ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 23	Principles of Digital Communications
Solutions to Problem Set 9	May 5, 2023

Solution 1.

(a)

$$R_{\xi}(\tau) = \int_{-\infty}^{\infty} \xi(t+\tau)\xi^{*}(t) dt = \langle \xi(t+\tau), \xi(t) \rangle$$

$$\stackrel{(1)}{\leq} \|\xi(t+\tau)\| \cdot \|\xi(t)\| = \|\xi\| \cdot \|\xi\| = \|\xi\|^{2} \stackrel{(2)}{=} R_{\xi}(0),$$

where (1) follows from the Cauchy–Schwarz inequality and (2) from the fact that $R_{\xi}(0) = \int_{-\infty}^{\infty} \xi(t)\xi^*(t) dt = ||\xi||^2.$

(b)

$$R_{\xi}(-\tau) = \int_{-\infty}^{\infty} \xi(t-\tau)\xi^{*}(t) dt$$
$$= \left(\int_{-\infty}^{\infty} \xi(t)\xi^{*}(t-\tau)dt\right)^{*}$$
$$\stackrel{t \to t+\tau}{=} R_{\xi}^{*}(\tau).$$

(c)

$$R_{\xi}(\tau) = \int_{-\infty}^{\infty} \xi(t+\tau)\xi^{*}(t) dt$$
$$\stackrel{t \to t-\tau}{=} \int_{-\infty}^{\infty} \xi(t)\xi^{*}(t-\tau) dt$$
$$= \xi(\tau) \star \xi^{*}(-\tau).$$

(d) By Parseval's identity, we have

$$R_{\xi}(\tau) = \langle \xi(t+\tau), \xi(t) \rangle$$

= $\langle \xi_{\mathcal{F}}(f) e^{j2\pi f\tau}, \xi_{\mathcal{F}}(f) \rangle$
= $\int_{-\infty}^{\infty} \xi_{\mathcal{F}}(f) \xi_{\mathcal{F}}^{*}(f) e^{j2\pi f\tau} df$
= $\int_{-\infty}^{\infty} |\xi_{\mathcal{F}}(f)|^2 e^{j2\pi f\tau} df$,

which is the inverse Fourier transform of $|\xi_{\mathcal{F}}(f)|^2$.

Solution 2.

(a) We have

$$y(t) = \int_{-\infty}^{\infty} w(\tau)\psi(\tau - t)d\tau.$$

The samples of this waveform at multiples of ${\cal T}$ are

$$y(mT) = \int_{-\infty}^{\infty} w(\tau)\psi(\tau - mT)d\tau$$

=
$$\int_{-\infty}^{\infty} \left[\sum_{k=1}^{K} d_k \ \psi(\tau - kT)\right] \psi(\tau - mT)d\tau$$

=
$$\sum_{k=1}^{K} d_k \int_{-\infty}^{\infty} \psi(\tau - kT)\psi(\tau - mT)d\tau$$

=
$$\sum_{k=1}^{K} d_k \mathbb{1}\{k = m\}$$

=
$$d_m.$$

(b) Let $\tilde{w}(t)$ be the channel output. Then, $\tilde{y}(t)$ is $\tilde{w}(t)$ filtered by $\psi(-t)$. We have

$$\tilde{w}(t) = w(t) + \rho w(t - T)$$

and

$$\tilde{y}(t) = \int_{-\infty}^{\infty} \tilde{w}(\tau)\psi(\tau - t)d\tau.$$

The samples of this waveform at multiples of T are

$$\begin{split} \tilde{y}(mT) &= \int_{-\infty}^{\infty} \tilde{w}(\tau)\psi(\tau - mT)d\tau \\ &= \int_{-\infty}^{\infty} [w(\tau) + \rho w(\tau - T)]\psi(\tau - mT)d\tau \\ &= \int_{-\infty}^{\infty} \left[\sum_{k=1}^{K} d_{k} \ \psi(\tau - kT)\right]\psi(\tau - mT)d\tau + \\ &\quad \rho \int_{-\infty}^{\infty} \left[\sum_{k=1}^{K} d_{k} \ \psi(\tau - T - kT)\right]\psi(\tau - mT)d\tau \\ &= \sum_{k=1}^{K} d_{k}\mathbbm{1}\{k = m\} + \rho \sum_{k=1}^{K} d_{k}\mathbbm{1}\{k = m - 1\} \\ &= d_{m} + \rho d_{m-1}. \end{split}$$

(c) From the symmetry of the problem, we have

$$P_e = P_e(1) = P_e(-1).$$

$$P_{e}(1) = \Pr\{\hat{D}_{k} = -1 | D_{k} = 1, D_{k-1} = -1\} \Pr\{D_{k-1} = -1\} + \\\Pr\{\hat{D}_{k} = -1 | D_{k} = 1, D_{k-1} = 1\} \Pr\{D_{k-1} = 1\} \\ = \frac{1}{2} \left(\Pr\{Y_{k} < 0 | D_{k} = 1, D_{k-1} = -1\} + \Pr\{Y_{k} < 0 | D_{k} = 1, D_{k-1} = 1\} \right) \\ = \frac{1}{2} \left(\Pr\{1 - \alpha + Z_{k} < 0\} + \Pr\{1 + \alpha + Z_{k} < 0\} \right) \\ = \frac{1}{2} \left(\Pr\{Z_{k} < -1 + \alpha\} + \Pr\{Z_{k} < -1 - \alpha\} \right) \\ = \frac{1}{2} \left[Q \left(\frac{1 - \alpha}{\sigma} \right) + Q \left(\frac{1 + \alpha}{\sigma} \right) \right].$$

Solution 3.

(a) We can easily see that

$$\mathbb{E}[X_i|X_{i-1}] = \frac{1}{2}X_{i-1} + \frac{1}{2}(-X_{i-1}) = 0.$$

Consequently (using the law of total expectation)

$$\mathbb{E}[X_i] = \mathbb{E}[\mathbb{E}[X_i|X_{i-1}]] = 0.$$

Therefore,

$$K_X[k] = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_{i-k} - \mathbb{E}[X_{i-k}])^*] = \mathbb{E}[X_i X_{i-k}^*]$$

Moreover, using the fact that $X_i = X_{i-1} \times (-1)^{D_i}$ repeatedly, we can write

$$X_i = X_{i-k} \times \prod_{j=i-k+1}^{i} (-1)^{D_j}$$

Thus,

$$K_{X}[k] = \mathbb{E}[X_{i}X_{i-k}^{*}]$$

$$= \mathbb{E}\left[X_{i-k}\prod_{j=i-k+1}^{i}(-1)^{D_{j}}X_{i-k}^{*}\right]$$

$$\stackrel{(a)}{=} \mathbb{E}[X_{i-k}X_{i-k}^{*}]\prod_{j=i-k+1}^{i}\mathbb{E}[(-1)^{D_{j}}]$$

$$= \mathcal{E}\prod_{j=i-k+1}^{i}\mathbb{E}[(-1)^{D_{j}}]$$

$$\stackrel{(b)}{=} \begin{cases} \mathcal{E} & \text{if } k = 0, \\ 0 & \text{otherwise.} \end{cases}$$

where (a) follows from the independence of data bits $\{D_i\}$ and (b) since $\mathbb{E}[(-1)^{D_i}] = 0$.

(b) By sampling the signal at the output of the matched filter, Y(t), at multiples of T, we obtain

$$Y(iT) = X_i + Z_i,$$

where Z_i is normally distributed with zero mean and variance $N_0/2$. By looking at the definition of X_i , we see that it is equal to X_{i-1} if $D_i = 0$ and equal to $-X_{i-1}$ if $D_i = 1$. Therefore a simple decoder estimates that $\hat{D}_i = 0$ if Y_i and Y_{i-1} have the same sign, and $\hat{D}_i = 1$ otherwise. This is equivalent to

$$Y_i Y_{i-1} \overset{\hat{D}_i=0}{\underset{\hat{D}_i=1}{\overset{\hat{D}_i=1}{\geq}}} 0.$$

(c) We first compute the error probability when $D_i = 0$. If $X_{i-1} = \sqrt{\mathcal{E}}$, then $X_i = \sqrt{\mathcal{E}}$. When we decode, we will make an error if the signal $(Y_{i-1}, Y_i)^{\mathsf{T}}$ is in the second or fourth quadrants (shaded regions in the following figure).

Due to the symmetry of the problem, the probability for this to happen is two times the probability for $(Y_{i-1}, Y_i)^{\mathsf{T}}$ to be in the second quadrant:

$$\Pr\{Z_{i-1} < -\sqrt{\mathcal{E}} \cap Z_i > -\sqrt{\mathcal{E}}\} = Q\left(\sqrt{\frac{\mathcal{E}}{N_0/2}}\right) Q\left(-\sqrt{\frac{\mathcal{E}}{N_0/2}}\right)$$

so,

$$P_e(D_i = 0 | D_{i-1} = 0) = 2Q\left(\sqrt{\frac{\mathcal{E}}{N_0/2}}\right)Q\left(-\sqrt{\frac{\mathcal{E}}{N_0/2}}\right).$$

Again, due to the symmetry of the problem,

$$P_e(D_i = 0 | D_{i-1} = 1) = P_e(D_i = 0 | D_{i-1} = 0) = P_e(D_i = 0)$$

and

$$P_e(D_i = 1) = P_e(D_i = 0);$$

hence

$$P_e = 2Q\left(\sqrt{\frac{\mathcal{E}}{N_0/2}}\right)Q\left(-\sqrt{\frac{\mathcal{E}}{N_0/2}}\right).$$

SOLUTION 4. Because $\psi(t)$ is real, its Fourier transform is conjugate symmetric ($\psi_{\mathcal{F}}(f) = \psi_{\mathcal{F}}^*(-f)$).

From the condition $\int \psi(t-kT)\psi(t-lT)dt = \mathbb{1}\{k=l\}$ for every pair k, l, it follows that $|\psi_{\mathcal{F}}(f)|^2$ satisfies Nyquist's criterion with parameter T, $\sum_{k\in\mathbb{Z}} |\psi_{\mathcal{F}}(f-k/T)|^2 = T$. On the other hand, since $\psi_{\mathcal{F}}(f) = 0$ for $|f| > \frac{1}{T}$, $|\psi_{\mathcal{F}}(f)|^2$ must have band-edge symmetry.

Putting everything together, we obtain the complete plot of $|\psi_{\mathcal{F}}(f)|^2$.

SOLUTION 5. From Theorem 5.6, we know that $\{\psi(t-jT)\}_{j=-\infty}^{\infty}$ is an orthonormal set if and only if

$$\sum_{k\in\mathbb{Z}} |\psi_{\mathcal{F}}(f-\frac{k}{T})|^2 = T.$$

(a)

 $\sum_{k \in \mathbb{Z}} T \mathbb{1}_{\left[\frac{k}{T} - \frac{1}{2T}, \frac{k}{T} + \frac{1}{2T}\right]}(f) = T \Rightarrow \text{The Nyquist criterion is satisfied}$

 $\Rightarrow \psi(t)$ is orthonormal to its time-translates by multiples of T.

(b)

$$\sum_{k \in \mathbb{Z}} \frac{T}{2} \mathbb{1}_{\left[\frac{k-1}{T}, \frac{k+1}{T}\right]}(f) = T \Rightarrow \text{The Nyquist criterion is satisfied}$$

- $\Rightarrow \psi(t)$ is orthonormal to its time-translates by multiples of T.
- (c) Because $|\psi_{\mathcal{F}}(f)|^2$ vanishes outside $\left[-\frac{1}{T}, \frac{1}{T}\right]$, we verify whether the band-edge symmetry is fulfilled, which is the case. Hence, the Nyquist criterion is satisfied and $\psi(t)$ is orthonormal to its time-translates by multiples of T. Note: the same reasoning can be applied to (b).
- (d) $\psi_{\mathcal{F}}(f)$ is a sinc function, therefore $\psi(t)$ is a box function, equal to $\frac{1}{T}\mathbb{1}_{\left[-\frac{T}{2},\frac{T}{2}\right]}(t)$. This is orthogonal to its time-translates by multiples of T, but does not have unit norm (unless T = 1): $\int_{-\infty}^{\infty} |\psi(t)|^2 dt = \frac{1}{T}$.

Solution 6.

(a) We pass R(t) through a whitening filter h(t) such that the output R'(t) looks like the output of an AWGN channel. After this step we are facing a familiar situation and can implement a matched filter receiver. The receiver architecture is shown below:

Let $N'(t) = \int N(\alpha)h(t-\alpha) \ d\alpha$ be the noise at the output of the whitening filter. We want to select the filter h(t) such that $\frac{N_0}{2} = G(f)|h_{\mathcal{F}}(f)|^2$, i.e.,

$$|h_{\mathcal{F}}(f)|^2 = \frac{N_0}{2G(f)}.$$

The output of the filter is

$$R'(t) = \int R(\alpha)h(t-\alpha) \ d\alpha = \int w_i(\alpha)h(t-\alpha) \ d\alpha + \int N(\alpha)h(t-\alpha) \ d\alpha$$
$$= w'_i(t) + N'(t),$$

where N'(t) is white Gaussian noise and $w'_i(t) = \int w_i(\alpha)h(t-\alpha) d\alpha$. We need to design the matched filter for the signals $w'_i(t)$.

(b) To minimize both the noise and the energy of the signal, we need to select an antipodal signal pair that is frequency-limited to [a, b] and has energy \mathcal{E} .