$ is real, its Fourier transform is conjugate symmetric $\left(\psi_{\mathcal{F}}(f)=\right.$ $\left.\psi_{\mathcal{F}}^{*}(-f)\right)$.

From the condition $\int \psi(t-k T) \psi(t-l T) d t=\mathbb{1}\{k=l\}$ for every pair k, l, it follows that $\left|\psi_{\mathcal{F}}(f)\right|^{2}$ satisfies Nyquist's criterion with parameter $T, \sum_{k \in \mathbb{Z}}\left|\psi_{\mathcal{F}}(f-k / T)\right|^{2}=T$. On the other hand, since $\psi_{\mathcal{F}}(f)=0$ for $|f|>\frac{1}{T},\left|\psi_{\mathcal{F}}(f)\right|^{2}$ must have band-edge symmetry.

Putting everything together, we obtain the complete plot of $\left|\psi_{\mathcal{F}}(f)\right|^{2}$.

Solution 5. From Theorem 5.6, we know that $\{\psi(t-j T)\}_{j=-\infty}^{\infty}$ is an orthonormal set if and only if

$$
\sum_{k \in \mathbb{Z}}\left|\psi_{\mathcal{F}}\left(f-\frac{k}{T}\right)\right|^{2}=T
$$

(a)

$$
\sum_{k \in \mathbb{Z}} T \mathbb{1}_{\left[\frac{k}{T}-\frac{1}{2 T}, \frac{k}{T}+\frac{1}{2 T}\right]}(f)=T \Rightarrow \text { The Nyquist criterion is satisfied }
$$

$\Rightarrow \quad \psi(t)$ is orthonormal to its time-translates by multiples of T.
(b)

$$
\sum_{k \in \mathbb{Z}} \frac{T}{2} \mathbb{1}_{\left[\frac{k-1}{T}, \frac{k+1}{T}\right]}(f)=T \Rightarrow \text { The Nyquist criterion is satisfied }
$$

$\Rightarrow \quad \psi(t)$ is orthonormal to its time-translates by multiples of T.
(c) Because $\left|\psi_{\mathcal{F}}(f)\right|^{2}$ vanishes outside $\left[-\frac{1}{T}, \frac{1}{T}\right]$, we verify whether the band-edge symmetry is fulfilled, which is the case. Hence, the Nyquist criterion is satisfied and $\psi(t)$ is orthonormal to its time-translates by multiples of T. Note: the same reasoning can be applied to (b).
(d) $\psi_{\mathcal{F}}(f)$ is a sinc function, therefore $\psi(t)$ is a box function, equal to $\frac{1}{T} \mathbb{1}_{\left[-\frac{T}{2}, \frac{T}{2}\right]}(t)$. This is orthogonal to its time-translates by multiples of T, but does not have unit norm (unless $T=1$): $\int_{-\infty}^{\infty}|\psi(t)|^{2} d t=\frac{1}{T}$.

Solution 6.

(a) We pass $R(t)$ through a whitening filter $h(t)$ such that the output $R^{\prime}(t)$ looks like the output of an AWGN channel. After this step we are facing a familiar situation and can implement a matched filter receiver. The receiver architecture is shown below:

Let $N^{\prime}(t)=\int N(\alpha) h(t-\alpha) d \alpha$ be the noise at the output of the whitening filter. We want to select the filter $h(t)$ such that $\frac{N_{0}}{2}=G(f)\left|h_{\mathcal{F}}(f)\right|^{2}$, i.e.,

$$
\left|h_{\mathcal{F}}(f)\right|^{2}=\frac{N_{0}}{2 G(f)} .
$$

The output of the filter is

$$
\begin{aligned}
R^{\prime}(t) & =\int R(\alpha) h(t-\alpha) d \alpha=\int w_{i}(\alpha) h(t-\alpha) d \alpha+\int N(\alpha) h(t-\alpha) d \alpha \\
& =w_{i}^{\prime}(t)+N^{\prime}(t)
\end{aligned}
$$

where $N^{\prime}(t)$ is white Gaussian noise and $w_{i}^{\prime}(t)=\int w_{i}(\alpha) h(t-\alpha) d \alpha$. We need to design the matched filter for the signals $w_{i}^{\prime}(t)$.
(b) To minimize both the noise and the energy of the signal, we need to select an antipodal signal pair that is frequency-limited to $[a, b]$ and has energy \mathcal{E}.

